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ABSTRACT: The passage of proteins across biological mem-
branes via the general secretory (Sec) pathway is a universally
conserved process with critical functions in cell physiology and
important industrial applications. Proteins are directed into the Sec
pathway by a signal peptide at their N-terminus. Estimating the
impact of physicochemical signal peptide features on protein
secretion levels has not been achieved so far, partially due to the
extreme sequence variability of signal peptides. To elucidate
relevant features of the signal peptide sequence that influence
secretion efficiency, an evaluation of ∼12,000 different designed
signal peptides was performed using a novel miniaturized high-
throughput assay. The results were used to train a machine learning model, and a post-hoc explanation of the model is provided. By
describing each signal peptide with a selection of 156 physicochemical features, it is now possible to both quantify feature
importance and predict the protein secretion levels directed by each signal peptide. Our analyses allow the detection and explanation
of the relevant signal peptide features influencing the efficiency of protein secretion, generating a versatile tool for the de novo design
and in silico evaluation of signal peptides.
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■ INTRODUCTION
The general protein secretion (Sec) machinery is responsible
for the translocation of bacterial, archaeal, and eukaryotic
proteins across the cytoplasmic or endoplasmic reticular
membranes.1−5 Because of its high capacity for protein export
from the cytoplasm, the Sec pathway of various micro-
organisms was engineered to generate cell factories for the
production of commercially relevant secreted proteins,
including enzymes and biopharmaceuticals.2,6,7 Monoderm
Gram-positive bacteria, like Bacillus subtilis, are preferred for
this purpose, as products only need to pass a single membrane,
which eases the secretion and subsequent recovery of bulk
amounts of protein from the fermentation broth.8−10

N-terminal signal peptides (SPs) are responsible for guiding
secretory proteins into the Sec pathway by interactions with
chaperones, the membrane, and the membrane-embedded
protein-conducting SecYEG channel and by maintaining an
unfolded translocation-competent state of the translocated
protein.11 These ubiquitous targeting signals have been
investigated for many years and, consequently, their structural
features are well known. Essentially, SPs are composed of a
positively charged N-region, a hydrophobic α-helical H-region,
and a more polar C-region that frequently starts with a helix-
breaking residue and that comprises the so-called signal
peptidase (SPase) recognition site.12−18 The functions of these

three regions and the limits in their sequence variation were
uncovered by extensive site-directed mutagenesis studies,
involving the deletion or substitution of particular amino
acids within the SPs of a range of different exported proteins.19

Thus, positively charged residues in the N-region were shown
to promote the initiation of protein translocation, explaining
why introduction of negative charge in this region interferes
with protein translocation.20−22 The H-region promotes loop-
like insertion of SPs into the membrane, explaining why
deletion of the hydrophobic residues or insertion of charged
residues interferes with productive protein export,23,24 and why
a turn-inducing residue like Gly is often present in the center
of the H-region.12−14,25,26 Furthermore, the presence of
positively charged residues at the C-terminal end of the H-
region interferes with effective protein translocation via Sec, as
shown through studies on SPs that target proteins to the
alternative twin-arginine protein translocation (Tat) path-
way.27,28 Amino acid substitutions in the polar C-region
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revealed the universally conserved SPase recognition site
Ala−3−X−Ala−1, where X can be any amino acid, and −3 and
−1 define the residue positions relative to the SPase cleavage
site.29 These studies also showed that a turn-inducing Pro
residue in the C-region is important for SP cleavage by
SPase,29 which defines the N-terminus of the exported protein
and is essential for its subsequent release from the membrane
into the extracellular environment.12−14,30 Despite these
conserved features, species-specific variations have been
observed, most notably differences in SP length and the
SPase cleavage site.15 Thus, SPs of Gram-positive bacteria,
such as B. subtilis, are among the longest known SPs.12−14,30

All gathered knowledge about the SP structure allowed the
development of algorithms that reliably detect the presence of
a SP within a protein sequence.31 However, there are no tools
to predict the efficiency with which a given SP directs the
secretion of a target protein of interest (POI).32 In fact, finding
an efficient SP to secrete a POI is currently still based on trial-
and-error. Previous studies tested limited numbers of natural
SP variants (i.e., up to 102) and analyzed the relationships
between secretion efficiency and some SP features.33−35 Such
studies showed that the SP−POI match plays a crucial role in

determining secretion efficiency,14 but they did not unveil the
underlying fundamental parameters.

In recent years, machine learning (ML) and deep learning
methods have been successfully leveraged to build tools to
identify and classify peptides with different types of functions,
such as antimicrobial activity36 and antigen presentation by the
major histocompatibility complex.37 Here, the common theme
is that a problem is often tackled with different approaches that
are then benchmarked against each other. Some of the most
common and successful ML models used in peptide prediction
are the support vector machines38−40 and random forests
(RFs).40−42 Recently, deep learning-based approaches have
become popular,43−46 also for SP prediction.47,48 A relevant
aspect in predictive models is the description of a peptide or
protein used to train them, which can be based on information
about its physicochemical properties,38,41,46 its sequence,44

and/or its structure.38 Such information can be further
encoded and fed to the algorithm in different ways. Common
encoding methods include (pseudo-)amino acid composi-
tion39,40,42−45 and positional matrices.38,39 However, different
models and feature-encoding methods may need to be applied,
as each problem requires different and tailored combinations
of tools.

Figure 1. High-throughput characterization of the SP library. Experimental workflow: (1) A library of approximately 12,000 SP variants was
designed by modifying key features (e.g., charge, length, and hydrophobicity); (2) the corresponding pool of oligonucleotides was cloned in frame
with the sequence coding for mature AmyQ, and integrated into the amyE locus of B. subtilis DB104. (3) Clones were embedded in hydrogel beads,
referred to as NLRs, containing fluorescein−starch (mean diameter of 500 μm; average occupation of 0.3 bacterial cells per NLR). During
incubation in culture medium, single cells grew into microcolonies and secreted AmyQ, which degrades the fluorescein−starch into (still
fluorescent) low molecular weight fragments that are lost from the NLR by diffusion. After incubation, biomass in the NLRs was labeled by adding
nile red, a membrane-specific red fluorescent dye, and the NLRs were evaluated in two steps using a large particle flow cytometer. (4) First, all
empty NLRs were identified and discarded; (5,6) second, occupied NLRs were sequentially sorted into 10 bins, based on their green to red signal
ratio. The green fluorescence signal is inversely proportional to the amount of secreted amylase (AmyQ) in the NLR; the red signal is instead
directly proportional to the colony size. Therefore, clones with a high secretion efficiency are located in the lower left corner of the dot plot (5) and
have a low bin number. (7) DNA from the NLRs of each bin was recovered and SP occurrence in any given bin was determined by NGS, leading to
the construction of a frequency table of SPs across bins, used to calculate the secretion efficiency of each SP variant as a WA. (8) WA values were
subsequently combined with the features describing each SP to train a RF regressor model. The RF model was then studied using SHAP for
explanation and quantification of the impact of each feature on the model output (i.e., WA). (9) Information obtained by combining the RF model
with the SHAP analysis was used to generate new SP variants with defined secretion levels to validate the model. (10) Designed validation
sequences were processed following the same HT screen, yet individually and not as a library. The secretion of amylase was quantified both with a
MTP assay (60 SPs) and by the NLR-based screening protocol (15 SPs), and the results were compared to the predictions.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00328
ACS Synth. Biol. 2023, 12, 390−404

391

https://pubs.acs.org/doi/10.1021/acssynbio.2c00328?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00328?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00328?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00328?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


While ML and deep learning approaches can be used to
predict a wide variety of biological functions of peptides,
including SPs, it is important to bear in mind that there is also
a need to understand their mechanisms of action and the

contextual interplaying factors. Therefore, our present study
was not only aimed at predicting the efficiency of various SPs
fused to a particular POI, but also to elucidate the relevant
physicochemical features of SPs that determine the secretion

Figure 2. HT SP library screening in NLRs. (a) For initial validation of the NLR-based α-amylase assay, four B. subtilis strains secreting AmyQ to
different levels were used: three strains with known SP amino acid sequences at the N-terminus (one of them with the native SP of AmyQ; positive
control) and a B. subtilis strain synthesizing the amylase without an N-terminal SP (negative control). Amylase secretion of each strain was assessed
using the (1) NLR-based assay, (2) MTP colorimetric assay, and (3) starch hydrolysis test. (1) For the NLR-based assay, the values represent the
residual fluorescein-labeled starch still present in the occupied NLRs after cell growth, relative to the green fluorescence of the empty NLRs in the
same population (set as 1). The recorded events were positive control, 24 occupied and 850 empty NLRs; validation strain 1, 99 and 4329;
validation strain 2, 50 and 932; negative control, 124 and 859. (2) For the MTP assay, the values are calculated relative to the amylase activity
produced by the positive control (having a value of 1) and four biological replicates were performed. (3) Starch hydrolysis tests based on the
starch−iodine reaction.23 (b) Top: overlay of bright-field and fluorescence microscopy images of NLRs after incubation in medium. Empty NLRs
(no red dot) show a homogenous green fluorescence profile (no starch degradation), while NLRs harboring a colony (red dot) show different
degrees of fluorescein-labeled starch degradation (orange circle: high secreter; gray circle: low secreter). Scale bar: 200 μm. Bottom: dot plot
representing all occupied NLRs from one experiment (approximately 20,000 NLRs). The gating applied during the second sorting step is depicted
in orange-gray color codes, which defines bins with distinct AmyQ secretion levels. (c) Green and red fluorescence profiles of all sorted events from
the same experiment, both as a whole population (i.e., occupied NLRs; top panel) and divided into 10 equally sized bins (lower panel).
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efficiency of the POI. To achieve our aim, we devised a
workflow (Figure 1), based on the Design−Build−Test−Learn
(DBTL) cycle approach. A SP library was designed using 134
known wild-type SPs from B. subtilis as template, but we

expanded the SP diversity by including targeted modifications
in the SP sequences that altered physicochemical features in
either the entire SPs or the different SP regions, with minimal
effect on other features. In particular, the modified features

Figure 3. Model explanation. (a) Predictions of the trained RF regressor model on the test set. On the ordinate, WA values for SPs belonging to the
test set and measured with the NLR-based amylase assay are reported; on the abscissa, their WA values predicted with the trained RF model are
displayed. Note that measurements and prediction show a high degree of agreement with a calculated MSE of 1.22 WA, thus indicating a good
performance of the generated RF model. The dashed line represents the ideal situation where all predicted and measured values would align. (b)
SHAP summary plot of the 20 most impactful features: GRAVY_SP, overall SP hydrophobicity; −1_A, Ala at −1 of the AxA cleavage site; A_C,
frequency of Ala in the C-region; P_C, frequency of helix-breaking Pro in the C-region; Q_Ac, frequency of glutamine in the Ac-region; pI_C, pI of
the C-region; Turn_C indicates a helix-breaking residue at the end of the H-region; Bomanlnd, protein−protein interaction in the SP; Gravy_C,
hydrophobicity of the C-region; Flexibility_N, measure for flexibility and charge in the N-region; G_H, frequency of Gly in the H-region; Ez_Ac,
potential for Ac-region insertion in lipid membranes; Length_SP, overall length of the SP; amyQ_mfe_SP, minimum folding energy of the RNA
secondary structure encoded by the sp-amyQ gene fusion; Charge_SP, charge of the SP; Kytedoolittle_N, hydrophobicity of amino acids in the N-
region; G_C, frequency of Gly in the C-region; I_C, frequency of Ile in the C-region; CAI_RSCU_SP, codon adaptation index of the SP; Mfe_C,
minimum folding energy of the RNA secondary structure in the C-region-encoding sequence (for full descriptions, see Supporting Information
Table S2). A high dispersion of SHAP values on the abscissa indicates a broad effect of the respective feature on the model. Each data point
represents a specific SP, the color of the data point indicates the value of that feature in the feature-specific scale, and the position on the abscissa
indicates the SHAP value for that particular feature. SHAP values for the whole data set sum up to the base value of the model (4.45 WA, average
model output calculated over the 4421 selected SPs). Positive SHAP values indicate a negative impact on the model outcome and vice versa.
Cartoons on the right highlight the corresponding SP parts of each particular feature. (c) SHAP-dependence plot for “GRAVY_SP”, which is a two-
dimensional representation of the information summarized by the first line of panel b. The GRAVY index is represented on the abscissa: negative
values indicate low hydrophobicity, and positive ones indicate high hydrophobicity. On the ordinate, SHAP values are displayed: negative values
indicate a beneficial effect on protein secretion, and positive ones indicate a detrimental effect. Vertical dispersion of SHAP values for similar
GRAVY indexes can be explained through the interaction effect between features (described by SHAP interaction values, summarized in
Supporting Information Figure S7 and Supporting Information Figure S8). To exemplify, the high variability visible in the negative range of the
GRAVY index is to be attributed mainly to the feature “−1_A” (Supporting Information Figure S6). The data imply that a very low hydrophobicity
will have a strong negative impact on protein secretion, while a GRAVY index value of around 1.0 will be most favorable for protein secretion.
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included the amino acid composition and physicochemical
properties of the SPs and addressed the SPs both at the amino
acid and nucleotide sequence levels. This SP library was fused
to the secreted α-amylase AmyQ from Bacillus amyloliquefa-
ciens, and high-throughput (HT) quantification of the AmyQ
secretion efficiency49 was then used to generate a training data
set for a ML model. Finally, the impact of physicochemical
features on the secretion efficiency was estimated using
TreeSHAP50−53 (hereafter SHAP).

■ RESULTS AND DISCUSSION
High-Throughput SP Library Screening in Nanoliter

Reactors. Starting from the selection of 134 known wild-type
SPs from B. subtilis, a library of 11,643 unique SPs (Supporting
Information Table S1) was rationally designed to expand the
sampling space and the variance of naturally occurring SP
sequences. We individually modified 7 specific physicochem-
ical features on 94 designated levels (Supporting Information
Table S2), while concomitantly minimizing their influence
over related ones (e.g., editing the charge while avoiding a
significant hydrophobicity change). Furthermore, each SP was
treated both as a single sequence, and as four juxtaposed
segments that included the N-, H- and C-regions plus a short
stretch of three residues after the SPase cleavage site (i.e., the
Ac-region). The designed SP-library was then introduced into
B. subtilis strain DB104 using a genome-integrating vector. A
total of 160,000 clones was harvested, achieving a 10X
coverage of the SP-library.

The secretion efficiency associated with each SP variant was
determined by measuring amylolytic degradation of fluores-
cein-labeled starch upon encapsulation of the library strains in
so-called nanoliter reactors (NLRs).54,55 In this assay, green
fluorescence of each NLR is rapidly measured via flow
cytometry, allowing the assessment of secretion levels of active
AmyQ (Figures 2 and S1, Supporting Information). For initial
validation, the HT methodology was compared to two
alternative assays: a microtiter plate (MTP) format using a
synthetic substrate (Figure 2a, 2) and a starch hydrolysis test
using agar plates56 (Figure 2a, 3). The results of the different
assays are comparable and show the highest sensitivity and
dynamic range for the NLR-based assay.

Next, we performed the HT screening with the SP library
measuring simultaneously amylase activity and bacterial
biomass. The latter was achieved by incubating the NLRs
with nile red, a hydrophobic red dye that interacts with cell
membranes57 and fluorescently labels the microcolonies.
Occupied NLRs were separated into 10 equally populated
bins, based on enzymatic activity per biomass unit (i.e., the
ratio between green and red signals). Variant collection was
followed by DNA sequencing to determine the abundance of
each SP variant in each bin and, as a control, in the original
library after transformation and before sorting the NLRs.
Occurrence values were used to generate a weighted average
(WA), assuming equidistance between bins, and this WA was
used as an efficiency score for each SP.

As shown by sequencing, 92% of the 11,643 unique
rationally designed SPs were successfully introduced into B.
subtilis, while 83% were retrieved after screening (Supporting
Information Table S3). Such reduction may relate to SP-
dependent impaired growth and the resulting high back-
ground-to-noise ratios for small colonies.

We subsequently characterized the sensitivity of the NLR-
based secretion assay by comparing values from 95 randomly

picked library clones in NLRs versus MTPs (Supporting
Information Figure S2). As 73 of the selected 95 variants could
not be measured using the standard MTP format, we applied
also a classical starch hydrolysis test on agar plates to verify the
low-secreting variants (Supporting Information Figure S3).
These experiments highlighted the superior sensitivity of the
NLR-based secretion assay.

Machine Learning Model to Predict SP Efficiency and
Model Explanation. To test and train our ML model, we
evaluated the number of physicochemical features in the SP
data set. Starting from an initial set of 267 features, 156
informative features were retained to describe each SP
(Supporting Information Table S2). This step removed
features either presenting no variability or exhibiting a high
correlation with another feature in the training data set. A
further reduction of dimensionality proved to be unnecessary,
as the PCA analysis showed that each of the principal
components contributed to the explained variation (Support-
ing Information Figure S4). Additionally, the same number of
components was necessary to describe the whole variance of
the 11,643 unique rationally designed SPs and the 4421
informative SPs, indicating that, despite the loss in the total
number of data points, there was no loss in the variation of the
data set. In contrast, the PCA showed that, to explain the same
variation, more principal components are needed within the
designed library than for the wild-type set of SPs, underpinning
the improvement of the assayed space gained with our design.
The array of 156 features is thus to be considered as the
independent variable, and the single value of secretion
efficiency (WA), as the dependent one.

Three-quarters of our data set were used to train a RF
regression algorithm, resulting in a mean squared error (MSE)
of 1.75 WA, while the remaining quarter was used as a test set,
resulting in an MSE of 1.22 WA (Figure 3a). After this first
validation, we proceeded to provide explanations for the RF
model predictions. Due to the complexity in explaining such a
developed RF model,58,59 SHAP50−52 was used to extract
information about the importance of the features and their
interaction effects (Supporting Information Figure S5).

Due to the large number of features fed into the model and
the notable amount of information provided by SHAP, only
the most relevant and representative findings are discussed. To
fully explore the model, a Jupyter notebook and an interactive
tool (File S1) are available as Supporting Information data.
The 20 most impactful features in our model are shown in
Figure 3b. Some of these features were already documented in
literature,32,60,61 for instance, the overall SP hydrophobicity
(“GRAVY_SP”), the helix-breaking residue at the end of the
H-region (“P_C” and “Turn_C”), or the cleavage consensus
sequence (e.g., “−1_A” and “A_C”). Notably, even for such
known features, the impact on secretion could so far only be
qualitatively estimated based on their distributions in wild-type
SPs. With our approach, a more precise quantification is now
achieved, establishing favorable, neutral or detrimental values
and their impact on the predicted secretion efficiency.
Additionally, it is now possible to determine relationships
between features and secretion efficiency (e.g., linear,
sigmoidal, and monotonic), as illustrated with the dependency
plot for a simple feature, such as “GRAVY_SP” (Figure 3c),
whose wild-type distribution is known but only includes
positive values.61,62 Our model analysis shows that functional
positive GRAVY values are favorable, while negative GRAVY
values will be detrimental. Moreover, thanks to the applied
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Figure 4. Assay and model validation. (a) SHAP force plots for SP variants VC_22 and VC_40 before (“ORIG”) and after (“EDIT”) editing. The
impact of each of the most relevant features on secretion efficiency is quantitatively assessed. Each segment is sized proportionally to its impact on
the model; their summation is equal to the difference between the base value (4.45 WA for all SPs) and the output value (i.e., the predicted WA
value of each SP). Features colored in gray have a negative impact on the secretion efficiency of the specified SP, while features colored in orange
have a positive impact. (b) Box plot showing amylase activities of the three groups of SPs used for validation as measured by MTP assays: group 1,
30 originally (ORIG) poorly secreting SPs edited into 30 improved SPs (EDIT) (light yellow); group 2, 30 originally (ORIG) highly efficient SPs
edited into 30 poorly secreting SPs (EDIT) (yellow); and group 3, 21 pseudo-randomly designed SPs (dark yellow). The circles represent the
average amylase activity (measured with the MTP assay, relative to the efficiency of the native SP of AmyQ defined as 1) of individual SPs before
(white circles, “ORIG”) and after (black circles, “EDIT”) editing (*, ORIG versions of pseudo-randomly designed SPs do not exist, since they were
not present in the original SP library). (c,d) Dot plots showing the individual recorded events of NLR-based analyses; panel c shows results
obtained with SP VC_22 ORIG (white triangles) and VC_22 EDIT (black triangles), whereas panel d shows results obtained with SP VC_40
ORIG (white triangles) and VC_40 EDIT (black triangles). The numbers of recorded events were 43 for the VC_22 ORIG; 174 for VC_22 EDIT;
411 for the VC_40 ORIG; and 103 for the VC_40 EDIT). White triangles indicate NLRs harboring strains secreting AmyQ with the original
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segmentation approach (i.e., four juxtaposed regions for each
SP), it is possible to visualize how particular features can have
different relevance, depending on whether we consider the
whole SP or only a single region. This is clearly exemplified by
the feature “Charge_SP”, for which an overall value lower than
+2 increases secretion efficiency, and a slightly negative charge
is even more favorable. In contrast, inspection of the charge of
the N-region, represented by “Flexibility_N” (Supporting
Information Table S2), shows that values close to +2 or
higher favor secretion. Analogously, different features describ-
ing the same region can influence each other’s impact. For
instance, the feature “BomanInd_H”, which positively
correlates with charge and negatively with hydrophobicity
(Supporting Information Tables S1 and S2), shows that a high
level of hydrophobicity (low “BomanInd_H”) in the H-region
can favor secretion. At the same time, judged by the feature
“G_H” (Gly content in the H-region), it appears that high
hydrophobicity due to a high Gly content is not favorable,
most likely because Gly reduces the stability of α-helices.
Because of the applied feature selection process, one feature
(e.g., “BomanInd_H”) may be representative of similar ones
(e.g., “pI_H” and “Charge_H”), which sets a limit to our
immediate understanding of the influence of some properties.
Nonetheless, with the present approach, we can retain, explain,
and trace back to their correlating counterparts, physicochem-
ical properties of SPs, rather than less biologically significant
indicators (e.g., principal components of a PCA or the “D-
score” from SignalP33,63).

With SHAP, it is possible to analyze and quantify pairwise
interactions between features, which explains why equal values
of the same feature can influence the model to different
extents. For instance, the vertical dispersion of “GRAVY_SP”,
which is especially pronounced for negative hydrophobicity
values (Figure 3c), is to be attributed to the feature “−1_A”
(Supporting Information Figure S6). Furthermore, overall
interactions seem to play minor roles in our model, as the most
impactful interaction (“Q_Ac”−“A_C”) has limited impact on
the overall output (Supporting Information Figures S7 and
S8). One possible explanation is that interactions occur at
orders higher than the second and as such would not be
represented in the model.

Assay and Model Validation Through Rationally
Edited and Pseudo-Randomly Designed SPs. To validate
our model, we decided (i) to rationally tune the secretion
efficiency of screened SPs and (ii) to in silico-screen a library
of pseudo-randomly designed SPs for high secretion levels.
From the previously screened SPs, we selected 30 sequences
that poorly (group 1) and 30 that highly (group 2) directed
AmyQ secretion, and we manually modified their nucleotide
and amino acidic sequences to invert their efficiency (Figure 4a
and Supporting Information Table S4). An interactive
exploration of original and edited SPs is possible through
File S2 (original) and File S3 (edited). Additionally, we
generated 4,903 pseudo-randomly designed SPs, predicted

their secretion efficiency, and picked 32 among the potentially
best-performing SPs (average WA of selected SPs is 2.64) to be
tested (group 3). Out of the 92 SPs selected, 39 of the
manually modified (groups 1 and 2) and 21 of the newly
designed SPs (group 3) were successfully cloned and tested for
amylase activity in the MTP assay, showing substantial
difference compared to their original counterparts (groups 1
and 2) and very effective secretion (group 3), respectively
(Figure 4b). Remarkably, out of the 21 in silico pseudo-
randomly designed SPs (group 3), 5 showed a secretion
efficiency higher than AmyQ with its native SP.

To further validate the quality of the model in predicting SP
efficiency for AmyQ secretion (i.e., WA value), we selected five
SPs from each of the three groups and analyzed their behavior
in the NLR-based assay. Dot plots of two variants with the
respective original (“ORIG”) and manually edited (“EDIT”)
versions are shown in Figure 4c,d, respectively, and highlight
the clear shift in secretion efficiency for the two versions
depicted in Figure 4a,b. Figure 4e summarizes the WAs of the
15 selected SPs and compares them with the WAs obtained at
each step of the workflow (i.e., library screening, model
predictions, and validation). Remarkably, 11 of the tested SPs
fell within one unit of difference (i.e., ±1 WA) from the
predicted value, implying that the proposed workflow is indeed
a powerful tool to quantify the efficiency of engineered SPs.

The amylase quantification experiments in MTP cultivations
show that, although the model was trained only with NLR-
based data, its predictions mostly retain their validity at larger
scale. To the best of our knowledge, we have thus achieved an
unprecedented accuracy in the prediction of SP efficiency and
present the first example of successful model-driven de novo
design of highly effective SPs. In fact, in silico SP design based
on our trained model already proved very effective in the
present proof-of-principle study, since the best predicted SPs
turned out to direct high-level secretion.

■ CONCLUSIONS
Altogether, we conclude that our approach can detect and
explain the relevant SP features that influence the efficiency of
protein secretion. It sets the stage for in silico tuning and de
novo design of SPs. Although we limited our present study to
one protein, the workflow can be extended to other industrially
or biomedically relevant POIs by applying different enzymatic
assays64 and novel HT analytical systems.49,65,66 For the future,
we advocate an iteration of our approach to obtain further
insights into the general features that influence protein
secretion. This may be achieved either by using a fractional
factorial design67,68 to ameliorate the design space (e.g.,
combining regions with differently modified features rather
than editing one at a time) or through the screening of
different POIs (e.g., fused to the same set of SPs). Data sets
thus obtained will further improve the generalizability and
reliability on prediction and design of SPs directing high
secretion levels. As a result, far smaller numbers of SPs will be

Figure 4. continued

variant from the SP-library (ORIG), while black triangles indicate NLRs with strains secreting AmyQ with the edited SP (EDIT). In the
background, the 10 different bins are indicated using the same color code as in Figure 2b. (e) Summary plot of the model validation. For each of
the 15 selected SPs, 5 data points are shown: open symbols indicate the original variant from the SP-library, while black symbols designate the
engineered SP derivative. The open circles mark the WA measured during the initial screening, triangles pointing downward denote WA values
predicted by the model, whereas triangles pointing upward denote WA values measured during model validation. Groups of SPs are highlighted in
different shades of yellow as in (a). Below the graph, values are listed to allow a more detailed comparison.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00328
ACS Synth. Biol. 2023, 12, 390−404

396

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_012.xls
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_011.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_012.xls
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_007.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_008.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_009.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_014.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.2c00328/suppl_file/sb2c00328_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


screened, or SP sequences will directly be designed in silico, for
instance with our pseudo-random approach, or by exploiting a
novel ML-based tool for SP generation.69 We are therefore
confident that, with less experimental testing, our approach will
deliver a deeper understanding of SP function and more
accurate, better tunable, and highly productive protein
secretion systems.

■ MATERIALS AND METHODS
Library Design. To identify the most relevant physico-

chemical features influencing the secretion efficiency directed
by SPs, we designed a SP mutant library starting from 134
sequences (Supporting Information Table S1) of known or
highly probable B. subtilis wild-type SPs. These SPs were
initially selected based on literature33 and via predictions by
various computational tools (SignalP4.1,70 SignalP3.0,63

Phobius71). Next, the selected SPs were manually curated to
remove false positives, knowing the final localization of their
cognate native protein. As a point of novelty, we considered
the SP sequences both as a single sequence (i.e., the whole SP)
and as the juxtaposition of four separate parts, namely, the
canonical N-, H-, and C-regions, and a region referred to as
“after cleavage” (Ac-region), which consists of the first three
amino acid residues (AAs) after the expected SPase cleavage
site. The Phobius tool for SP predictions was used to
determine the boundaries of the four regions constituting
each SP, still with partial manual curation based on evidence
from literature. After defining the four regions for each SP,
physicochemical properties were calculated for each region
independently as well as for the complete SP. The 227
calculated properties are listed in Supporting Information
Table S2, while the respective methods of calculation and
further explanations are reported in Supporting Information
Table S1.

From each of these 134 SPs, 94 mutant sub-libraries of 134
elements each were created. In each sub-library, only one
feature at a time was edited, while modifications to other
interdependent features (e.g., the charge of an AA sequence
affects also its isoelectric point and hydrophobicity) were
minimized. Edited features at the AA level were hydro-
phobicity, charge, and length; edited features at the nucleotide
level were codon usage and RNA secondary structures. The full
list of varied features is presented in Supporting Information
Table S2. For each selected feature, multiple target levels
(usually four or five) were chosen. The rationale for selecting
target levels was to allow for some expansion of the
investigated design space without diverging too much from
the biologically meaningful space of the wild-type SPs. The
resulting SP-library was composed of the 94 sub-libraries and
included a total of 11,643 unique sequences, which are
presented in Supporting Information Table S1.

pSG01 Plasmid Construction. The plasmid pSG01
(Supporting Information Figure S9, and see Supporting
Information Table S5 for the full plasmids list) was developed
within this study in order to be used as a chromosomal
integration vector for expression of the SP-library. To this end,
the previously constructed genome-integrating vector pCS7572

(Supporting Information Table S5) was cleaved with PmeI and
EagI (NEB); the resulting fragments were separated on a 0.8%
agarose gel, and the 7.8 kbp band, delimited by two regions
homologous to the B. subtilis amyE gene, was excised and
purified with the QIAquick gel extraction kit (Qiagen). The
DNA sequence encoding the AmyQ mature protein (P00692)

(i.e., without its SP) was ordered as a single gBlock G1
(Integrated DNA Technologies, Inc.) (see Supporting
Information Table S5 for the full nucleotide sequence),
amplified with primers P1 and P2 (see Supporting Information
Table S5 for a full primer list), digested with the same
restriction enzymes as the vector and purified with the DNA
clean & concentrator-25 kit (ZymoSearch). The two DNA
fragments were ligated, and the ligation mix was directly used
to transform 10-beta competent Escherichia coli cells (NEB), to
amplify pSG01. The resulting plasmid was verified and used to
transform dam−/dcm− competent E. coli cells (NEB), from
which demethylated pSG01 was obtained for all downstream
applications to increase the efficiency of B. subtilis trans-
formation.73 Notably, 5′ to the SP-less amyQ gene, plasmid
pSG01 contains two BsmBI (a type IIS restriction enzyme)
restriction sites at 11 nt distance, which are oppositely oriented
so that cleavage occurs upstream of each restriction enzyme
recognition sequences, thus allowing for scar-less insertion of
properly oriented DNA fragments. Moreover, this feature
allows for the insertion of multiple DNA fragments in one step.
After transformation of B. subtilis, pSG01 will integrate into the
amyE gene, thereby disrupting the main source of amylase
activity in B. subtilis.

Expression Strains and Cloning of the Library. B.
subtilis strain DB104,74 which lacks two major extracellular
proteases, was selected to produce the library of designed SPs
fused to AmyQ.

To obtain the final SP-library, pSG01 was endowed with two
DNA fragments, using the two BsmBI restriction sites
upstream of the SP-less amyQ gene: one fragment contained
the Pveg promoter,75 the native mRNA stabilizer of cotG,76 and
a strong RBS from the pre(mob) gene of pUB110,77 obtained
as a single gBlock G2 (Integrated DNA Technologies, Inc.;
Supporting Information Table S5); the other fragment coded
for one of the 11,643 designed SPs (ordered as an oligo pool
from Twist Bioscience). Both fragments were designed to be
amplified with P1 and P2 primers (Supporting Information
Table S5) and to present two terminal BsmBI cleavage sites
generating complementary sticky ends to the vector for
sequential assembly. Cloning was carried out using the
StarGate78 methodology, and the resulting construct con-
stitutively expressed the gene coding for the mature AmyQ
fused at the N-terminus with one of the 11,643 designed SPs.
A total of 3 mL of StarGate reaction was mixed with 63 mL of
competent B. subtilis DB104 that has been prepared using a
modified Spizizen protocol.72 After 1 h of recovery at 37 °C
and 250 rpm, cells were plated on 62 Q-trays (Nunc Square
BioAssay Dishes product n. 240835, Thermo Fisher) each
containing 200 mL of 2xPY medium (16 g/L peptone, 10 g/L
yeast extract, 5 g/L NaCl) supplemented with 15 g/L agar and
300 μg/mL spectinomycin. After cell plating, the Q-trays were
incubated at 30 °C for 20 h.

The total number of grown colonies was estimated using a
QPix 450 (Molecular Devices) automated microbial screening
system. Two rounds of transformation were performed in
order to obtain approximately 160,000 colonies, corresponding
to a 10× coverage of the SP-library, and estimating 10% of
clones containing pSG01 without inserts (data not shown).
Plates were scraped to collect all colonies and rinsed with
2xPY. The collected cells were then transferred to several 50
mL Falcon tubes, mixed, and concentrated by centrifugation at
3000g for 5 min. The pellets were resuspended in 2xPY, the
cell suspensions were pooled, thoroughly mixed, and
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supplemented with glycerol to a final concentration of 10% (v/
v). The glycerol stock was aliquoted, snap frozen, and stored at
−80 °C. The cell concentration in the glycerol stocks, as
determined by the optical density at 600 nm, was
approximately 5.8 × 109 cells/mL.

Substrate Preparation for NLR-Based Amylase Assay.
Dry corn starch (Sigma-Aldrich, S9679) was re-suspended in
90/10 DMSO/water (v/v) to a final concentration of 2% (w/
v), boiled for 30 min, and allowed to cool to room
temperature. An aliquot of 100 mL of the prepared solution
was basified with 1 M NaOH until it reached a pH ≥ 9, then
mixed with 1 mL of the reactive dye 5-([4,6-dichlorotriazin-2-
yl]amino)fluorescein hydrochloride (DTAF) (Sigma-Aldrich),
previously dissolved in DMSO (20 mg/mL). After 1 h
incubation at room temperature, the solution was neutralized
with glacial acetic acid to stop the reaction, and the fluorescein-
starch was precipitated with ethanol to remove the remaining
free dye. The precipitated starch was resuspended in DMSO
and subsequently ground with glass beads at 30 Hz for 20 min
(Retsch). The resulting fluorescein-starch preparation was
stored at 4 °C and used as the substrate employed to monitor
amylase activity within the NLR-based assay described below
.54,55

Cultivation of Strains in NLRs. NLRs were synthesized
starting from a mix of bacterial glycerol stocks, fluorescein−
starch and sodium alginate, which was processed through a
laminar jet break-up encapsulator (Nisco Engineering) to
generate a monodisperse bead population. To prepare the mix,
200 μL of fluorescein−starch (4% w/v in DMSO) was diluted
in 2 mL of resuspension medium (4 g/L yeast extract, 1 g/L
tryptone, 20 mM TRIS pH 7) and added to 16 mL of sodium
alginate 2.5% (w/v) aqueous solution. The number of bacterial
cells to be included was defined to achieve an average
occupation of 0.3 cells per NLR. To this end, the
corresponding volume of the bacterial glycerol stock was
added to the resuspension medium to reach a final volume of 2
mL, which was then mixed with the fluorescein−starch alginate
preparation.

For NLR formation, the encapsulator was equipped with a
150 μm nozzle and operated with a flow rate of 3.3 mL/min
and a frequency of 650 Hz.79 This delivered NLRs with an
average diameter of 500 μm (corresponding to a volume of
approximately 65 nL). NLRs were allowed to harden for 15
min in 100 mM aqueous CaCl2, then isolated using a cell
strainer (100 μm mesh size, Falcon, Becton Dickinson), and
washed once with 10 mM aqueous CaCl2. NLRs were
transferred into growth medium (4 g/L yeast extract, 1 g/L
tryptone, 20 mM TRIS pH 7, 4 mM CaCl2, and 300 μg/mL
spectinomycin) with 0.5% (v/v) amylopectin to a final
concentration of 100 g wet NLRs/L in Erlenmeyer flasks.
The reactors were incubated in a shaker (150 rpm, room
temperature) for approximately 13 h to allow cells to grow into
microcolonies. NLRs were then recovered and washed twice
with screening buffer (10 mM CaCl2, 10 mM TRIS pH 8).
During each wash, the beads were allowed to sediment in a 50
mL Falcon tube, the supernatant was discarded, and buffer was
added to achieve a concentration of 12.5 g of wet NLRs/L.
Prior to screening, 40 μL of nile red (Chemodex) (1 g/L in
90/10 DMSO/water, v/v) was added for every gram of wet
NLRs to fluorescently stain the cells. The NLRs were
incubated for 20 min under gentle shaking, washed once
more with the screening buffer to remove surplus dye, and
then subjected to flow cytometry and microscopic analysis.

Bright-field and fluorescence microscopy images were recorded
using an Axio Observer II with an AxioCam MR3 camera (Carl
Zeiss Microscopy) to control for proper NLR synthesis and
cell growth. For a detailed description of the flow cytometry
analysis, see the section below.

If alginate beads with known SP variants needed to be
incubated together in the same vessel (to guarantee identical
incubation conditions) and differentiated later in the flow
cytometry analysis, the NLRs were synthesized with different
concentrations of pacific-blue (Ex 410 nm, Em 455 nm)
labeled amino dextran (AD). Two concentrations, correspond-
ing to 12 and 2.4 μL of the pacific-blue AD stock solution (20
mg/mL in 0.2 M sodium bicarbonate, pH 8.3) per mL of
fluorescein−starch alginate, were added. This polymer is not a
substrate for AmyQ (data not shown) and does not interfere
with the recording of fluorescein-based fluorescence (Ex 492
nm, Em 516 nm). Instead, the pacific-blue content can be read
out in the violet spectrum. Conjugation of the dye to the
polymer was achieved by adding 5 mg of the amine-reactive
pacific blue succinimidyl ester (Thermo Fisher) to a solution
of 20 mg AD (Fina Biosolutions) per mL of 0.2 M sodium
bicarbonate (pH 8.3). The reaction was incubated for 6 h at
room temperature. Then, TRIS pH 7 was added to a final
concentration of 50 mM to stop the reaction, and the solution
was aliquoted and frozen.

Throughout the study, different B. subtilis strains, all
generated in the same fashion and with the same vector,
were analyzed using the NLR-based amylase assay. These
included (1) B. subtilis producing AmyQ with its native SP
(positive control, PC), (2) B. subtilis carrying the empty vector,
without an inserted SP (negative control, NC), (3) B. subtilis
transformed with the SP-library, fused to AmyQ, or (4) B.
subtilis producing AmyQ with SP variants with defined
modification. The PC (1) and the NC (2) strains and two
variants producing AmyQ with known SPs were used to
estimate the dynamic range and sensitivity of the NLR-based
amylase activity assay (Figure 2a and Supporting Information
Figure S1). Fifteen strains producing AmyQ with SP variants
with defined modification (4) were encapsulated and used to
validate both the NLR-based screening assay and the model.

NLR-Based Screening. The NLR-based screening of the
clones carrying the SP-library was performed with a large
particle flow cytometer, which allowed to read out the amount
of starch, of cells, and, if applicable, of amino dextran in each
NLR, based on different fluorescence signals. Specifically, we
used a BioSorter (Union Biometrica) to record for each NLR
green (excitation laser 488 nm, beam splitter DM 562,
emission filter BP 510/23 nm), red (excitation laser 561 nm,
TR mirror, emission filter BP 615/24 nm) and violet
fluorescence (excitation laser 405 nm, beam splitter DM 495,
emission filter BP 445/40 nm).

Each screening round was performed in two sequential steps.
During the first step, all events were analyzed in bulk mode, at
a maximum of 90 Hz, and NLRs with a positive red
fluorescence (peak height, i.e., presence of colonies stained
with nile red) were sorted into a 50 mL Falcon tube,
containing 5 mL of screening buffer. The isolated population
represented approximately 20% of all the NLRs, in agreement
with the occupation estimated from the cell concentration in
the glycerol stocks. Prior to the second step, the values of green
and red fluorescence of each sorted NLR were graphically
visualized using the FlowPilot software provided by the
BioSorter manufacturer. The graph was then used to divide
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all events in 10 bins based on the ratio between green
fluorescence (area, representative of amylase activity, and
secretion levels) and red fluorescence (peak height, repre-
sentative of total biomass). The bin width was thus adjusted to
have 10% of the events sorted in step 1, in each bin. For the
second step, sorted NLRs were run through the Biosorter ten
consecutive times, every time isolating in bulk mode the events
falling in one bin. In particular, the sorting started from the bin
with the lowest green to red ratio (i.e., highest secretion/
biomass ratio), bin 1, and then moved progressively to bins
with higher green/red ratios. The screening analysis was
repeated until the number of occupied NLRs (i.e., positive red
fluorescence) reached 160,000, to ensure a 10× coverage of
the SP-library. Additionally, after cell encapsulation and growth
in the NLRs, 53,588 occupied NLRs were sorted in three
rounds, without performing any further binning and treated
separately. This sample, named hereafter “occupation control”,
was processed and sequenced with the 10 bins and later used
to gather information about the library coverage and the B.
subtilis population at this step of the workflow.

To recover the NLR-embedded cells, binned samples were
incubated for 10 min under gentle shaking with 2xTY medium
(16 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl)
supplemented with potassium phosphate buffer (pH 7) to a
final concentration of 0.2 M, at which point, full dissolution of
the cross-linked calcium alginate had been achieved. Bacterial
cells were pelleted by centrifugation (4000g, 30 min), the
supernatant was discarded, and the pellet was stored at −80
°C.

Genomic DNA Extraction and NGS Library Prepara-
tion. Samples from the 10 bins, the occupation control, and
the initial glycerol stock were thawed on ice, centrifuged for 1
min at 16,000g, and the supernatant was discarded. Afterward,
cells were resuspended in 0.85% (w/v) aqueous NaCl,
supplemented with 250 μg/mL of RNase A (Macherey-
Nagel), and 0.5 mg/mL of lysing enzymes from Trichoderma
harzianum (Sigma-Aldrich, L4142). After incubating for 10
min at 37 °C, EDTA and SDS were added to final
concentrations of 15 mM and 1.2%, respectively. Samples
were vortexed thoroughly, ammonium acetate was added to a
concentration of 2.5 M, and then, samples were vortexed again.
Precipitated proteins were pelleted by centrifugation at
22,000g for 15 min at 4 °C. The supernatant was transferred
to a fresh reaction cup, supplemented with an equal volume of
2-propanol and gently mixed. DNA was then pelleted by
centrifugation at 22,000g for 40 min at 4 °C. The supernatant
was discarded, and the pellet was washed twice with ice-cold
70% ethanol, dried, and resuspended in 10 mM Tris−HCl pH
7.5.

Each sample was then amplified by PCR, using phusion
polymerase (NEB), with primers P3−P15 (Supporting
Information Table S5) that anneal immediately up- and
downstream of the inserted SP sequence in pSG01, adding
barcodes to identify the sample (primers P3−P15 in
Supporting Information Table S5, containing Illumina Nextera
tagmentation adapters and, in each forward primer, a specific
barcode). PCR products were then purified and recovered in
milliQ water. Amplicons were analyzed with a bioanalyzer
(LabChip GXII, Caliper Life Sciences) using a 5K HT DNA
chip, to check size and concentration of the fragment. The 12
PCRs products, corresponding to the 10 bins and the two
controls, were pooled and sequenced as a Nextera library
(Illumina) by the company BaseClear B.V. (Leiden, NL) on a

NovaSeq machine (Illumina) in paired ends, for a total of
26,175,197 2 × 150 bp reads. For both forward and reverse
raw reads, the Phred scores had an average of 36 and a median
of 37.

Reads Pre-Processing and Mapping. The software
FastQC version 0.11.880 was used for quality inspection of
the sequencing data. First, possible adapters were removed
from the 3′ end of the reads (read-trough adapters), since they
could confound the merging process when the read length and
insert size are comparable. To this end, the software
NGmerge81 version 0.2dev was used in “adapter removal”
mode, with 0 mismatches allowed. Sequences were thus
merged into longer pseudoreads using PEAR82 version 0.9.11,
with a minimum overlap of 5nt and a p-value of 0.001. This
yielded 26,105,901 pairs of reads (99.735% of the total reads)
to be merged, with the remaining reads unassembled and no
read discarded. Pseudoreads were then sorted in the 10 bins
and the two controls, based on the respective barcodes, using
the “fastx_barcode_splitter.pl” script from FASTX-Toolkit83

looking only at the 5′ (“--bol” option) and allowing only one
mismatch. This resulted in 25,980,025 (99.254% of the total
reads) demultiplexed pseudoreads. Any remaining adapter
(including the barcode) at both 5′ and 3′ of the assembled
reads was removed using cutadapt84 version 2.3, without any
read loss. The obtained pseudoreads were then mapped to the
reference sequences (i.e., the designed SPs) using BBMap85

version 37.93, with “perfectmode” activated; and behavior for
ambiguously mapped reads was set to “best alignment”
(Supporting Information Table S3). Occurrences for each
bin and both controls were counted for each of the designed
sequences, and the resulting frequency table was later used for
model construction (Supporting Information Table S1).

Data Preprocessing, Feature Extraction, Model
Construction, and Interpretation. To identify the possible
influence of investigated features on protein secretion, we
decided to train a simple ML model. This procedure,
combined with an interpretation of the model, would allow
us to obtain a predictive model that could yield important
mechanistic insights into the features determining the secretion
efficiency of different SPs.

First of all, sequences with low abundance, corresponding to
less than 255 reads in the most populated bin, were discarded.
This resulted in 4421 informative SPs, which were used to
train and test the model. As a different number of NLRs was
collected for each bin, the occurrence of reads was normalized
across bins so that they contained the same number of NLRs.
To score SPs, we assumed that bins were equidistant and each
bin had an average value corresponding to its number. A WA,
that is, the summation of bin values weighted on the relative
frequencies of reads, was calculated for each SP and used as a
secretion score. The WA values of selected SPs could thus
range from 1 (i.e., the best secreting SPs with all occurrences
detected in bin 1) to 10 (i.e. the worst secreting SPs with all
occurrences detected in bin 10).

From the 227 calculated features, 22 were discarded because
they showed no variation either in the designed SP-library or in
the informative SPs data set, which was a subset of the
designed library (Supporting Information Table S2). Fur-
thermore, it was decided to minimize the number of features
with a correlation coefficient higher than 0.7 to avoid a spread
of importance, as attributed by the model, among them. Thus,
out of the initial 227 features, 96 were retained, while 110
features, with correlation coefficients higher than 0.7, were
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selected for clustering. Clustering was carried out through
affinity propagation86 using the scikit-learn87 python package
with standard parameters. Notably, affinity propagation was
selected as the clustering algorithm, because of its intrinsic
capability of inferring the total number of clusters. This
resulted in 14 clusters of correlating features, out of which 22
features were selected and added back to the feature set.
Specifically, for 12 of the clusters, the centroid was selected, for
1, cluster the centroid and an additional feature were selected,
and for the last cluster with lowly correlating features, all of the
7 features were included. Altogether, this procedure resulted in
a total of 116 features, to which 40 Boolean dummy variables
were added that describe the AAs in positions −3 and −1,
respective to the SPase cleavage site. This resulted in the final
selection of 156 features describing the selected SPs
(Supporting Information Table S2). In order to verify that
the selected features were relevant (i.e., provided variance)
within the data sets, and thus needed to train the model, a
principal component analysis was performed on (i) the 134
wild-type known SPs, (ii) the set of 11,643 unique SP (i.e. the
SP-library), and (iii) the set of 4421 informative SPs
(Supporting Information Figure S4).

To construct the model, the matrix of 4421 informative SPs
and 156 features was used as the independent variable, while
the array of 4421 WA values was used as the dependent
variable. These matrices were split with the Kennard-Stone
algorithm88,89 into a training set and a test set of 3095 and
1326 informative SPs, respectively. From available models, a
RF90,91 Regressor model from scikit-learn87 was implemented.
To identify the best hyperparameters for the RF model, a five-
time cross-validation grid search was performed on the training
set. From the 15,435 tested combinations of hyperparameters,
the following set of hyperparameters, balancing predictive
power and size of the model, was selected: max depth 25, max
features 156, min samples leaf 0.0001 of the training set, min
samples split 0.001 of the training set, and estimators 75. The
model was subsequently evaluated on the test set and scored
calculating the MSE between measured and predicted values
(Figure 3a).

The RF model was analyzed to gain mechanistic insights and
an explanation of the model itself. For this task, the TreeSHAP
method from the SHAP (SHapley Additive exPlanation)50−52

package was used since, being based on Shapley values, it is
advantageous in terms of consistency, allows for a more reliable
comparison of feature attribution values, and allows users to
understand the model explanation. A further advantage of
SHAP is that it includes both local and global explanations,
thereby providing explainability for both the whole data set
and the individual SPs. Nevertheless, it should be emphasized
that SHAP only provides an explanation of the model based on
the contribution of individual features to the final output.
SHAP does not necessarily uncover the causal relationships
between individual SP features and the actual protein secretion
efficiency as displayed by a bacterial cell. Furthermore, it is
noteworthy that SHAP provides the possibility to determine
the type of relationship between each individual feature and
the predicted output and to determine second-order
interactions that occur between features.

Assay Validation. To show both the reliability of the
NLR-based amylase activity assay and to assess the correctness
of the model, we used two orthogonal procedures to measure
the amylase activity from strains producing AmyQ with
selected SPs: a commercial assay in 96-wells MTPs and a

hydrolysis test on starch agar plates.56 For the MTP assay,
bacteria were precultured overnight into 2xPY supplemented
with 300 μg/mL spectinomycin, subsequently diluted 100-fold
in the same medium and grown for 7.5 h at 37 °C and 250
rpm. Throughout the validation of the NLR-based amylase
assay and of the model, two cultivation vessels were applied:
deep-well plates filled with 300 μL of medium and/or
Erlenmeyer shake flasks (25 mL culture volume in 250 mL
flask). Aliquots of the different cultures were collected, the cells
were pelleted, and 9 μL of the supernatants were mixed with 9
μL of Ceralpha reagent (Megazymes). The reaction mixtures
were incubated for 20 min (standard version) or 90 min
(sensitive version) at room temperature on a shaker (1000
rpm), and then the reactions were stopped through the
addition of 200 μL of 1% (w/v) 2-amino-2-(hydroxymethyl)-
propane-1,3-diol (Tris-base, pH 9). The amylase activity was
then measured by monitoring the absorbance at 405 nm with a
Tecan Infinite M200 Pro. Similar to the NLR-based assay, the
optical density at 600 nm of the cultures was measured and
used to normalize all samples for the biomass. Eventually, the
OD-normalized absorption values were expressed relative to
the amylase activity obtained from cultures that secreted
AmyQ with its native SP (PC), defined as 100%, and to the
amylase activity in the growth medium of a strain containing
pSG01 without an inserted SP sequence (NC), defined as 0%.

For the hydrolysis test on starch agar plates, glycerol stocks
of the selected variants were diluted 100-fold in 300 μL 2xPY
supplemented with 300 μg/mL spectinomycin and grown until
they reached the mid-exponential phase (6 h, 37 °C, 250 rpm).
An aliquot of 2 μL of the cell culture was spotted on 2xPY-agar
plates supplemented with 300 μg/mL spectinomycin and 0.2%
(w/v) potato starch (Sigma-Aldrich). After overnight
incubation at 37 °C, the plates were flooded with Lugol’s
iodine (Carl Roth), which interacts with starch and generates a
dark color. Where starch is degraded, a clear zone arises, for
example, around a colony, and the area of this clear
degradation zone is approximately proportional to the amount
of amylase secreted.56 The standard MTP assay was used for
initial validation of the NLR-based assay (Figure 2a, 2) and the
screening strategy. To further validate the assay, 95 SP-AmyQ
fusions, randomly picked from the 4,421 variants used to train
and test the model, were subjected to the MTP assay (see
activity values in Supporting Information Table S6 and Figure
S2). As 72 randomly picked variants showed no amylase
activity, presumably due to too low secretion levels, the
sensitive version of the MTP assay was applied, and AmyQ
activities could be determined for 15 more clones.

The starch hydrolysis on plate was also applied for the
partial validation of the NLR-based assay (Figure 2a, 3), and if
no amylase activity could be detected with the sensitive MTP
assay (i.e. Abs405 < 0.1; Supporting Information Figure S3).

Model Validation. To further validate our model, small
sets of SPs were manually edited to tune their predicted
secretion levels. 30 SPs directing high-level secretion of AmyQ
(i.e., “good performers”) were manually edited until the model
predicted them to direct AmyQ secretion with poor efficiency
(group 1). Similarly, another 30 SPs directing low-level
secretion of AmyQ were edited in order to improve their
efficiency (group 2) (see Supporting Information Table S4 for
full list of SPs).

As an additional validation approach, we generated pseudo-
random SP AA sequences, with a home-made script, described
as follows. Based on 134 sequences of known and highly
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probable SPs, 7 dictionaries were calculated that map each AA
to its relative frequency: one for the N-region (excluding the
initial Met), one for the H-region, one for the C-region except
the last 3 residues, one for each −3, −2 and −1 position
relative to the SPase cleavage site, and the last one for the Ac-
region (i.e., positions +1, +2 and +3 together). Using these
values, 10,000 sequences for each region were generated as
follows: for the N-region a Met was always placed in front of a
stretch of 1 to 10 residues built on the frequency table; the H-
region simply consisted of a stretch of 9 to 16 residues built on
the frequency table; the C-region was built juxtaposing a
stretch of 4 to 11 residues to the 3 single residues for positions
−3,-2, and −1, each based on its frequency table; and for the
N-terminus of the mature protein after SPase cleavage, a
stretch of 3 residues based on its frequencies was built. To
minimize the occurrence of SPs with features too far from the
distribution of the known, or probably representing wild-type
B. subtilis SPs, the Kolmogorov-Smirnov92,93 statistic test was
applied, which compared the distribution of various features
(data not shown). In case the number of similar distributions
(considered as all those features with a calculated p-value
above 0.1) was below a certain threshold, i.e., at least 21, 16,
18, and 17 features, respectively, for the N-, H-, C-, and Ac-
regions, the batch of 10,000 sequences was discarded and the
process was repeated. In such a way, the four designated
regions (i.e. the N-, H-, C-, and Ac-regions) were built
independently from each other and their possible combina-
tions or interactions were not considered. When 10,000
sequences for each region were generated, they were
juxtaposed to form a full SP. Then, sequences equal or longer
than 33 AAs (calculating the length up to and including the
Ac-region) were discarded, thus resulting in 4903 valid SPs. To
generate the relative coding sequences, the AA sequences were
retro-translated with an unambiguous dictionary where only
the most frequent codon for each AA was present.
Subsequently, having both a nucleotide and an AA sequence
for each SP, the 156 features of the final model were calculated,
and the respective SPs’ secretion efficiency (i.e., the WA value)
was predicted using the RF model. A set of 32 SPs (group 3)
was selected with the requirement to be predicted by our
model as very good secretors (see Supporting Information
Table S4 for full list of SPs). Eventually, the different features
for each SP were also analyzed and explained through SHAP.

For manually edited as well as pseudo-randomly designed
SPs, the respective SP-encoding sequences were ordered
(Twist Biosciences), cloned in pSG01, and used to transform
B. subtilis DB104, following the same procedure as applied for
the generation of the SP-library. For the 61 successfully
constructed SP-AmyQ fusions, the amylase activity was
monitored in the MTP assay as described above. Additionally,
15 of these fusions (5 for each of the three groups) were
further tested via the NLR-based amylase activity assay, to
verify the model in the same experimental setup used to
generate it (Figure 4).
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