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Abstract 

Neovascular age-related macular degeneration (nAMD) is a major cause of visual impairment and blindness. Anti-
vascular endothelial growth factor (VEGF) agents, such as ranibizumab, bevacizumab, aflibercept, brolucizumab and 
faricimab have revolutionized the clinical management of nAMD. However, there remains an unmet clinical need for 
new and improved therapies for nAMD, since many patients do not respond optimally, may lose response over time 
or exhibit sub-optimal durability, impacting on real world effectiveness. Evidence is emerging that targeting VEGF-A 
alone, as most agents have done until recently, may be insufficient and agents that target multiple pathways (e.g., 
aflibercept, faricimab and others in development) may be more efficacious. This article reviews issues and limitations 
that have arisen from the use of existing anti-VEGF agents, and argues that the future may lie in multi-targeted thera-
pies including alternative agents and modalities that target both the VEGF ligand/receptor system as well as other 
pathways.
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Age-related macular degeneration (AMD) is the main 
cause of severe visual impairment and irreversible 
blindness in the industrialised world [1]. Late AMD, in 
the form of either neovascular (n) or atrophic AMD, is 
responsible for most vision loss. Although the prevalence 
of nAMD is lower than that of atrophy AMD, nonetheless 

it is responsible for most cases of severe vision loss [2]. 
Major advances in the treatment of nAMD over the past 
decade have occurred with the use of vascular endothelial 
growth factor (VEGF) inhibitors, most of which target 
VEGF-A. AMD has a prevalence of around 170 million, 
which is projected to increase to 288 million by 2040 [2]. 
Global prevalence in adults 45 years and over of any, early 
and late AMD is 8.7%, 8.0% and 0.4%, respectively, with 
early AMD being more common in people with Euro-
pean ancestry (11.2%) than Asians (6.8%) and no signifi-
cant difference in the prevalence of late AMD [3]. AMD 
of any type is less frequent in people with African ances-
try [3]. Approximately 1 in 10 persons with any AMD 
signs have nAMD [4]. In the US, about 200,000 new cases 
of nAMD are diagnosed each year [5].
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Pathophysiology and treatment concepts
The pathogenesis of nAMD involves aberrent angiogen-
esis and macular neovascularization (MNV, also known 
as choroidal neovascularization (CNV)), vascular leak-
age, haemorrhage and scarring, which can lead to per-
manent vision loss [6–8]. A range of mediators have been 
implicated in this complex process including kinases [9], 
cytokines [10] and growth factors [11]; the most promi-
nent is VEGF and its receptors (VEGFRs) [12] (Fig.  1). 
Most therapeutic attention on AMD and diabetic retin-
opathy (DR) has focused on VEGF-A and its receptors 
because of its dominant capacity to promote angiogen-
esis and vascular permeability, and its receptors [12].

AMD is classified clinically as early, intermediate or 
late. Early AMD is defined as the presence of medium-
sized drusen (63–125  µm) without typical retinal pig-
mentary changes (hyper- or hypo-pigmentation) at the 
macula [13]. Intermediate AMD is defined as the pres-
ence of at least one large druse (> 125  µm) or exten-
sive medium drusen and typical pigmentary changes. 
Late AMD refers to the presence of either nAMD (also 
termed “wet”) or atrophic AMD (also termed geographic 
atrophy). Early and intermediate AMD stages are often 

asymptomatic. There may be mild central distortion, par-
ticularly for near vision with low luminance. Late AMD 
is frequently symptomatic and reduces central vision for 
near and distance tasks. Neovascular AMD can progress 
rapidly over weeks to months, while atrophic AMD pro-
gresses more slowly over years to decades. Many patients 
report that the earliest symptoms of late AMD are dis-
torted central vision, a dark patch (scotoma), which may 
be measured as a subtle visual field defect on microper-
imetry, and difficulty recognising faces [14]. Over 60% of 
AMD patients will develop the same stage of disease in 
both eyes [15]. In asymmetrically affected patients, the 
second eye then becomes affected in 19–28% of cases 
within 5 years of initial diagnosis [16].

The underlying nAMD lesion is the MNV (also known 
as CNV) complex which can be classified in terms of 
location—type 1 is restricted to the sub-retinal pigment 
epithelium (RPE) space; type 2 grows through the RPE 
and into the sub-retinal space; and type 3 is believed to 
originate within the retina [8]. A mixture of type 1 and 2 
where neovascularisation in both the sub-retinal and sub-
RPE spaces can also occur. In addition, a particular sub-
type known as polypoidal choroidal vasculopathy (PCV) 
[17, 18], similar to a type 1 CNV with dilated vascular ele-
ments has also been described as part of the spectrum of 
nAMD [8] and may be more prevalent among Asians [17, 
18]. CNV is associated with other signs: retinal haem-
orrhage, intra- or sub-retinal fluid, pigment epithelial 
detachment (PED), exudate and subretinal fibrosis. AMD 
is diagnosed through a combination of retinal assess-
ment through dilated pupils, and multimodal imaging, 
using colour fundus photography, OCT imaging, fundus 
fluorescein angiography (FFA), fundus autofluorescence 
(FAF) and more recently, OCT-angiography (OCTa) [14].

Atrophic AMD refers to the presence of geographic 
atrophy (GA) lesions that may be unifocal or multifocal 
[19]. Average progression rates of GA lesions is ~ 2 mm2/
year with considerable variation [20]. Multimodal imag-
ing is also used to diagnose and monitor GA progression. 
Reticular pseudodrusen (RPD), also known as subretinal 
drusenoid deposits, may be associated with more rapid 
progression of GA, and to a lesser extent, nAMD [21, 22].

AMD risk is influenced by genetic and non-genetic fac-
tors. Discovery of AMD associated genetic loci was the 
first major success of genome wide association study 
(GWAS) approaches [23]. Large AMD GWAS have since 
discovered 52 common and rare variants at 34 genetic loci 
independently associated with late AMD [24–26]. Asso-
ciation of very rare coding variants (frequency < 0.1%) in 
complement factor H (CFH), complement factor I (CFI) 
and tissue inhibitor of metalloproteinases-3 (TIMP3) 
suggest causal roles for these genes in AMD pathogenesis 
[24]. The alternative complement pathway (CFH, CFI, 
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Fig. 1  VEGF ligands and receptors. The VEGF ligand family 
(comprising VEGF-A, VEGF-B, VEGF-C, VEGF-D, virally encoded VEGF-E 
and placental growth factor (PlGF)) interacts selectively with 3 cell 
surface receptors (VEGFR1, VEGFR2, VEGFR3). Currently approved 
therapies are indicated in black font. Examples of emerging or 
experimental therapies are shown in blue font. Refer to text for detail
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C2/complement factor B (CFB), C3) is primarily impli-
cated in AMD risk [27] followed by the age-related macu-
lopathy susceptibility2 (ARMS2) locus for which the gene 
product has not yet been identified [28]. TIMP3 codes for 
a matrix metalloproteinase inhibitor that regulates deg-
radation of extracellular matrix, and is also implicated in 
Sorsby fundus dystrophy, a retinal degenerative disorder 
similar to AMD [29]. These 52 genetic variants together 
explain 27% of disease variability, which is over half the 
genomic heritability of AMD [24].

Smoking is the strongest modifiable risk factor for 
AMD and is associated with a doubling of late AMD risk 
[30, 31]. Current smoking is also associated with 10-year 
earlier age at onset of late AMD [30, 31]. Current smok-
ing [32], and polymorphisms in CFH [33] and ARMS2 
[34] together account for up to 45% of risk for develop-
ing AMD [35]. Higher body mass index, an indicator of 
obesity, is also consistently associated with increased risk 
and earlier onset of developing AMD [36–38].

Dietary factors, especially intake of antioxidants, is also 
consistently associated with risk of developing AMD. 
Population studies such as the Blue Mountains Eye Study 
and others have shown a high dietary intake of lutein, 
zeaxanthin (carotenoids found in leafy green vegetables) 
and fish are associated with reduced risk of develop-
ing AMD [39–41]. Overall, Mediterranean and Oriental 
dietary patterns appeared to be protective against devel-
oping AMD, when compared to Western diets high 
in animal fats and red/processed meat [42]. The Age-
Related Eye Disease Studies I and II were landmark clini-
cal trials that confirmed nutrient supplements containing 
high doses of zinc and antioxidants (vitamin C, vitamin 
E, carotenoids, copper) can slow AMD progression in 
some people [43, 44].

Other factors with less consistent associations with 
AMD risk include: iris colour and sun exposure [30], 
alcohol intake [45], inflammatory markers such as 
C-reactive protein and white cell count [46, 47]. Car-
diovascular risk factors, such as hypertension and dys-
lipidaemia are inconsistently linked with AMD risk [48], 
with elevated serum lipids associated with increased risk 
of intermediate AMD in some studies [49] but not others 
[50]. Long term aspirin use may be linked with a small 
increased risk of late AMD in a few studies [51, 52] but 
this has not been confirmed [53–55]. The risk of cataract 
surgery worsening early AMD is controversial. The latest 
Cochrane review to study the issue [56] found insuffi-
cient evidence to support cataract surgery as a risk fac-
tor for late AMD. Risk scores that include age, gender, 
smoking and drusen type perform well at discriminating 
persons who go on to develop AMD, with area under the 
receiver-operating curve of 0.85–0.91 [57–59].

Current management
The present management of late AMD is focused on 
treating nAMD, as there are no proven treatments to 
date for atrophic AMD/GA.

Emerging approaches to treating atrophic AMD (GA)
Recently pegcetacoplan, a C3 inhibitor delivered intra-
vitreally, has been shown in two phase 3 trials (DERBY 
and OAKS) to significantly reduce the rate of grown of 
atrophic AMD/GA lesions when delivered monthly or 
every other month. [60–62]. This represents the first 
potential treatment to delay growth of GA, although 
visual acuity, reading vision and other functional param-
eters remained similar in treatment and sham groups. 
Approval from the US Food and Drug Administration 
(FDA) is pending and likely to occur in the near future. A 
number of other agents to treat GA are currently in late 
phase trials [60, 63–65].

GA is typically largely asymptomatic until the fovea is 
involved. Visual acuity does not correlate well with GA 
severity as the fovea may be spared despite extensive GA 
elsewhere [66], which may account for the lack of efficacy 
of pegcetacoplan on visual acuity. Clinical trials of GA 
using traditional visual acuity as an endpoint would need 
to be prohibitively long to detect differences due to slow 
growth of GA lesions. Alternative clinical endpoints are 
being explored, such as reading indices [67], and either 
single morphologic endpoints (enlargement of fundus 
autofluorescence (FAF) defects) or composite morpho-
logic endpoints based on multimodal imaging, that may 
improve power to detect efficacy of interventions [68]. 
Complement inhibition is the most studied potential 
therapeutic intervention [69]. Drugs other than pegceta-
coplan, such as eculizumab [70], lampalizumab [71] and 
tandospirone [72] have been investigated in clinical trials 
that have so far yielded disappointing results. Manage-
ment of atrophic AMD/GA is not the focus of the present 
review.

Current anti‑VEGF therapies for nAMD
Intravitreal (IVT) anti-VEGF therapy is the standard 
of care for the treatment of nAMD (Table 1). Therapies 
include aflibercept [73], ranibizumab [74, 75], bevaci-
zumab [76] which is currently used as off-label therapy 
but due to be registered, and brolucizumab [77]. Land-
mark registration trials for VEGF inhibitors demonstrate 
excellent visual outcomes when treated with monthly 
ranibizumab. The MARINA [78] and ANCHOR [79] 
trials showed gains of about 2 lines over 24  months. 
Similarly, VIEW [80] demonstrated non-inferiority of 2 
monthly aflibercept compared to monthly ranibizumab. 
The Comparison of Age-Related Macular Degeneration 
Treatment Trials (CATT) found that bevacizumab had 
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similar effectiveness to ranibizumab in treating nAMD 
[81], while the HAWK and HARRIER trials showed both 
2 monthly and 3 monthly brolucizumab was non-inferior 
to 2 monthly aflibercept in treating nAMD [77]. Compar-
ison between aflibercept, ranibizumab and bevacizumab 
for retinal disease suggest that aflibercept may have a 
slight benefit over ranibizumab and bevacizumab [82]. 
Ongoing CNV activity is associated with poorer visual 
outcomes [83, 84].

Faricimab (Genentech/Roche) is a bispecific (dual tar-
geted) antibody that simultaneously targets VEGF-A 
and angiopoietin-2 (Ang II), the latter being involved in 
distinct pathways that promote vascular permeability 
and inflammation [85]. In early 2022, two global Phase 
III studies (TENAYA (NCT03823287) and LUCERNE 
(NCT03823300) involving 1329 patients, reported that 
faricimab met its primary endpoint and showed poten-
tial to extend time between treatments up to 4  months 
for people with nAMD and was generally well toler-
ated [86]. Similar results were obtained in patients with 
diabetic macular edema (DME) in the YOSEMITE 
(NCT03622580) and RHINE (NCT03622593) Phase 
III trials involving 1891 individuals [87]. This follows 
the Phase II STAIRWAY trial (NCT03038880) which 
showed that monthly IVT faricimab was not superior 
to monthly ranibizumab [88], and Phase II AVENUE 
trial (NCT02484690) which showed that IVT faricimab 
given every 12 or 16  weeks was not clinically inferior 
to monthly ranibizumab for the treatment of nAMD 
[89]. With injections every 4  months rather than each 
month, faricimab could substantially reduce treatment 
burden and costs for patients and health care providers. 
Faricimab was approved by the FDA in January 2022 for 
the treatment of nAMD and DME.

New therapies with longer durability and better efficacy 
in early trials that target VEGF-A alone have not been as 
successful as the initial generation of anti-VEGF agents, 
largely due to unanticipated side effects. Brolucizumab 
has been associated with intraocular inflammation (~ 4%) 
[90, 91], retinal vasculitis and retinal artery occlusion 

[77]. Intraocular inflammation also occurs with abicipar 
pegol [92], a designed ankyrin repeat proteins (DARPin)-
based drug that binds VEGF-A, exceeding 15% in Phase 
III trials (CEDAR and SEQUOIA, NCT02462928 and 
NCT02462486, respectively) as compared with less than 
1% with ranibizumab [92–94]. Abicipar was rejected by 
FDA in June 2020 over risk/benefit concerns [94].

Treatment regimens
Clinical trial treatment dosing regimens are often not 
reflective of real-world practice and high frequency of 
therapeutic interventions in registration trial design 
can result in a high treatment burden. In most clini-
cal practice, non-monthly regimens such as the pro re 
nata (PRN) approach and the treat and extend (T&E) 
regimen have gained popularity with many favoring the 
later. The general principle behind non-monthly regi-
mens is assessment of disease activity to determine the 
next management step taking into account personalised 
response to therapy. Briefly, in a PRN approach, disease 
status is assessed monthly, and treatment administered 
if disease is deemed active. In the T&E approach, treat-
ment is administered at every visit, but treatment inter-
vals are varied according to disease status [95]. These 
non-monthly regimens can reduce treatment burden to 
once every 3 to 4 months in some patients, while main-
taining favourable visual outcomes [96, 97]. T&E is now 
the dominant treatment regime worldwide and future 
research directions are focused on further extending the 
speed and extent of increased intervals between injec-
tions. This points to the need for more durable agents 
and the different strategies taken to achieve this.

Pharmacogenomics and personalised medicine
There is emerging evidence that a patient’s underly-
ing genetic predisposition may affect response to exist-
ing anti-VEGF therapies. Lower risk genotypes of the 
VEGFA, CFH, ARMS2 and HTRA1 genes may be asso-
ciated with better visual outcomes and potentially fewer 
injections [98–101]. Some of these genotypes were 

Table 1  Current anti-VEGF therapies for nAMD

IVT denotes intravitreal
* An already approved anti-VEGF agent (ie ranibizumab) not the port itself

Currently used therapies Company Type of therapeutic Delivery route FDA approval for nAMD

Ranibizumab/Lucentis Lucentis, Genentech/Novartis Antibody IVT 2006

Aflibercept/Eylea Regeneron/Bayer Fusion protein “trap” IVT 2019

Brolucizumab/Beovu Novartis Antibody IVT 2019

Port delivery systems* Genentech Antibody Implant 2021

Faricimab/ Vabysmo Roche/Genetech Bi-specific antibody IVT 2022

Bevacizumab/Avastin Roche/Genetech Antibody IVT Used off label
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associated with poor response to one, but better response 
to a different anti-VEGF agent [102]. The effect of high 
risk alleles on anatomical and visual outcomes has been 
reported to be detectable even after long term treatment 
of up to 10  years [103]. The results raise the possibility 
that multi-targeted therapy could be personalised to indi-
viduals based on genetic risk scores, which could guide 
choice of therapy. Nonetheless, such pharmacogenetic 
scenarios remain in their infancy as a number of other 
studies have found very limited (to rare variants) [104] to 
no effect of high risk alleles on response to therapy [105, 
106].

Unmet need from use of current anti‑VEGF 
therapies impacting quality of life
While anti-VEGF therapy has proven to be efficacious, 
several shortcomings highlight unmet need of this 
approach, thereby impacting the quality of life of patients 
suffering from and receiving treatment for nAMD. 
Table  2 summarises patient, therapeutic and healthcare 
system factors where there is unmet meet with current 
anti-VEGF therapies for nAMD. These factors are dis-
cussed further below.

Suboptimal response or the response is not sustained
Despite favorable outcomes in most patients, 25–35% of 
nAMD patients either fail to respond optimally to cur-
rent anti-VEGF therapies, exhibit late failure to therapy, 
or require intensive, frequent IVT treatment [107, 108]. 
Of the 35% who fail to respond optimally to therapy, 
over 10% worsen despite treatment, while another 
25% show no improvement [83, 84]. Despite maximal 

intensive anti-VEGF therapy, over 60% of eyes have 
persistently active disease, which can result in poor 
long-term outcomes [84, 109]. Around 1 in 5 patients 
become “injection-intensive” needing treatment at 
least every 4 to 6 weeks [1]. This rigorous schedule can 
lead to high non-adherence/dropout over time, which 
further exacerbates the condition compromising the 
efficacy of anti-VEGF therapy [110–112]. This may be 
why poorer visual acuity outcomes are achieved in real 
world settings than in clinical trials [113–115].

In patients that achieve disease quiescence, suspend-
ing therapy may be detrimental and treatment often 
needs to be continued at regular intervals to maintain 
vision. Nguyen et al. reported a recurrence rate of > 40% 
in nAMD patients after treatment cessation following 
a 12-week interval [116]. Recent studies indicate that 
pre-treatment VEGF levels in the aqueous humor of 
nAMD patients correlated significantly with the likeli-
hood of disease recurrence [117]. Moreover, in some 
nAMD patients with aggressive disease, continuation 
of anti-VEGF therapy even after achieving stability 
does not prevent disease recurrence [118–120]. The 
impact of suboptimal response and poor sustainabil-
ity with resultant poor vision has significant impacts 
on patient reported outcomes. Patients were found to 
be willing to tolerate other inconveniences of receiving 
repeated anti-VEGF treatments if resultant vision was 
better [121–123]. CATT showed that 1 in 4 patients 
who needed aggressive anti-VEGF therapy developed 
some subretinal fibrosis within 2  years [124] and a 
greater risk of geographic atrophy in nAMD patients 2 
to 5 years after start of therapy [125].

Table 2  Unmet need

Factors Unresolved issues Comments

Patient factors Non-adherence and/or non-compliance Patient education and better understanding of disease and therapy

Cost of therapy/visits Individual healthcare jurisdiction cost and reimbursement policies

High individual treatment burden Need for more durable agents

Poor prognosis Need for more efficacious agents or regenerative therapies to reverse 
damage by nAMD

Therapeutic factors Relatively short duration of action resulting in 
repeated treatments

Need for more durable agents

Poor efficacy resulting in persistently active disease Need for more efficacious agents

Safety profile Need for better preclinical safety models that can provide early safety 
signals before entry into clinical practice

Healthcare system factors High treatment burden to society Combination of more durable and efficacious agents may help 
address this unmet need by preventing/reversing blindness from 
nAMD

Reimbursement and subsidies Individual healthcare jurisdiction cost and reimbursement policies

Increasing patient load Need for more durable agents and/or more precise therapies to 
minimise unnecessary monitoring visits
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Healthcare‑related costs
Recurrent treatments for nAMD impose a high financial 
burden on health care systems (e.g. [126],). Ross et  al. 
examined compared the cost-effectiveness of aflibercept, 
bevacizumab and ranibizumab for treatment of DME 
and found that aflibercept and ranibizumab, respec-
tively, were 31 and 20 times more expensive than beva-
cizumab [127]. Aflibercept and ranibizumab were not 
cost-effective relative to bevacizumab [128]. Off label 
use of bevacizumab for ophthalmic disease however, 
has helped mitigate cost for eye conditions in jurisdic-
tions throughout Europe [129] and the US [130]. Anti-
VEGF costs to patients are hugely variable in Asia; from 
comparative high cost in Indonesia with no government 
subsidies, to fully subsidized through public health insur-
ance in South Korea and Japan [131–133]. In Australia, 
the regulatory framework disincentivizes use of bevaci-
zumab for nAMD since the drug is unlisted and attracts 
no government subsidy [134]. There are also continuing 
issues regarding the safety of compounding bevacizumab 
for off-label intraocular use [135]. There is also increasing 
interest in biosimilars. Biosimilar medicines are close, but 
not identical versions of the original. For example, SB11 
[136] and razumab [137] are ranibizumab biosimilars and 
may be available at lower cost. However, pharmacological 
issues of limited efficacy and durability persist with bio-
similars. In addition to the cost effectiveness of therapy 
itself, there is significant burden of treatment to patients 
and care givers.

Undesirable sequelae of anti‑VEGF use
Existing anti-VEGFs are linked with some adverse events. 
These, while rare, can significantly impact vision. The 
major short term adverse effect of anti-VEGF injections 
is the risk of endophthalmitis, a serious outcome that 
occurs in approximately 1/3500 injections [138]. Early 
treatment with either IVT  antibiotics, early vitrectomy, 
or both, is essential and can result in significant improve-
ment in vision post-endophthalmitis [139]. Another 
major potential complication of anti-VEGF therapy is the 
risk of intraocular inflammation, which can also lead to 
irreversible vision loss if severe. The risk of this appears 
to be highest for the anti-VEGF agent brolucizumab, 
which is associated with a sixfold higher risk of intraocu-
lar inflammation compare to aflibercept [140]. Finally, a 
transient rise in intraocular pressure is often observed 
immediately post IVT injection of all anti-VEGF agents. 
This can sometimes be associated with “black outs” or 
sudden loss of vision as intraocular perfusion is compro-
mised. In virtually all cases vision recovers over the next 
few minutes either spontaneously, or after anterior cham-
ber paracentesis to relieve the intraocular pressure rise.

Long term use of anti-VEGF can be associated with 
adverse effects as well, though the causal relationship of 
long term anti-VEGF therapy and these adverse effects, 
as opposed to the natural history of nAMD, remains 
unclear and is subject of much investigation. Macular 
atrophy, an end stage phenotype of nAMD that can result 
in irreversible vision loss, has been reported to be associ-
ated with long term anti-VEGF use [141]. Ranibizumab 
treatment for nAMD over 2 years is associated with mac-
ular atrophy in about 30% of eyes [142] and longer term 
data has shown some detectable macular atrophy in 48% 
of eyes treated with anti-VEGF for 9 years [141]. Causal-
ity remains unclear and macular atrophy may represent 
the natural history of treated CNV [141–143]. Subretinal 
fibrosis is another end stage phenotype of nAMD associ-
ated with irreversible vision loss. Outcomes from CATT 
indicate that 1 in 4 patients on aggressive anti-VEGF 
therapy developed fibrosis within 24  months [124] with 
greater risk of geographic atrophy in nAMD patients 
2 to 5  years after start of therapy [125] which again, 
could reflect the natural history of treated nAMD [141]. 
It should also be noted that untreated nAMD itself can 
result in subretinal fibrosis, which further confounds any 
potential relationship with long term anti-VEGF use.

There also remain some concerns about potential 
adverse effects stemming from systemic suppression of 
VEGF following long term anti-VEGF treatment [144]. 
While oral therapy in particular circumstances may be 
desirable, there is concern that systemic and chronic 
administration of agents that inhibit VEGF may lead to 
adverse events including kidney damage and hyperten-
sion [145] secondary to VEGF acting as a trophic fac-
tor in the retina and kidney. Though rare, repeated IVT 
injection of aflibercept and bevacizumab can result in 
serum drug levels rising above IC50 concentrations and 
reduced plasma free VEGF levels [146]. Serial injections 
of anti-VEGF in nAMD patients can elevate intraocu-
lar pressure which in some cases may require glaucoma 
therapy [147], although the incidence of this is low [148]. 
Long term IVT bevacizumab may increase risk of devel-
oping hypertension [149]. There is also some evidence 
that IVT anti-VEGFs may carry risk for systemic adverse 
thromboembolic events [150], however other studies 
have not found a link [151]. Further, systematic reviews 
have generally found low, if any, increased risk of throm-
boembolic events, which are acceptable when balanced 
against the clear efficacy in preventing vision loss [152].

There is evidence of cross regulation between VEGF 
ligands when a VEGF ligand is suppressed. Inhibition of 
one VEGF ligand by an approved anti-VEGF can induce 
expression of other VEGF ligands. Studies on mecha-
nisms of tumour resistance indicate that resistance to 
aflibercept coincides with increased levels of VEGF-C 
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[153], a lymphangiogenic growth factor [154] and that 
resistance to bevacizumab coincides with increased 
levels of PlGF and VEGF-D [155]. VEGF-C and VEGF-
D expression is increased in human brain and tumour 
derived endothelial cells exposed to bevacizumab [156]. 
VEGF-D has been implicated in lymphangiogenesis, 
tumor growth and metastatic spread [157]. In nAMD 
patients, while IVT injection of bevacizumab reduces 
VEGF-A levels in the aqueous humor, this elevates levels 
of VEGF-C and a range of other pro-angiogenic and pro-
inflammatory factors [158].

Overall, these shortcomings can result in unfavourable 
outcomes and potentially visually significant complica-
tions in some patients. Longer lasting, alternative agents 
that achieve the same or better efficacy with fewer injec-
tions, could help to alleviate many of these shortcomings.

Emerging therapies
Mono‑targeted (anti VEGF) therapies in development for 
nAMD
Targeting the VEGF/R system has undoubtedly pre-
vented blindness in millions of nAMD patients and 
improved quality of life and workforce productivity. 
However, given the shortcomings of current anti-VEGF 
therapy, there remains a need to identify other types of 
agents and modalities exploiting this pathway, several of 
which are summarized in Table 3 and depicted in Fig. 1.

Protein‑based agents
Inspired by the need for longer acting VEGF inhibitors, 
and exploiting the heparin affinity of VEGFRs, Ferrara 
and colleagues recently developed heparin-binding vari-
ants of VEGFR1 that compare favourably with aflibercept 

Table 3  Emerging or attempted therapies for nAMD

N/A denotes not (yet) available, IVT denotes intravitreal, iPSC denotes induced pluripotent stem cells, hESC denotes human embryonic stem cell, RPE denotes retinal 
pigment epithelium, AAV denotes adeno-associated virus, DARPins denote designed ankyrin repeat proteins
* an already approved anti-VEGF agent (ie ranibizumab) not the port itself

Drug or modality Company or Institution Type of agent Delivery route Phase Clinical trials.gov

Abicipar pegol Allergan DARPin IVT III, terminated NCT02462928,
NCT02462486

Conbercept/Lumitin Chengdu Kang Hong 
Biotech

Fusion protein “trap” IVT III, terminated NCT03577899, 
NCT03630952

PAN-90806 PanOptica Small molecule Eye drops I/II NCT03479372

RGX-314 RegenxBio AAV8 gene therapy deliver-
ing anti-VEGF Fab

Subretinal II NCT04832724

ADVM-022 Adverum AAV7m8 gene therapy 
delivering aflibercept

IVT I NCT03748784, 
NCT04645212

KSI-301 Kodiak Antibody biopolymer 
conjugate

IVT IIb/III NCT04049266

OPT-302 Opthea Fusion protein “trap” IVT III NCT04757610, 
NCT04757636

EYP-1901 Eyepoint Small molecule in Durasert IVT I NCT04747197

Pluripotent stem-cells London Project to Cure 
Blindness

hESC-derived RPE mon-
olayer

Transplantation I NCT01691261

Pluripotent stem-cells Highway Program for 
Realization of Regenerative 
Medicine

Autologous iPSC-derived 
RPE cell sheet

Transplantation UMIN000011929

Heparin-binding VEGFR1 
variants

University of California San 
Diego

Fc fusion proteins IVT N/A

OXU-005 Oxular Small molecule in Oxus-
pheres

IVT N/A

Brivanib Nantong University Small molecule IVT, gavage N/A

AGX51 Memorial Sloan Kettering 
Cancer Center

Small molecule IVT N/A

THR-687 Oxurion integrin receptor antagonist IVT N/A

Vasotide Beth Israel Deaconess Medi-
cal Center

peptidomimetic Eye drops N/A

BT2 UNSW Small molecule IVT N/A

Sunitinib Johns Hopkins University Small molecule IVT N/A

APX2009, APX2014 Indiana University Small molecule Systemic N/A
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in rodent models of retinal neovascularization [159]. 
Fc-containing proteins with the D3 (Ig-like) domain of 
VEGFR1 (e.g., V1233, V233) bound to bovine vitreous 
in vitro and suppressed retinal angiogenesis following 
IVT injection and laser-induced CNV in mice. These Fc 
fusion proteins were detectable in serum after IVT deliv-
ery albeit at levels less than aflibercept [159].

Conbercept (Lumitin; Chengdu Kang Hong Biotech) 
is a fusion protein comprising the extracellular domain 
2 of VEGFR1 and extracellular domains 3 and 4 of 
VEGFR2 combined with the Fc portion of human IgG1. 
Like aflibercept, conbercept is designed to bind VEGF-
A, VEGF-B and PlGF [160]. Monthly IVT conbercept 
appears to improve visual acuity in nAMD patients with 
no serious adverse reactions or complications [161]. 
However potential concerns have been raised about the 
extent of CNV, prior patient treatment and unresolved 
macular edema secondary to insufficient macular detur-
gescence suggesting active disease requiring further 
treatment [162]. The PANDA-1 and PANDA-2 Phase III 
trials for nAMD involving 1157 participants were ter-
minated in 2021 on the basis that the desired primary 
endpoint, notably conbercept non-inferiority com-
pared with aflibercept was not met (NCT03577899 and 
NCT03630952).

OPT-302 is a novel “trap” molecule comprising Ig-like 
domains 1 to 3 of the extracellular domain of human 
VEGFR3 fused to the Fc fragment of human IgG1 that 
binds to VEGF-C and VEGF-D, blocking their activation 
of VEGFR2 and VEGFR3 [163]. In NCT02543229, Dugel 
et  al. found that IVT OPT-302 was well tolerated with 
or without ranibizumab (0.5 mg) up to the highest dose 
of 2  mg given as 3 injections once every 4  weeks [163]. 
Although VEGF ligand levels were not measured in the 
aqueous humour, conceptually at least, combining OPT-
302 with anti-VEGF-A therapies may prevent mecha-
nistic escape following VEGF-A suppression. OPT-302 
is recruiting for Phase III trials with and without either 
ranibizumab (ShORe trial, NCT04757610) or aflibercept 
(COAST trial, NCT04757636), each with 990 nAMD 
patients.

Small molecule‑based therapy
Small molecules offer a range of potential advantages 
over antibody based drugs such as lower costs of manu-
facture, longer shelf life and reduced need for cold chain 
transport, oral administration and drugability [164]. The 
tyrosine kinase inhibitor sunitinib, a small molecule com-
monly used to treat renal cell carcinoma, has recently 
been repurposed as an experimental therapy for nAMD 
[165]. Single IVT or subconjunctival injection of suni-
tinib, in a non-inflammatory biodegradable polymer-
based microparticle formulation (polylactic-co-glycolic 

acid (PLGA) and PLGA conjugated to polyethylene gly-
col (PEG)), provided sustained suppression of choroi-
dal neovascularisation in mice over several months. In 
separate experiments, mice given IVT VEGF into each 
eye following injection of sunitinib microparticles (as 
compared with microparticles alone) showed significant 
reduction in the number of adherent intravascular leuko-
cytes, indicating sunitinib suppression of VEGF-induced 
leukostasis. Delivery IVT of sunitinib microparticles in 
rabbits caused self-aggregation which remained localised 
and efficacious over several months with no intraocular 
inflammation or apparent retinal toxicity [165].

Eye drops are being developed as potential mono-
therapy or to facilitate an increased interval duration 
between IVT injections of standard therapy or for use 
after IVT injections to further stabilise active disease. 
Drops would provide convenience, increasing adherence 
and compliance by patients and caregivers through fewer 
clinic visits and reduce risk of infection from IVT injec-
tions. PAN-90806 (PanOptica), a small molecule that 
binds VEGFR2 inhibiting its tyrosine kinase activity, is 
being developed as a once-daily eye drop suspension for 
nAMD (NCT03479372) [166]. An earlier trial with a dif-
ferent formulation showed punctate keratopathy due to 
off-target suppression of corneal epithelial EGFR [167].

Gene therapy
Adverum is developing a gene therapeutic approach 
for nAMD using ADVM-022 in which a proprietary 
vector capsid (AAV.7m8) delivers an aflibercept cod-
ing sequence. ADVM-022, administered by IVT injec-
tion was granted fast track designation by FDA in late 
2018. Thirty patients completing 2  years in the Phase I 
OPTIC trial (NCT03748784) are being enrolled into an 
extension trial (NCT04645212) which will run for up to 
5  years. Gelfman et  al. reported the efficacy of ADVM-
022-derived aflibercept in a CNV model involving non-
human primates. ADVM-022 given 13  months prior to 
laser-induced CNV, prevented CNV lesions to the same 
extent as aflibercept delivered at the time of lasering [168, 
169] demonstrating that one IVT delivery of ADVM-022 
is safe and could provide a potential long-term treatment 
option for nAMD. Ding et al. performed suprachoroidal 
injections of RGX-314, an adeno-associated virus sero-
type 8 (AAV8) vector expressing an anti-VEGF-A Fab 
in rats and suppressed VEGF-inducible vasodilation and 
vascular leakage [170], building on earlier studies also in 
rats injecting RGX-314 subretinally [171]. RegenxBio is 
conducting a Phase II study in 60 subjects with nAMD in 
which RGX-314 is delivered by subretinal administration 
(NCT04832724). While gene therapy provides an alter-
native means of therapeutic intervention, it brings risk 
of immunogenicity in relation to adenoviral vectors, and 
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risk of transgene integration in relation to retroviral and 
lentiviral vectors, or inability to carry large transgenes by 
AAV vectors.

Other antibody‑based strategies
Kodiak is developing KSI-301, an anti-VEGF antibody 
biopolymer conjugate (ABC) platform comprising a 
humanized IgG1 antibody binding all isoforms of VEGF-
A [172] with an inert immune effector function and a 
biopolymer designed to increase intraocular durabil-
ity. In the Phase IIb/III DAZZLE trial (NCT04049266) 
involving 550 nAMD patients, KSI-301 will be adminis-
tered IVT at 12, 16 and 20 week intervals and compared 
against aflibercept once every 4 weeks for 3 consecutive 
months, followed by once every 8  weeks. The Phase Ib 
study (NCT03790852) showed 66% of nAMD patients 
achieved a 6 month or longer treatment-free interval and 
78% had a 4  month or longer interval after 12  months 
[173].

Port delivery systems (PDS), enabling surgically 
implantable reservoirs, have been developed to facili-
tate continuous delivery of anti-VEGF agents such as 
ranibizumab inside the eye by passive diffusion [174]. 
PDS could potentially be used to deliver other therapeu-
tics through sustained release and refilled months later. 
The Phase III ARCHWAY trial (NCT03677934) in 418 
subjects with fixed 24 week refills revealed that 98.4% of 
PDS patients went 6  months without intervention and 
achieved vision outcomes equivalent to patients receiving 
monthly IVT ranibizumab. However, there was a signifi-
cantly higher rate of ocular adverse effects, particularly 
endophthalmitis and vitreous haemorrhage in the PDS 
arm compared to monthly ranibizumab arm [175][175] 
prompting further virtual reality training strategies on 
implantation to mitigate risk [177]. The Phase IIIb VEL-
ODROME trial (NCT04657289) will evaluate PDS and 
ranibizumab refill (100 mg/ml) delivered every 36 weeks 
as compared with every 24  weeks. FDA approved PDS 
with ranibizumab for the treatment of nAMD in October 
2021.

Multi‑targeted therapies in development for nAMD
Despite the promise of reduced treatment burden in 
nAMD patients brought about by brolucizumab, the 
future may lie with multi-target interventions. This is 
because considerable research suggests that factors 
beyond VEGF, such as other growth factors, chemokines 
and cytokines, also mediate the pathogenesis of nAMD 
[12]. Angiogenesis and inflammation underpinning 
nAMD involves signalling and transcriptional regulation 
mediated by extracellular signal-regulated kinase-1/2, 
p-ERK) [9], monocyte chemoattractant protein-1 
(MCP-1/CCL2) [178], intercellular adhesion molecule-1 

(ICAM-1) [178], vascular cell adhesion molecule-1 
(VCAM-1) [178], interleukin-1β (IL-1β) [179] and IL-6 
[180]. This may account for the inadequacy of strategies 
solely targeting the VEGF system [181, 182] and points 
to the therapeutic potential for strategies that also tar-
get other mediators of nAMD. For example, faricimab 
targets two distinct pathways, VEGF-A and Ang-2. Les-
sons emerging from cancer therapy suggest that simulta-
neous blockade of multiple pathways can make it harder 
for tumours to bypass therapy [183]. Indeed, resistance 
that develops to kinase inhibitors at least in melanoma 
patients may arise from reactivation of signalling path-
ways (or activation of parallel pathways) or immune sys-
tem modulation [184]. There is also major need for agents 
with greater efficacy (to improve response) and dura-
bility (to reduce frequency of injection) for nAMD that 
may be achieved through multi targeting. For example, 
while aflibercept, a soluble decoy VEGF receptor, inhibits 
VEGF-A and VEGF-B it also binds placental growth fac-
tor (PlGF), which may account for its prolonged efficacy 
compared to the mono-targeted anti-VEGF-A antibod-
ies ranibizumab and bevacizumab [82–84]. Several such 
strategies in development (Table  3) and are described 
below. It is unclear at this stage as to whether multi-
targeted therapies are prone to more unpredictable side 
effects in the long-term.

Small molecule‑based therapy
A range of small molecules have been tested as multi-
target therapeutics in preclinical models of nAMD. For 
example, brivanib, a pyrrolotriazine-based dual receptor 
tyrosine kinase inhibitor of FGFR1/R2 and VEGFR1/R2/
R3 [185, 186] delivered IVT or by oral gavage blocked 
reduced CNV leakage and area following laser-induced 
CNV in mice [187]. Wojnarowicz et al. identified a first-
in-class small molecule, AGX51, from an in silico screen, 
that caused ubiquitin-mediated Id protein degrada-
tion, G0/G1 arrest and reduced endothelial cell viability. 
IVT administration of AGX51 reduced CNV following 
laser injury in mice, and the AGX51/aflibercept combi-
nation had greater efficacy than aflibercept alone [188]. 
Hu et al. demonstrated that HR-687, a pan RGD (argin-
ylglycylaspartic acid) integrin receptor antagonist that 
blocks the principal RGD integrins αvβ3, αvβ5 and α5β1, 
inhibits VEGF-induced leakage in the mouse retina and 
retinal leakage in cynomolgus monkeys following laser-
induced CNV as effectively as ranibizumab [189]. Addi-
tionally, Sidman et al. found that vasotide, a small cyclic 
retro-inverted peptidomimetic, D(Cys-Leu-Pro-Arg-
Cys) which binds neuropilin-1 (NRP-1) and VEGFR1 
can inhibit retinal CNV in a laser-induced African Green 
monkey model after eye drop delivery [190].
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We recently identified BT2, a dibenzoxazepinone that 
can suppress not only VEGF-A, but also p-ERK, MCP-
1, ICAM-1, VCAM-1, IL-1β and IL-6 among a range of 
other pro-angiogenic and pro-inflammatory mediators 
relevant to nAMD [191, 192]. This includes transcrip-
tion factors (e.g., Egr-1, c-Rel/NF-κB, KLF) and pro-
angiogenic chemokines (e.g., CXCL1, CXCL3, CXCL8, 
CCL20). BT2 inhibits endothelial cell proliferation, 
migration, tubule formation and angiogenesis in mice 
bearing Matrigel plugs [191]. IVT BT2 reduced retinal 
permeability in rats as effectively as aflibercept at the 
same dose but needed threefold fewer injections than 
aflibercept [191]. BT2 also reduced retinal vascular per-
meability in rabbits induced by VEGF-A [191]. BT2 sup-
pressed laser injury-induced CD31, pERK, VEGF-A and 
FosB/AP-1 (a family of transcription factors that regu-
lates VEGF-A [193, 194]) expression in the retina [191]. 
The catalytic oligonucleotide, Dz13, provides another 
example of a molecular approach that inhibits VEGF-A 
and retinal neovascularization by targeting transcrip-
tion factor (c-Jun/AP-1) controlling its expression [195, 
196]. Thus, strategies that suppress regulatory factors 
other than merely VEGF, could potentially assist patients 
resistant to standard anti-VEGF therapy, or may permit a 
longer duration of action, as suggested by faricimab.

Ocular reservoirs
Biodegradable reservoirs implanted in the vitreous pro-
vide an alternative approach. Eyepoint Pharmaceu-
ticals is developing EYP-1901, an indolinone-based 
small molecule tyrosine kinase inhibitor (vorolanib/
CM082/X-82) [197] in Phase I trials for nAMD (DAVIO, 
NCT04747197). EYP-1901 blocks VEGFR1, R2 and R3 
but also targets the platelet-derived growth factor recep-
tor (PDGFR α and ß) and colony stimulating factor 1 
receptor (CSF1R), and is delivered IVT in a bioerodible 
(Durasert) platform for potential twice-yearly sustained 
delivery [198].

OXU-005 (Oxular) is developing an alternate sustained 
release strategy of a proprietary narrow-spectrum kinase 
inhibitor using a biodegradable polymer system (Oxus-
pheres) which seeks to provide up to 12  months’ treat-
ment after single administration into the suprachoroidal 
space [199].

Systemic delivery
Agents that demonstrate efficacy in the retina following 
systemic delivery have been developed. This could poten-
tially avoid the potential damaging effects of IVT  injec-
tion and improve patient non-compliance. This includes 
small molecule inhibitors of reduction–oxidation factor 
1–apurinic/apyrimidinic endonuclease 1 (APE/REF-1). 
APE/REF-1 redox activity regulates retinal endothelial 

cell growth, migration and tubule formation [200]. Intra-
peritoneal administration of APX2009 and APX2014 
(50  mg/kg, twice daily, 5  days on/2  days off), blocked 
REF-1 redox signaling and attenuated laser-induced CNV 
in mice [200]. The likely increased risk of side effects 
from systemic medication administration should be bal-
anced against benefits of systemic administration.

Stem cell‑based therapy
Stem cell-based experimental therapies, while in their 
infancy, have been tested in AMD patients. IVT admin-
istration of adipose tissue–derived “stem cells” in those 
with non-neovascular AMD caused severe vision loss 
(NCT02024269) [201]. This was associated with a range 
of pathologic effects including hemorrhagic retinopa-
thy, vitreous haemorrhage, ocular hypertension, reti-
nal detachment or lens dislocation. Transplantation of 
an autologous induced pluripotent stem-cells (iPSC)-
derived RPE cell sheet in a patient with nAMD did not 
improve or worsen BCVA after 1  year and while cys-
toid macular edema was present, did not cause serious 
adverse events after 25 months (UMIN000011929) [202]. 
In a Phase I study (NCT01691261), da Cruz and col-
leagues delivered a synthetic basement membrane-based 
patch made of RPE that had been differentiated from 
human embryonic stem cells into the subretinal space of 
2 patients with neovascular AMD. Patch transplantation 
was achieved using biomicroscopy and optical coherence 
tomography. This resulted in visual acuity gain of 29 and 
21 letters in each patient, respectively, over a year [203], 
suggesting the safety and feasibility of stem cell-based 
RPE regenerative therapy for AMD.

Future directions and conclusions
Since their first use as IVT drugs with nAMD patients 
15 years ago [79], anti-VEGF therapies have transformed 
the treatment of macular degeneration and largely 
replaced less-effective treatments, such as photody-
namic therapy [204]. Anti-VEGF agents have reduced 
incident legal blindness and visual impairment caused 
by nAMD, decreased economic and societal costs [205] 
and improved vision-related quality of life [206]. How-
ever, there remains unmet clinical need for improved 
therapies for nAMD since many patients do not respond 
optimally, lose response over time, or exhibit sub-opti-
mal durability. Many patients in real-life clinical settings 
receive fewer anti-VEGF injections than those in clinical 
trial settings, and this can result in poor visual outcomes. 
There is a need for longer acting agents to reduce injec-
tion frequency, treatment burden, and for agents that do 
not leak into the systemic circulation from the vitreous.

Expansion of targets beyond VEGF-A is a promising 
strategy to address the contribution of non-VEGF mediated 
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pathways to the pathogenesis and clinical manifestation of 
nAMD. Other agents and modalities exploiting the VEGF 
system and alternate pathways include heparin-binding 
variants of VEGF receptor 1, conbercept and iPSC-derived 
cells. Ultimately, a combination of approaches targeting 
the VEGF system concurrently with other key processes 
may be needed to satisfy unmet need in the treatment of 
nAMD. This could also allow for personalisation of treat-
ment. Heterogeneity in clinical response to current VEGF-
based therapies in nAMD suggest that different pathways 
predominate between individual patients. Targeting mul-
tiple pathways could improve response, prevent resistance 
and underpin future tailored treatments for nAMD and 
other neovascular/exudative retinal disorders.
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