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ABSTRACT: Piperazines are important heterocycles in drug compounds. We
report the asymmetric synthesis of arylpiperazines by photocatalytic decarbox-
ylative arylation (metallaphotoredox catalysis) then kinetic resolution using n-
BuLi/(+)-sparteine. This gave a range of piperazines with very high
enantioselectivities. Further functionalizations gave enantioenriched 2,2-disubsti-
tuted piperazines, and either N-substituent can be removed selectively. Late-stage
functionalizations of enantioenriched piperazine derivatives were demonstrated,
including synthesis of a drug compound with glycogen synthase kinase (GSK)-3β inhibitor activity with potential for treating
Alzheimer’s disease.

Piperazines are one of the most important saturated
nitrogen heterocycles found in small-molecule pharma-

ceuticals.1 Their druglike properties and synthetic versatility
make them excellent candidates in drug discovery programs.
For example, imatinib (marketed as Gleevec), a BCR-Abl
tyrosine kinase inhibitor, is used in the treatment of multiple
cancers with high response rate,2 and gatifloxacin is an
important fluoroquinolone antibiotic (Figure 1).3 The majority

of the piperazines in pharmaceuticals contain substituents only
at the two nitrogen atoms. However, having substitution at a
carbon atom of the piperazine ring is very important in drug
discovery.4 Examples of substituted piperazines occur in
vestipitant, a neurokinin-1 antagonist which is currently in
clinical trials for the treatment of anxiety and tinnitus,5 and
indinavir, a protease inhibitor used to treat HIV/AIDS.6

Development of methods to access C-substituted piperazines,
particularly with control of absolute configuration, would
promote structural diversity in small-molecule collections to
aid medicinal chemistry.

The most common methods for the formation of 2-
substituted piperazines use amino acid starting materials and
cyclization chemistry.7 The direct functionalization of the
intact piperazine ring is an attractive alternative strategy,
allowing late-stage introduction of the substituent.8 One such
approach uses lithiation chemistry.9−11 This lithiation−
trapping chemistry has provided access to a small selection
of 2-substituted piperazines, but extension via transmetalation
and Negishi coupling to give 2-arylpiperazines was very low-
yielding.11 A recent report of photoredox catalysis has allowed
direct arylation or vinylation but there are very few examples,
and this is limited to the formation of racemic N-aryl
piperazines.12 The direct C−H functionalization of six-
membered saturated heterocycles by photocatalysis is problem-
atic due to the poor yields of the product,13,14 so we were
attracted to a decarboxylative arylation strategy.15,16 Here we
report the successful synthesis of 2-arylpiperazines using
photoredox chemistry followed by kinetic resolution using
asymmetric lithiation17 to provide highly enantioenriched
substituted piperazines. This chemistry allows a new route to
2-arylpiperazines with control of absolute configuration and is
showcased with an application to the preparation of a GSK-3β
inhibitor with excellent yield and enantioselectivity.
Initial work investigated the possibility of carrying out a

direct C−H activation using Ir[dF(CF3)ppy]2(dtbbpy)PF6 as
the photocatalyst.13 However, this resulted in low yields of the
2-arylpiperazine products (up to 35% yield using methyl 4-

Received: January 9, 2023
Published: February 3, 2023

Figure 1. Bioactive piperazines.
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bromobenzoate as the aryl halide) (see the SI). Therefore, the
piperazine 1 was formed (see the SI) from the parent
piperazine11 using sec-BuLi, TMEDA, and ground dry ice.18

We then explored decarboxylative arylation for the synthesis of
a series of 2-arylpiperazines using photocatalysis (Scheme 1).

As anticipated from the literature,15,16 the presence of an
electron-withdrawing group, such as an acyl or cyano group,
gave the best results (Table 1, entries 1, 2, and 5). In the

absence of such a group, relatively low yields of the desired
products were obtained when starting with the aryl bromide
precursor (entries 3, 4, and 6). However, switching to the aryl
iodide gave improved results (entries 8 and 9) and even
allowed formation of the 2-phenyl derivative 2g (entry 7) and
more electron-rich derivatives (entries 11 and 12). Compared
with entry 9, a similar yield (48%) of the product 2f was
obtained using (instead of the iridium catalyst) the organo-
photocatalyst 4CzIPn16b and the aryl iodide (entry 10). The
reactions were generally performed using 0.6 mmol of acid 1
but could be scaled to 5.7 mmol (2 g) without a significant
reduction in yield (2f, 50% yield after 72 h).
With the 2-arylpiperazines 2 in hand, we were interested in

exploring a kinetic resolution protocol developed in our
laboratories.17 This chemistry relies on coordination of the
chiral base to the carbonyl oxygen atom of the Boc group, so it
is important to determine the ratio of rotamers and the rate of
rotation of the carbonyl group. From variable-temperature
(VT) NMR spectroscopy with the piperazine 2c in d8-THF
(Figure 2), the ratio of rotamers is approximately 1:1 and the
activation parameters for the rotation were determined as ΔH⧧

≈ 44 kJ/mol and ΔS⧧ ≈ − 27 J/K·mol. These parameters
equate to a barrier to rotation, ΔGd

⧧
≈ 49 kJ/mol at −78 °C,

and this gives a half-life for rotation of about 2 s at this
temperature. These results were supported by density
functional theory (DFT) calculations using the B3LYP
functional including dispersion interactions and the def2TZVP

basis set.19 These calculations indicated a 53:47 ratio of
rotamers of 2g and a rotation barrier ΔG⧧ ≈ 50 kJ/mol at −78
°C (see the SI). Hence, despite the presence of both rotamers,
the lithiation should be possible due to the relatively fast rate
of rotation of the Boc group.
Kinetic resolution of the piperazine derivatives was

investigated using (+)-sparteine as the chiral ligand in toluene
and adding n-BuLi to this mixture. After optimization, we
found very good results for the kinetic resolution using 0.6
equiv of n-BuLi along with 0.8 equiv (+)-sparteine for 30 min
(Scheme 2). Trapping the resulting mixture with methyl
chloroformate gave the disubstituted products 3b,c,f,g,i,
together with recovered piperazines 2b,c,f,g,i with enantiomer
ratios (er) up to 99:1. The results indicate a selectivity factor S
≈ 17.20 The resolution tolerated a bulky ester substituent at C-
4 of the aromatic ring (2b) but not the nitrile 2e. The 4-
fluoro-, 4-chloro-, and 4-methyl-substituted piperazines 2c, 2f,
and 2i were excellent substrates. The absolute configuration of
the major enantiomer was assigned on the basis of the known
preference for BuLi/(+)-sparteine to remove the pro-(R)
proton on the carbon atom attached to the N-Boc group,21,22

and this aligns with all previous related examples.17 A model to
illustrate the preference is shown (Figure 3), in which the
(+)-enantiomer of sparteine when coordinated to BuLi favors
lithiation of the (S) enantiomer of the piperazines 2. To favor
the other enantiomer, (−)-sparteine could be used.17

The kinetic resolution reactions resulted in recovered 2-
arylpiperazines (38−44% yields) and 2,2-disubstituted piper-
azines (28−32% yields) with excellent enantioselectivities. The
remaining material was, at least in part, the product of ring-
opening from β-elimination of the intermediate organolithium
species. This side reaction has been noted before with lithiated
piperazines, particularly after addition of the electrophile that
could coordinate to the distal nitrogen atom.10,11 The bulky N-
cumyl group should minimize such an interaction although in
our substrates there is a higher propensity for elimination due
to formation of a conjugated alkene (styrene). Despite this, we
were able to demonstrate successful lithiation−trapping of the
enantioenriched recovered piperazines (Scheme 3). For
example, treatment of piperazine (R)-2c (er 98:2) with n-
BuLi in THF at low temperature for 10 min followed by
addition of iodomethane gave the piperazine 4 with high yield
and only a slight drop in enantiopurity. The cumyl protecting
group on the distal nitrogen atom could be removed easily by
hydrogenolysis to give the piperazine 5. To demonstrate the
orthogonality of the protecting groups, the N-cumyl and N-
Boc groups were cleaved selectively from the piperazine (R)-2f

Scheme 1. Photocatalysis to Give Piperazines 2

Table 1. Yields of Isolated Piperazines 2

Entry X R1 R2 Product Yield (%)

1 Br H COMe 2a 80
2 Br H CO2

tBu 2b 55
3 Br H F 2c 30
4 Br H CF3 2d 34
5 Br H CN 2e 70
6 Br H Cl 2f 25
7 I H H 2g 30
8 I H F 2c 55
9 I H Cl 2f 58
10 I H Cl 2f 48a

11 I OMe H 2h 42
12 I H Me 2i 35

aUsing 4CzIPn as photocatalyst.

Figure 2. 1H VT-NMR spectroscopy of piperazine 2c (400 MHz, d8-
THF) showing 5.40−3.10 ppm.
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to give the piperazines 6 and 7, respectively, without loss of
enantiopurity (Scheme 4).
To illustrate the application of this chemistry in synthesis,

we prepared the glycogen synthase kinase (GSK)-3β inhibitor
9 (Scheme 5).23 The chloride 8 was prepared according to the
literature24 and was coupled with the piperazine 6. This was
followed directly by acid-promoted deprotection of the Boc
group to give the desired bioactive compound 9. This drug has

potential for the treatment of Alzheimer’s disease, and either
enantiomer will be accessible depending on the choice of
enantiomer of the chiral ligand sparteine in the kinetic
resolution chemistry.
In conclusion, we have developed a short synthesis of 2-

arylpiperazines by photocatalysis. These products are amenable
to kinetic resolution with sparteine as the chiral ligand to
provide the recovered 2-arylpiperazine and 2,2-disubstituted
piperazines with high enantioselectivities. The lithiated
intermediates are configurationally stable at low temperature,
and this allows the incorporation of electrophiles at C-2 to give
other substituted products. The regioselective and stereo-
selective lithiation−trapping of the 2-arylpiperazines provides a
useful way to prepare uncommon, but potentially valuable, 2,2-
disubstituted piperazines. The choice of a cumyl group on one
nitrogen atom and a Boc group on the other nitrogen atom of
the piperazine ring means that the protecting groups are
orthogonal and either N-substituent can be cleaved selectively.
The chemistry can be applied to the synthesis of enantiomeri-
cally enriched bioactive piperazine drug compounds.
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