JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY
Volume 36, Number 1, 2023

Mary Ann Liebert, Inc.

Pp. 34-43

DOI: 10.1089/jamp.2021.0061

Open camera or QR reader and ﬁ:‘-

scan code to access this article
and other resources online.

s -

In Vitro Drug Delivery of a Fixed-Dose Combination
of Fluticasone Furoate/Umeclidinium/Vilanterol
from a Dry Powder Inhaler

Melanie Hamilton, BSc,' Martin Anderson, MD? Rajiv Dhand, MD,®> Oonagh Patmore, BSc/
David Prime, PhD,"* and Edward Taylor, BSc'

Abstract

Background: Dry powder inhalers (DPIs) require patients to impart sufficient energy through inhalation to
ensure adequate dose emission, medication deaggregation, and resultant particle sizes suitable for lung depo-
sition. There is an ongoing debate regarding the level of inspiratory effort, and therefore inspiratory flow rate,
needed for optimal dose delivery from DPIs.

Materials and Methods: The delivered dose (DD) and fine particle fraction (FPF) for each component of
fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) 100/62.5/25 ug and FF/UMEC/VI 200/62.5/25 ug
ELLIPTA DPIs were assessed at flow rates of 30, 60, and 90 L/min. Electronic lung (eLung) (eLung; an
electronic breathing simulator) assessments were conducted to replicate inhalation profiles representing a wide
range of inhalation parameters and inhaled volumes achieved by patients with chronic obstructive pulmonary
disease (COPD) or asthma of all severity levels. Timing and duration of dose emission were assessed using a
particle detector located at the entrance of an anatomical throat cast attached to the eLung.

Results: During DD assessment, a mean of >80% of the nominal blister content (nbc) was emitted from the
ELLIPTA DPI at all flow rates. In Next Generation Impactor assessments, the observed mean DD across flow
rates for FF/UMEC/VI 100/62.5/25 ug ranged from 85.9% to 97.0% of nbc and 84.0% to 93.5% for
FF/UMEC/VI 200/62.5/25 pg. In eLung assessments, 82.8% to 95.5% of nbc was delivered across the PIF
range, 43.5 to 129.9 L/min (COPD), and 85.1% to 92.3% across the PIF range, 67.4 to 129.9 L/min (asthma).
The FPF (mass <5 um; % nbc) for each component was comparable across all flow rates and inhalation profiles.
Dose emission timings indicated that near-complete dose emission occurs before reaching PIF.

Conclusions: Dose delivery assessments across all flow rates and inhalation profiles indicate that patients with
all severity levels of COPD or asthma can achieve the required inspiratory effort for efficient delivery of all
components of FF/UMEC/VI from the ELLIPTA DPI. Dose emission profiles suggest rapid and near-complete
dose delivery from the ELLIPTA DPI before reaching PIF.
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Introduction

INHALED THERAPIES ARE THE CORNERSTONE of pharma-
cological management of chronic obstructive pulmonary
disease (COPD) and asthma. 12 Inhalation devices encompass
a wide variety of delivery systems, including pressure-driven
sprays (pressurized metered-dose inhalers [pMDIs] and soft
mist inhalers), air-driven nebulizers, and dry powder inhalers
(DPIs).? As a class, DPIs vary in design (e.g., swirl chambers,
mouthpieces), which results in varying levels of inspiratory
resistance and differing flow rate characteristics.

Besides device-specific properties and the patient’s disease
state, the anatomical structure of the mouth and throat and
inspiratory volume are two other important patient-related
factors that can impact aerosol delivery to the lung.’ Ad-
ditionally, pMDIs require patients to successfully coordinate
dose actuation and their inhalation to ensure optimal delivery of
medication to the lungs, while DPIs require patients to achieve
sufficient inspiratory effort and therefore inspiratory flow rate.?

The deposition pattern in the respiratory tract is highly de-
pendent on particle size.® Large particles have a high proba-
bility to be deposited in the upper throat (oropharynx), while
small particles have a high probability to reach the lower air-
ways and alveolar compartment.® The particles within an
aerosol that are <5 um in size are termed fine particles.’

The ELLIPTA DPI is a moderate-resistance, single-step
activation multidose inhaler supplied in either a single-strip
(monotherapy) or two-strip (combination therapy) configu-
ration for patients with COPD or asthma.’ For patients with
COPD, the ELLIPTA DPI delivers umeclidinium (UMEC)
monotherapy, UMEC/vilanterol (UMEC/VI) dual therapy, flu-
ticasone furoate/VI (FF/VI) dual therapy, and FF/UMEC/VI
triple therapy. For patients with asthma, it delivers FF
monotherapy, FF/VI dual therapy, and FF/UMEC/VI
triple therapy.®® Currently, FE/UMEC/VI 100/62.5/25 ug
is approved for patients with COPD or asthma, while
FF/UMEC/VI 200/62.5/25 ug is only approved for patients
with asthma.” The product strength for FF/UMEC/VI is also
referred to as the nominal blister content (nbc).7’10

Both the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) and Global Initiative for Asthma manage-
ment strategies stress the importance of inhaler technique
training to improve symptom control and recommend that
patients who cannot master a device should switch inhalers.'?

Studies have shown that DPIs are frequently preferred
over pMDIs by patients with COPD or asthma,'' with the
ELLIPTA DPI being associated with fewer errors in use,
greater patient preference, and more patients rating it as easy
to use compared with other inhalers. >3 Furthermore, DPIs
have been shown to have an annual carbon footprint 20-30
times smaller than pMDIs, indicating that DPIs also offer
greater environmental benefits.'*

Concerns have been raised that with DPIs, dose delivery
and subsequent medication deposition in the airways may be
inadequate in patients with low peak inspiratory flow (PIF)
values.>™17 However, in vitro studies have demonstrated
consistent dose delivery of the components of FF/lUMEC/VI
ELLIPTA DPI at flow rates ranging from 30 to 90 L/min
under standard test conditions and 43.5 to 129.9 L/min using
the electronic lung (eLung) breathing simulator developed
for characterization of inhalation devices through replication
of patient-specific inhalation profiles.”"'®

Here we report the in vitro dosing performance of the
FF/UMEC/VI ELLIPTA DPI when characterized using a
routine methodology (i.e., delivered dose (DD) and cascade
impaction testing) and by eLung assessments. We also re-
port the relationship between timing and duration of dose
emission from the ELLIPTA DPI and the inspiratory flow
rate to identify when, in the inhalation profile, the medica-
tion is released and therefore the importance of PIF and
inhaled volume on dosing.

Materials and Methods

All data in this article are in vitro analyses and therefore
informed consent, ethics committee or institutional review
board (IRB) approval were not required.

Detailed methodologies for DD, Next Generation Im-
pactor (NGI), and eLung assessments have been provided
previously,™'® and details of the experimental setups are
provided in Figure 1. Testing was performed for all
components (FF, UMEC, and VI) of a single batch of the
FF/UMEC/VI ELLIPTA DPI at each product strength:
100/62.5/25 pg and 200/62.5/25 ug.”"°

DD measurements

The total dose delivered from the ELLIPTA DPI was as-
sessed at flow rates of 30, 60, and 90 L/min. These flow rates
incorporate and extend beyond the lowest PIF (43.5 L/min)
achieved by patients with all severity levels of asthma or
COPD by inhaling through the ELLIPTA DPI (two-strip
configuration) in the RESI113817 (NCT01345266) and
RES117178 (NCT02076269) studies.'®

At each flow rate, two doses from each of 10 inhalers
were aerosolized into the test apparatus. To assess the total
amount of dose delivered, the dose collector was rinsed with
a suitable solvent to recover the deposited mass, and solu-
tions were analyzed using high-performance liquid chro-
matography (HPLC) (HPLC conditions are provided in the
Supplementary Data).

Aerodynamic particle size distribution by NGI

The aerodynamic particle size distribution (APSD) of
each component of FF/UMEC/VI was determined using an
NGI (NGI MSP Corporation Model M170, Preseparator,
USP Induction Port with GSK integrated mouthpiece)'®™'
at flow rates of 30, 60, and 90 L/min with an inhaled volume
of 4L.

For each product strength and flow rate, four ELLIPTA
DPIs were tested, with six doses actuated into the impactor
from each device, resulting in a six-dose composite sample
for analysis. The induction port and all stages of the NGI
apparatus were rinsed with a suitable solvent to recover the
deposited mass, and solutions were analyzed using HPLC
(see Supplementary Data for details).

Total DD and fine particle fraction (FPF) (mass <5 um;
% nbc) were subsequently determined from the results
obtained.

eLung measurements

The eLung apparatus uses an anatomical throat cast
(GSK) considered to be more structurally representative of a
human throat than the metal throat used in standard in vitro
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FIG. 1. Experimental setups for (A) DD assessments; (B) eLung assessments; and (C) laser

position for particle detector assessments. DD, delivered dose; eLung, electronic lung.

inhaler testing. Although the oropharyngeal anatomical
structure varies in the general population, the cross-sectional
area of the eLung throat cast closely matches those observed
in imaging studies of healthy individuals as well as patients
with asthma and COPD and therefore was suitable for use in
these experiments. '

Maximal effort, inhaler-specific inhalation profiles were
previously recorded from patients with mild-to-very severe
COPD (GOLD stage I-IV) or mild-to-severe asthma (British
Thoracic Society steps 1-5) in the RES113817 and
RES117178 studies. Patient demographics have been de-
scribed previously.'”

Five inhalation profiles representing populations with
COPD and asthma of all severity levels were selected from

these studies and replicated using the eLung. These inha-
lation profiles were selected to include the absolute mini-
mum (43.5L/min) and maximum (129.9L/min) PIFs
observed across the patient populations for which the
FF/UMEC/VI ELLIPTA DPI is approved (COPD and
asthma) and the median and interquartile range PIFs. Spe-
cifically, profiles with nominal PIFs of 67.4, 82.4, 99.9, and
129.9 L/min were used to represent both COPD and asthma
populations, in addition to 43.5L/min for COPD and
113.1 L/min for asthma.

To allow characterization of the APSD of the dose
passing beyond the anatomical throat, an NGI was attached
to the eLung and operated at a standard flow rate of
60 L/min after replication of the patient-specific inhalation
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profile was completed. As per the NGI analysis described
above, six doses were actuated from each of the three de-
vices to form a six-dose composite sample for analysis.

To assess the total DD and FPD, individual parts of the
eLung/impactor apparatus were rinsed with a suitable sol-
vent to recover the deposited mass and solutions analyzed
using HPLC (see Supplementary Data for details). Each test
was performed in triplicate for each inhalation profile.

Particle detector measurements in conjunction
with the eLung

The dose emission timing profile was assessed using a
light-emitting diode (635nM, 1 mW) and a photodiode and
transimpedance amplifier supplied by Si-Plan electronics
using a process similar to that described by Ziffels et al.*?
The equipment was aligned at the entrance to the ana-
tomical throat attached to the eLung (Fig. 1C), which
provides the synchronization signal at the start of the in-
halation replication.

Three inhalation profiles with PIFs of 30, 43.5, and
129.9 L/min were replicated through the eLung using this
setup, the dose emission profile was recorded, and the mean
of six doses was plotted relative to the inhalation profile.
The inhalation profile with PIF of 30 L/min was previously
recorded from a standard NGI setup using an inhalation
profile recorder (GSK) and replicated using the eLung in the
same way as the patient-specific profiles with PIFs of 43.5
and 129.9 L/min.

Statistical analysis

The total DD and FPF for all assessments were calculated
as mean percentage (range) of the nbc of each component.
For each response, data were analyzed using a two-way
ANOVA approach with fixed factors of product (levels:
100/62.5/25 pg and 200/62.5/25 pug) and flow rate (levels:
30, 60, and 90L/min for NGI/DD; and minimum, 25%;
medium, 75%; and maximum for eLung).

For each combination of product and flow rate, the pre-
dicted mean from the analysis and tolerance interval (95%,
95%) were calculated. This tolerance interval corresponds to
the range (with 95% confidence) in which 95% of all future
doses of FF/UMEC/VI should fall.

Results
DD assessment

Mean DDs for FF, UMEC, and VI were >80% of the nbc
for all flow rates and both strengths of the triple combination
ELLIPTA DPI (Fig. 2; Supplementary Table S1). For
FF/UMEC/VI 100/62.5/25 ug, DD tolerance intervals ran-
ged between 83.3% and 101.8% for FF, 76.3% and 96.3%
for UMEC, and 75.8% and 94.3% for VI across all three
flow rates. For FE/UMEC/VI 200/62.5/25 pg, DD tolerance
intervals ranged from 85.8% to 99.6%, 81.3% to 96.1%, and
80.1% to 93.2% of the nbc across all three flow rates for FF,
UMEC, and VI, respectively.

APSD by NGI

For FF/UMEC/VI 100/62.5/25 ug, DD tolerance intervals
ranged from 84.9% to 100.6% of the nbc for FF, 84.5% to

96.5% for UMEC, and 82.4% to 94.6% for VI across all
three flow rates (Fig. 3A; Supplementary Table S2). For
FF/UMEC/VI 200/62.5/25 pg, mean DD tolerance intervals
ranged from 86.3% to 97.1%, 82.8% to 94.8%, and 80.4%
to 92.7% of the nbc for FF, UMEC, and VI, respectively
(Fig. 3A).

FPF tolerance intervals for FF/UMEC/VI 100/62.5/25 ug
ranged from 20.2% to 29.9% of the nbc for FF, 31.3% to
48.8% for UMEC, and 28.3% to 48.8% for VI (Fig. 3B). For
FF/UMEC/VI 200/62.5/25 ug, FPF tolerance intervals ranged
from 17.3% to 27.1%, 30.7% to 48.0%, and 26.7% to 46.9%
of the nbc for FF, UMEC, and VI, respectively (Fig. 3B;
Supplementary Table S2).

The median mass aerodynamic diameter (MMAD) de-
creased with increasing flow rates (Supplementary Table S2).

eLung measurements

For FF/UMEC/VI 100/62.5/25 ug and using inhalation
profiles representing COPD and asthma populations with
PIF ranging from 43.5 to 129.9 L/min, DD tolerance inter-
vals ranged from 86.4% to 102.0% of the nbc for FF, 81.9%
to 93.9% for UMEC, and 77.6% to 92.1% for VI (Fig. 4A;
Supplementary Table S3). FPF tolerance intervals ranged
from 19.2% to 27.9%, 31.7% to 41.4%, and 27.4% to 41.3%
for FF, UMEC, and VI, respectively (Fig. 4B).

For FF/UMEC/VI 200/62.5/25 ug and using inhalation
profiles representing an asthma population with PIF ranging
from 67.4 to 129.9 L/min, DD tolerance intervals ranged from
83.6% to 97.2% of the nbc for FF, 83.9% to 97.1% for
UMEC, and 79.9% to 93.4% for VI (Fig. 4A; Supplementary
Table S3). FPF tolerance intervals ranged from 19.4% to
27.3%, 29.4% to 41.5%, and 28.2% to 45.7% for FF, UMEC,
and VI, respectively (Fig. 4B). The MMAD decreased with
increasing flow rates (Supplementary Table S3).

elLung and particle detector measurements

For all three profiles (PIFs of 30, 43.5, and 129.9 L/min),
dose emission was observed to begin within 0.1 seconds of
the start of inhalation and was largely complete by 0.5
seconds, before PIF is reached (Fig. 5).

Discussion

The mean DD results obtained in three separate assess-
ments (DD, NGI, and eLung) in conjunction with the dose
emission profiles recorded using a particle detector dem-
onstrate that delivery of all active components within the
FF/UMEC/VI ELLIPTA DPI is >80% of the nbc across a
wide range of inspiratory flow rates that are representative
of those achieved by patients with COPD or asthma of all
severity levels. The lower bounds of the tolerance intervals
indicate that the majority of all future doses of all compo-
nents are predicted to be >75% of the nbc.

For all components of the FFF/UMEC/VI ELLIPTA DPI
across flow rates ranging from 30 to 90 L/min, over 80% of
the nbc was delivered from the inhaler in the DD assess-
ment, while over 84% of the nbc was recorded in the NGI
analysis over the same flow rate range. By considering
tolerance intervals, the majority of future doses are also
predicted to be >75% in the DD assessment and 80% in the
NGI assessment.
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These results confirm that an adequate quantity of the
blister content of FF/UMEC/VI is delivered at all flow rates
tested under standardized in vitro test conditions and that
delivery performance is not compromised at the lowest flow
rate of 30 L/min, which is below the minimum detected flow
rate of 43.5L/min recorded in the RESI113817 and
RES117178 studies."

These data are supported by those of the eLung assess-
ments, which demonstrated comparable (i.e., 95%, 95% tol-
erance intervals overlapped) total DD and FPF across the
wide range of inhalation parameters assessed, including a PIF
range of 43.5 to 129.9 L/min and inhaled volume of 0.8 to
3.2L. The eLung data indicate largely flow-independent de-
livery of FF, UMEC, and VI through the ELLIPTA DPI
across both the 100/62.5/25 ug and 200/62.5/25 ug product
strengths.

The eLung has been designed to be used with an ana-
tomically representative oropharyngeal cast, allowing for a
more realistic assessment of dose delivery to the airways
than standard in vitro testing with an NGI and metal in-
duction port.'® Thus, by replicating inhalation profiles re-

corded from patients in the RES113817 and RES117178
studies,'®!? these eLung assessments can also provide evi-
dence for the likely efficiency of dose delivery through the
ELLIPTA DPI in patients with all severity levels of COPD
or asthma.

In the RES113817 and RES117178 studies, the lowest
recorded PIF with a two-strip ELLIPTA DPI configuration
was 43.5L/min in a patient with very severe COPD and
67.4L/min in a patient with moderate asthma (of note, the
lowest recorded PIF in patients with severe asthma was
72.4L/min)."”” The inhalation profiles representing the
minimum PIF recorded from each patient population
(COPD and asthma) and replicated in eLung experiments
resulted in a mean DD of at least 82.7% and 85.3% of the
nbc, respectively, across all components.

The tolerance interval for the lowest PIF revealed that all
future doses are predicted to be 278% of the nbc. Further-
more, disease severity in asthma and COPD is assessed
through the exhalation portion of the flow—volume curve
(i.e., FEV, and FVC)."* The high percentage of DD in this
analysis indicates that disease severity is not the most
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important parameter for assessing inhaler suitability as even
patients with very severe COPD or severe asthma have
enough inspiratory effort to achieve PIF through the
ELLIPTA DPI, which results in efficient dose delivery of all
components of FF/UMEC/VI.

Use of DPIs requires production of fine particles (aero-
dynamic diameter <5 um) through deagglomeration of the
formulation, which for some DPIs may improve with in-
creasing energy.” Thus, it is of interest to consider the
proportion of FF/UMEC/VI delivered as fine particles across
a wide range of inhalation parameters that are representative
of the intended patient population.

Overall, the tolerance intervals revealed that the FPF re-
corded as a percentage of the nbc in the NGI analysis for
both treatment strengths is expected to range from 17.3% to
29.9% for FF, 30.7% to 48.8% for UMEC, and 26.7% to
48.8% for VI across the three flow rates assessed. Data from
eLung assessments further demonstrated deagglomeration as
the FPF was similar for each component across PIFs ranging
from 43.5 to 129.9 L/min, suggesting that patients with all
severity levels of COPD and asthma can achieve an optimal
flow rate through the ELLIPTA inhaler.

Additionally, the MMAD was shown to decrease and FPF
increase with greater flow rates, irrespective of which method
was used. The association between the FPF and clinical ef-
ficacy is a complex issue and is dependent on a number of
factors, including formulation type and differences in phy-
siochemical characteristics between drugs, with inconsistent
results reported across the literature.”* However, the FPF
reported in these analyses is consistent with those seen for
other DPIs*; furthermore, the consistency of aerosolized
performance across the wide range of inhalation parame-
ters tested makes the ELLIPTA DPI suitable for patients
with all severity levels of COPD or asthma.

Additionally, the ELLIPTA inhaler contains the drug
powder in blisters, rather than as compressed powder in one
large compartment, and this may contribute to the efficiency
of dose delivery with the ELLIPTA DPI. The testing
methodologies used in this study employ different mecha-
nisms regarding filtration of the aerosol cloud and flow rate
setup, which likely explain any differences in trends within
the results in our study.

The timing of dose emission indicates that regardless of
PIF, emission from the ELLIPTA DPI starts within 0.1
seconds and most of the dose is emitted within 0.5 seconds,
suggesting that dose delivery occurs at very low flow rates
and inhaled volumes. This timing of emission is due to the
design of the ELLIPTA DPI, which has a short airflow
channel that may reduce the dose lost to internal surfaces,
thereby helping maintain the percentage of dose emitted as
well as flow properties of the product formulation.’

Furthermore, for each inhalation profile, PIF occurred
after the majority of dose emission had taken place, sug-
gesting that dose emission is not fully dependent on PIF.
However, it should be noted that PIF has shown a rela-
tionship with other inhalation parameters, such as pressure
slope and acceleration rate, both of which impact the de-
livery of medication from a DPL?®

In a recent post hoc analysis on two clinical trial popu-
lations (207608/207609) and a real-world database (Kaiser
Permanente Northwest) population, nearly all (>99%) pa-
tients with COPD could achieve spirometric PIF values that

were estimated to be equivalent to a PIF of >30L/min
through the ELLIPTA DPL?’ This finding is supported by a
recent real-world study in patients with self-reported COPD
or asthma, which demonstrated that 100% of patients
achieved a baseline PIF of 230 L/min, as measured using the
In-Check DIAL (Clement Clarke International; Harlow,
UK) at a low—medium DPI resistance setting.?®

Furthermore, a lack of correlation between spirometric
PIF at screening and clinical outcomes in patients with
moderate-to-severe COPD was also seen in the 207608/
207609 clinical trial populations, which aligns with the
flow-independent and consistent dose delivery from the
ELLIPTA DPI across a wide range of PIFs achieved by
patients with COPD of all severity levels.?” This is further
supported by the efficacy seen with FF/UMEC/VI in large-
scale Phase 3 trials in patients with inade%uately controlled
asthma and moderate-to-severe COPD.?*~!

The dose delivery with the ELLIPTA DPI reported in
these assessments compares favorably with that reported for
other DPIs. In an in vitro study assessing dose delivery
across seven inhalation profiles, the Breezhaler DPI reported
a mean DD of 68% of the labeled dose of indacaterol,
150 g, and the HandiHaler DPI reported a mean DD of
42% of the labeled dose of tiotropium, 18 ug.>?

In addition, for the Breezhaler and HandiHaler DPIs, the mean
FPF (defined as <4.7 um) delivered was 26.8% of the labeled
dose of indacaterol and 10.0% of the labeled dose of tiotropium
18 g respectively.’? The lowest recorded PIFs through the
Breezhaler and HandiHaler were 47 and 23 L/min, respectively,
in this study, which resulted in DDs of 55% and 37% and FPFs of
18% and 8% of the labeled dose, respectively.>

A limitation of this study is that the eLung assessments used
the range of inhalation profiles obtained in the RES113817
and RES117178 studies, which included a relatively small
number of patients (n=120), and thus a larger population size
may have extended the range of PIFs observed. However, it
should be noted that patients with PIF values below the min-
imum recorded in the RES113817 and RES117178 studies are
rarely seen and inclusion of DD and NGI assessments enabled
investigation of a flow rate (30 L/min) below this minimum
observed PIF, supporting the performance of the ELLIPTA
DPI at low PIF values.

Furthermore, the use of the eLung allowed replication of
patient-specific inhalation profiles, which not only incor-
porated a wide range of PIF values but also a range of other
inhalation parameters, including inhalation volumes and
flow acceleration characteristics."® An additional point to
note is that the duration of flow rate measurement was
consistent across all flow rates for the DD test. Therefore, the
volume of inhalation did not remain consistent across all flow
rates for the dose delivery data. However, the results presented
are still robust as the dose is delivered within a short period of
time and thus the volume would have had a negligible effect on
the dose and delivery obtained.

Conclusions

These in vitro analyses demonstrate efficient delivery of
each component of FF/UMEC/VI in the ELLIPTA DPI at
flow rates as low as 30 L/min and across a wide range of
inhalation parameters representative of patients with all
severity levels of COPD and asthma. Additionally, the dose
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emission profiles suggest that rapid dose delivery from the
ELLIPTA DPI is achieved, with the majority of the dose
delivered before PIF is reached.

These data show that patients with COPD or asthma of all
severity levels can achieve inspiratory flow profiles that
result in efficient dose delivery of FF/UMEC/VI through the
ELLIPTA DPIL
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