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Abstract

Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). 

In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical 

remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane 

protrusions unique to cancer cells, characterized by an actin core and by the focal degradation 

of ECM via MMPs. While ECM can also be remodeled, at lower levels, by focal adhesions, 

or internal collagen digestion, invadopodia are now recognized as the major mechanism for 

MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the 

completion of epithelial-mesenchymal transition (EMT) may be dispensable for invadopodia and 

metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but 

also for collective invasion. During collective invasion, invadopodia was then shown to be located 

in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that 

invadopodia function may be a requirement not only for later steps of metastasis, but also for early 

invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have 

transitioned into in 3D and in vivo settings, leading to the confirmation of their essential role in 

metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for 

individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.

INTRODUCTION

Metastasis, the cascade of events that leads to the growth of secondary tumors in distant 

organs and consequent failure of vital organs, remains the main cause for cancer-related 

deaths [1], [2]. The earliest step of metastasis is the invasion of cancer cells into the 

surrounding stromal tissue. In epithelial cancers, i.e. carcinomas, this invasion requires 

cancer cells to breach the basement membrane (BM), a thin and dense sheet-like layer 

of extracellular matrix (ECM) primarily made of laminins and collagen IV. Beyond the 

BM, cells navigate through a dense network of stromal ECM, composed primarily of 

fibrillar collagen I, but also containing >300 other proteins, including other collagen types, 

fibronectin and proteoglycans, as well as growth factors and chemokines bound to ECM 

components. The BM and stromal ECM compartments constitute main physical barriers to 
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cancer cell invasion and migration, and are continuously remodeled as the cancer progresses 

[2], [3]. Remodeling of the ECM during cancer progression includes a variety of biophysical 

and biochemical changes in its composition (e.g. deposition, modification, degradation) and 

architecture (e.g. fiber aligning, bundling and reorienting, stiffening, cross-linking, pore 

enlargement). Changes in the ECM can be induced by cancer cells but also by fibroblasts 

and immune cells that are recruited to the tumor [4]–[9]. In this mini review, we will cover 

the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by 

cancer cells. For comprehensive reviews on ECM remodeling by different cell types, see [7], 

[10], [11].

One strategy unique to ECM remodeling by cancer cell is the assembly of invadopodia, 

cancer-cell specific structures capable of adhering to the ECM, physically protruding into 

it and proteolytically degrading it. The term invadopodia first appeared in 1989 when Chen 

et al. reported the punctate degradations of fluorescent fibronectin under vsrc transformed 

chicken fibroblasts [12]. Previously, such structures were reported in 1985 by Chen et al. 
[13], as well as Tarone et al. but referred to as podosomes [14]. In the current literature, 

“podosome” refers to closely related counterparts in non-transformed cells, whose function 

is also ECM adhesion and remodeling [15]. Examples of cells forming podosomes are 

vascular cells (endothelial or smooth muscle cells) [16] and cells of monocytic lineage 

(macrophages, dendritic cells and osteoclasts) [17]. Since the discovery of invadopodia and 

podosomes, sometimes jointly referred to as invadosomes, mounting knowledge has been 

gathered on their molecular composition, dynamics and the signaling pathways involved in 

their assembly and function (reviewed in [18]–[20]).

Briefly, invadopodia are membrane protrusions characterized by an actin core, sites of 

cell-ECM adhesion [21] and by the focal degradation of ECM via matrix metalloproteases 

(MMPs) [22]. In cells plated onto 2D matrices, invadopodia assemble on the ventral 

surface and can be detected by punctate degradation spots at the sites of ECM contact. 

The initiation of invadopodia assembly can be stimulated by soluble factors (e.g. growth 

factors, chemokines, ECM fragments, Table 1) [18], [23], hypoxia [24] or via direct cell-cell 

contact with macrophages [25]. The first step of assembly results in invadopodia precursors 
composed of cortactin, cofilin and N-WASP proteins associated to actin filaments (Figure 

1). Precursors are then anchored to the plasma membrane via the scaffolding protein 

Tks5, followed by the recruitment of β1 integrins that bind to the ECM (Figure 1). The 

formation of these cell-ECM adhesion sites triggers elongation via actin polymerization and 

invadopodia maturation, during which MT1-MMP vesicles are delivered to their tip and 

initiate pericellular degradation of the ECM (Figure 1). After degrading the surrounding 

ECM, invadopodia disassemble [26], which enables cells to translocate their body and 

migrate to the next location where new invadopodia will assemble [27] (Figure 1), resulting 

in switching between invadopodia and migratory state.

Invadopodia are composed of over 50 proteins, most of which also act as components 

of other adhesive and protrusive structures, such as focal adhesions, lamellipodia and 

filopodia. However, Tks5 is one unique component of invadopodia, and hence, a unequivocal 

marker [28]. Importantly, each step of invadopodia assembly is reversible and dependent 

on the local availability of the necessary components. Therefore, not all invadopodia 
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precursors will proceed to anchoring, elongation, maturation and ECM degradation. To 

detect invadopodia that have matured and degraded the ECM, multiple markers are required: 

two colocalized structural proteins (e.g. Tks5 and cortactin), in addition to a marker of ECM 

degradation.

While most early studies on invadopodia were performed in vitro, we now have evidence 

for invadopodia existence in both preclinical animal models [25], [29]–[31] and in human 

samples [32]. Importantly, invadopodia were shown as necessary for the metastasis of cancer 

cells in mice [29], [30]. In the last decade, several groups have studied invadopodia in 3D 

and in vivo, recognizing their potential as an anti-cancer therapeutic target [33]–[35].

Identification of invadopodia in 3D and in tumors

Invadopodia have mostly been studied in 2D, using cancer cells plated on top of a thin 

layer of isotropic, fluorescent matrix. Here, punctate localization of structural markers 

colocalized with negative signal of degraded fluorescent matrix provides a clean way to 

quantify invadopodia. However, in 3D, standardizing invadopodia imaging and detection 

can be challenging due to a) variability and heterogeneity of cellular morphology, b) cell 

directionality, orientation, and location within the matrix, c) density and architecture of the 

ECM. In addition, probes used for detecting ECM degradation in 3D can vary among 

studies, as each one of them has their own benefits and disadvantages. For example, 

dequenched matrix components, such as DQ-collagen [36], demonstrate fluorescent signal 

upon both remodeling and ECM degradation, appearing colocalized with invadopodia 

markers but also at sites of matrix bundling and contraction. Next, antibody against degraded 

collagen (C1 ¾) can appear colocalized with invadopodia and intracellularly [29]. Finally, 

MMP activity probes or biosensors do not provide direct evidence of completed function by 

MMPs [29], [37], [38].

Several studies have defined invadopodia in 3D environments or in vivo utilizing these 

different markers, in different cancer cell lines and ECM types. For example, when breast 

carcinoma MDA-MB-231 cells were plated on top of a thick Matrigel layer, invadopodia/

filopodia-like protrusions were observed. These protrusions were positive for F-actin, 

cortactin and active Src, and some of them colocalized with MT1-MMP pH fluorin, which 

is visible only when MT1-MMP vesicles are emptied out of the cell [39]. Tolde et al. found 

that Src-transformed rat sarcoma RsK4 cells embedded inside a pig dermis-matrix form 

thick protrusions positive for cortactin, phospho-cortactin and degraded collagen, which 

extend into filopodia-like structures devoid of invadopodial markers [40]. When plated on, 

or in fibrillar collagen, MDA-MB-231 form linear invadosomes that are Tks5-, F-actin- and 

cortactin-rich and degradative. These invadosomes are independent from integrin β1 and β3 

but require the discoidin domain receptor 1 instead, which sets them apart from classical 

invadopodia [41]. Breast cancer cells MDA-MB-231 embedded into Matrigel, a mixture 

of Matrigel and collagen I, or in Geltrex, were shown to form long invasive pseudopods 

that contained cortactin-, Arp2/3-, N-WASP-rich puncta on their side and at their tip [21], 

[42], [43]. Some of the puncta were also rich in vinculin and focal adhesion kinase (FAK) 

suggesting that in 3D, invadopodia and focal adhesions may merge into a hybrid structure. 
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Invasive protrusions were dynamic with cycles of extension and retraction through the 

matrix, characteristic for invadopodia [27] (Figure 1).

In Perrin et al., using 4T1 breast cancer spheroids embedded in rat-tail collagen I, we 

observed long protrusions positive for Tks5, F-actin and degraded collagen present at the 

front and the sides of leader cells [44]. Other studies suggested that most degradation in 

3D rat-tail collagen I is not localized at the leader tip, but in front of the nucleus, where 

invadopodia form a degrading belt which releases the cell from nuclear confinement [45], 

[46]. Studies agree, however, that the direction of invadopodia extension in 3D determines 

the direction of the cell translocation in the following step.

In vivo, using mouse xenografts of MDA-MB-231 [47] and MTLn3 [30] cells, invadopodia 

were shown to be essential for intravasation and lung metastasis of breast carcinoma. 

As shown by machine learning classification of microenvironment features, invadopodia 

are assembled in perivascular niches: regions adjacent to mature blood vessels, rich 

in macropinocytic macrophages and aligned, cross-linked collagen fibers [29]. In these 

niches, invadopodia appeared as 0.5-2 μm-wide, >3 μm long protrusions enriched in Tks5, 

actin, cortactin and N-WASP [30], and colocalized with degraded collagen. Interestingly, 

invadopodia were found to be assembled mainly by the cells that were in the G1 phase of the 

cell cycle, which were present at high density in perivascular niches [48]. Invadopodia were 

pointing towards the blood vessels and the surrounding collagen fibers, and cells assembling 

invadopodia showed relatively slow cell velocities in the same direction (0.15 μm/min). 

In comparison, cells exhibiting contact-guidance, which freely migrated along collagen 

I fibers were found to move ten times faster, at speeds of 1 μm/min. Importantly, both 

directly targeting invadopodia via Tks5 knockdown, or indirectly inhibiting their assembly 

via inhibition of collagen cross-linking led to inhibition of ECM degradation, intravasation 

and the formation of metastases, without affecting contact guidance. In a different model 

of metastasis, the chorioallantoic membrane assay, invadopodial protrusions were seen to 

extend through the endothelial layer, enabling the extravasation of cancer cells [31]. In this 

case, Tks5 knockdown also inhibited formation of metastases.

In summary, in 3D matrices and in vivo, invadopodia morphology and the location of 

pericellular degradation may vary with ECM components and cell lines. The next section 

will cover in more details the ECM characteristics that are associated with invadopodia 

assembly and the ones that do not require invadopodia for cell movement.

ECM degradation and mechanical deformation by cancer cells

In the primary tumor context, invadopodia were shown to assemble at the carcinoma stage 

inside the perivascular niche, facilitating cell entry into blood vessels. Perivascular regions 

are rich in cross-linked fibers of collagen I and in endothelial BM components like collagen 

IV and laminin. To mimic the pathophysiological context, most studies of invadopodia are 

done using cells plated on gelatin (denatured collagen I), cells embedded in reconstituted 

collagen I or in a mixture of collagen I and BM (Matrigel, Geltrex). While missing the 

original collagen I architecture, gelatin provides a homogeneous layer of ECM and enables 

high-resolution imaging. Gelatin can also be cross-linked, which increases its stiffness and 
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results in a biphasic increase in the number of invadopodia and in the level of ECM 

degradation [27].

Systematic motility studies of individual cancer cells embedded in 3D collagen I have 

demonstrated that in relatively compliant matrix, such as pepsinized bovine collagen at 

concentrations <15 mg/ml, the cell contractility and the traction forces generated through 

focal adhesions result in mechanical deformations of the ECM, which is sufficient for 

the cell to move (Figure 2). In compliant 3D gelatin, cells were also shown to move 

amoeboidally, via actomyosin contractility, which initiated shedding of β1 integrin-positive 

microvesicles [50]. In Matrigel, by varying matrix thickness, it was shown that compressive 

traction stresses >165 Pa induce invadopodia-dependent motility, while lower traction stress 

led to bleb-based motility, where forces are generated via hydrostatic pressure [51].

Increasing level of confinement compresses the cell nucleus, causing nuclear deformation 

and frequent ruptures and repairs of nuclear envelope (NE), which in turn may lead 

to DNA damage [52]. The expression levels of main determinants of nuclear stiffness, 

nuclear envelope proteins lamins A/C, determine nucleus deformability and consequently, 

the frequency of NE rupture events [53]. While a decrease in lamin A/C levels may give 

protease-independent cells a certain advantage, it can also cause the mechanical instability 

of the nucleus, potentially leading to cell death.

When pore sizes in collagen I are smaller than 7 μm2, corresponding to approximately 1 

mg/ml of telopeptide-intact, acid extracted rat-tail collagen I, or 15 mg/ml for pepsinized 

bovine collagen I, or 10% of the nucleus cross-section, MMP-independent cell migration 

is arrested [49]. Cells confined in such dense collagen networks, with pores <7 μm2 and 

constricting collagen fibrils, trigger the requirement for MMP-dependent motility, with 

invadopodia as the primary agents [45] (Figure 2). Similarly to 2D [27], cross-linking of 

collagen in 3D or in vivo, increases the number of invadopodia and the levels of ECM 

degradation [29]. Recent study revealed an active role of nucleus in triggering invadopodia 

assembly and ECM degradation. The nucleus was shown to be directly linked to the 

centrosome, a connection regulated by nesprin 2. Nuclear deformation during confined cell 

movement acts as a mechanosensor, triggering polarization of MT1-MMP-endosomes and 

their release ahead of the nucleus. When the matrix pores are enlarged by MT1-MMP, forces 

generated by molecular motors dynein and kinesin attached to the nuclear surface act to pull 

the nucleus along the microtubules.

Protease-dependent motility (i.e. invasion) consists of Invadopodia state, during which cells 

remain stationary, and a Migration state, during which cells translocate [27] (Figure 1). 

Cells switch between these states on the scale of hours, with the switching frequency being 

dependent on the cross-linking levels. While in the invadopodia state, cells engage in ECM 

degradation and in actin polymerization-depolymerization oscillations, which happen on 

the timescale of minutes (7-12 minutes) [29], [43]. Such oscillations extend invadopodia 

length and widen the matrix deformations, but also generate forces that can be visualized 

by interference stress microscopy [54]. Using interference stress imaging, additional 

fluctuations in the forces exhibited by invadopodia were detected. These forces, appearing 

on the timescale of seconds, likely originate from actin treadmilling in invadopodia. 
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Mathematical modeling suggests that the control of invadopodia oscillations is due to the 

balance of five forces: protrusion generated by actin polymerization, pull generated by 

retrograde flow, cell adhesion, ECM resistance and myosin contractility [55], [56].

Importantly, while the invadopodia assembly requires both chemical (e.g. growth factor-

related) and mechanical (e.g. integrin-related) inputs [57], some studies suggest that under 

some conditions, chemical and mechanical outputs of invadopodia may act independently. 

For example, in MDA-MB-231 cells plated on top of fibrillar rat tail collagen I, invadopodia 

assembly exerts forces onto collagen fibrils, bending them [58] (Figure 2). This mechanical 

remodeling is powered by actin polymerization at invadopodia sites and requires MT1-MMP 

to be delivered to the cell–matrix contacts, however, it is independent of its collagenolytic 

activity.

Collagen I and BM, while physiologically relevant, are structurally and mechanically 

heterogeneous, making them hard to standardize, or control specific mechanical 

characteristics. By utilizing hybrid materials, where collagen or BM are combined with 

biomaterials which are easier to control (PEG hydrogels, GelMA, alginate), new aspects 

of mechanical remodeling by invadopodia can be assessed. One example of a hybrid 

biomaterial used to address invadopodia assembly consists of alginate and BM [59]. 

Interpenetrating networks of alginate-BM with different degrees of plasticity were created, 

all sharing stiffness that matched tumor tissue (1.8 kPa) and pore sizes of approximately 40 

nm. While MDA-MB-231 cells remained immotile in low plastic matrices (with 10% degree 

of plasticity for 1 h of 100 Pa creep stress), highly plastic matrices (30%) initiated assembly 

of protrusions that are similar to invadopodia, and followed by cell migration. These 

protrusions were Tks5 enriched and oscillatory, similarly to invadopodia [28]; however, 

they did not exhibit any proteolysis. In these highly plastic alginate-BM networks, the matrix 

displacement by cell-generated forces seems to be sufficient for cell translocation. While it 

is not clear whether similar ECM properties and cellular behaviors can be found in vivo, 

this study elegantly illustrates plasticity of migration modes in cancer cells and their ability 

to move through plastic matrices with small pores without degrading them. A follow-up 

modeling study provided a mathematical model of invadopodia oscillations, showing that an 

increase in the ECM plasticity, associated to more permanent deformations, increases the 

potential length of invadopodia [55].

Invadopodia are recognized as the major mechanism for MMP-dependent pericellular ECM 

degradation by cancer cells and were shown to mechanically remodel the ECM. It is, 

however, important to point out that both events can occur as the result of other mechanisms. 

For example, in addition to exerting traction forces, focal adhesions were shown to be a site 

of MT1-MMP mediated ECM degradation [60]. Also, MT1-MMP was suggested to function 

at lamellipodia, where it is recruited via an interaction with CD44 [60]. Similarly, amoeboid 

melanoma cells in collagen were shown to degrade the ECM by secreting MMP-9 and 

MMP-13 [59] and to internalize collagen fragments [62]. Finally, the pericellular proteolysis 

by invadopodia is associated with secretion of exosomes [63] that can contain MMPs and 

can hence serve as long-range proteolytic agents [64].
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Role of invadopodia-mediated ECM degradation in 3D collective invasion 

and metastasis

While most studies of invadopodia have focused on mechanisms of single cell invasion, 

invasion can often be collective, i.e. it involves the coordinated movements of multiple 

cancer cells, or in some cases, cancer cells and fibroblasts, or macrophages [65]. Data so 

far demonstrates the essential role of leader cells, located at the front of the collectively 

invading strands or clusters. These leader cells engage in MMP-dependent degradation 

and/or mechanical remodeling of the ECM. Mesenchymal cells can also demonstrate 

collective invasion, when moving in multicellular streams with no cell-cell adhesions [66]–

[70] (Figure 3).

Tumors contain multiple host cell types, including fibroblasts and immune cells, as well as 

heterogeneous cancer cell clonal populations, and any of them can act as leaders. In the 

early stages of tumor progression, fibroblasts are a major contributor of ECM remodeling 

at the tumor edge. When fibroblasts act as leader cells, mechanical ECM remodeling 

they accomplish via contractility-based mechanisms may be sufficient to generate the low-

resistance path in the BM [69], and the stromal ECM [70]. Fibroblasts can lead collective 

cancer cell invasion by generating lower density ECM ahead of cancer cells and pulling 

them ahead, which is facilitated by heterotypic N-cadherin-E-cadherin interactions between 

fibroblasts and cancer cells [71]. In some cases, fibroblasts can also form invadosomes, 

undertaking not only mechanical, but also proteolytic remodeling of the matrix [72]. Cancer 

cell invasion can also be supported by macrophages, where macrophages and cancer cells 

engage in multicellular streams maintained by paracrine EGF-CSF1 loop [70]. In addition, 

in the intravasation assay, upon direct contact with macrophages, cancer cells were shown 

to locally activate RhoA, inducing invadopodia assembly [25]. In the extravasation assay, 

macrophage degradation of endothelial contacts can promote cancer cell exit from the blood 

vessels [73]. Further, when placed in the Matrigel surrounding cancer cell spheroid, the 

MMP-dependent motility of macrophages generates tunnels inside the ECM and enables 

cancer cells to switch from MMP-dependent to MMP-independent movement inside these 

tracks [62].

To better represent heterogeneous clonal populations in tumors, several recent studies turned 

to combining invasive and non-invasive cell lines in the same assay, which resulted in reports 

of a cooperative invasion, where invasive cells act as leaders, remodeling the ECM in an 

MMP-dependent fashion, for the non-invasive follower population. Cooperative invasion 

was demonstrated for melanoma cells injected in the zebrafish embryos [74], and using 

spheroids of invasive cancer MDA-MB-231 and mammary epithelial MCF10A cells in 

collagen I [75]. Our recent work has shown that while invadopodia is necessary for leader 

cell position, non-invasive cells can follow, both in the absence of MMPs and cell-cell 

adhesions [44]. When N-WASP is knocked down in leader cells, cooperative invasion is lost 

[76], while knock-down of MT1-MMP in leaders blocks collective invasion and microtracks 

formation [46], strengthening the active role of leader cells. In contrast, the passive role 

of follower cells is corroborated by the data showing that the laser-etched microtracks in 

collagen gels are sufficient for the collective invasion of the non-invasive MCF7 cells [77] 
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and the primary cells from mouse tumors [78]. Importantly, invadopodia in leaders are also 

necessary for cooperative metastasis, which requires adherens junctions between leaders and 

followers, mediated via E-cadherin expression (Figure 3) [44]. While it is not yet clear how 

the cancer cell clusters cross the blood vessel walls, a possible mechanism could be cluster 

unfolding into single-file chain with leader cell at the front, similarly to how clusters unfold 

when traversing through capillaries [79].

In summary, introducing heterogeneity into invasion assays has established the value 

for studying invasion and ECM remodeling in the multicellular context, and resulted in 

revealing the spatial and temporal requirements for ECM remodeling. The observation of 

active role of leader cells in invasion poses the question of whether the leaders and followers 

also exist in collectives of similar cells, and if so, whether the role of leader and follower can 

be transient.

Plasticity of invadopodia and leader cells during collective invasion

Since most carcinoma cell lines assembling invadopodia invade as single cells and Twist 1 

expression was established to be necessary for invadopodia [50], completion of the EMT is 

commonly regarded as a requirement for invadopodia emergence and subsequent metastasis. 

However, recent evidence suggests that the completion of EMT may be dispensable for 

invadopodia and metastasis [80], [81], as inhibition of miR-200, Twist1 or Snail does not 

eliminate metastases in mouse models. Further, a hybrid epithelial/mesenchymal (E/M) 

mammary carcinoma cell line 4T1 expresses Twist 1 [82], assembles invadopodia, invades 

in 3D spheroid model and metastasizes, while their isogenic mesenchymal counterpart, 

67NR cell line, does not [45]. This suggests that EMT completion is not required for 

invadopodia emergence. Moreover, what 67NR results suggest is that depending on the 

specific driver of EMT (e.g. hypoxia, ECM stiffness, EGFR, Notch pathways etc, see Table 

1) and specific transcription factors regulating EMT (Zeb, Snail, Twist, FOXC2 and GSC), 

the EMT process may yield slightly different EMT-associated phenotypes. This line of 

thinking is further strengthened by two recent, contrasting observations in E/M pancreatic 

and mammary carcinoma cell lines. In pancreatic BxPC-3 cells, E-cadherin co-localized 

and interacted with invadopodia components, and the knockdown of E-cadherin impaired 

invadopodia assembly and function [83]. In mammary 4T1 cells, E-cadherin knockdown 

did not eliminate invasive ability, but switched the invasion mode in 3D spheroids from 

collective to single-cell [45], suggesting E-cadherin role may be cell type-, or cancer type-

specific.

Importantly, despite being capable of invadopodia assembly and even if integrins and growth 

factor receptors are activated, not all cells will exhibit invadopodia. We have shown that 

within mammary xenograft tumors made of MDA-MB-231 cells, the invadopodia phenotype 

was only exhibited in 15% of cells present in the perivascular niche, regions where major 

blood vessels were surrounded by cross-linked collagen fibers and perivascular macrophages 

[29]. One of the additional requirements may be intrinsic, as invadopodia degrade mainly 

during the G1 phase of the cell cycle and are not present in S, G2 or M phase [49]. 

Consequently, in spheroid invasion assay, leader cells are present in G1 phase. In order for 

the leader cells to progresses through the rest of the cell cycle, leader-follower switching 

Perrin and Gligorijevic Page 8

Phys Biol. Author manuscript; available in PMC 2023 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



occurs, with the new leader in G1 phase, and the old leader retreating back to the spheroid 

core [49]. Moreover, leader-follower exchange in spheroids was described to occur based on 

intracellular level of energy, and can be postponed by addition of exogenous mitochondria 

to leader cells [84]. While the evidence so far argued that the leader and follower roles 

are assigned based on epigenetic heterogeneity of cell subpopulations [85]–[87], these 

observations suggest that the leader role can be transient, and that cells can switch leader and 

follower positions based on the cell-cycle status and on the intracellular energy levels.

More precise dissection of the leader and follower phenotypes, including molecular 

requirements, but also spatial and temporal information on their emergence and the role 

in tumor progression and metastasis have the potential to help in developing predictive 

diagnostics, and in developing more specific targeted treatments against metastasis.

Conclusion

In this mini review, we focus on the role of invadopodia in 3D and in vivo invasion and 

metastasis, and discuss their contribution to the proteolytic and mechanical remodeling 

of the ECM during cancer invasion. We described how interdisciplinary mechanobiology 

approaches, spanning from cell biology and microscopy to biomaterials, microfabrication 

and mathematical modeling contribute to a better understanding of invadopodia and 

invasion, and lead us towards translational potential of invadopodia as a prognostic marker 

and therapeutic target.

Recent technological developments in the aforementioned fields may soon be implemented 

into invasion field. For example, some new biomaterials allow cell retrieval following time-

lapse imaging, such as temperature-sensitive collagen [88], reversible ionic cross-linking 

or photopolymerization [89] of hydrogels. New approaches are also being developed to 

complexify invasion assays and develop tumor-on-a-chip approaches. This includes co-

cultures of patient-derived cancer cells, cancer associated fibroblasts or tumor associated 

macrophages, pre-adipocytes, and most recently, vasculature [90], [91]. Bioprinted tumor 

microenvironments are now available, where patient biopsies can be inserted into a stromal 

mix of fibroblasts, endothelial cells and mesenchymal stem cells in alginate-gelatin hydrogel 

[92]. While most computational models which dissect ECM remodeling currently include 

a single level, they will likely soon evolve into multiscale platforms for analysis of time-

dependent ECM changes, with positive and negative feedbacks from direct and indirect 

cell-cell interactions and more open-source options [89].

So far, most 3D and in vivo invadopodia research has been done using established cell lines. 

In breast cancer, cell lines capable of invadopodia assembly mainly come from metastatic 

tumors, suggesting a link between invadopodia and metastasis. According to their molecular 

type, cell lines capable of invadopodia assembly are mainly triple-negative (including 

MDA-MB-231, 4T1 etc.) and Her2-overexpressing cell lines (such as Skbr3). In contrast, 

ER+/PR+ cell lines (including MCF7, 67NR) do not assemble invadopodia. To test the 

invadopodia role in different steps of tumor progression and metastasis, dynamic intravital 

imaging in animal models was instrumental. In established primary tumors, invadopodia 

were demonstrated to be necessary for basement membrane remodeling during intravasation 
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and extravasation [29], [31], [93], [94]. Even early stages of tumor progression may involve 

the local assembly of invadopodia. For example, TGFβ stimulation can lead to invadopodia 

assembly in normal mammary epithelial cells MCF10a [95]. Further, a few hybrid E/M 

cells with invadopodia can lead clusters of non-invasive cells during invasion [45]. Finally, 

a study using MCFDCIS.com intraductal xenograft suggested that the transition from 

ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) requires MT1-MMP 

overexpression, which could potentially be delivered by invadopodia [96]. Future intravital 

imaging studies of DCIS-IDC transition may be able to resolve this open question.

To translate the invadopodia research into the clinic, it will be necessary to establish 

invadopodia detection tools in clinical samples and test if invadopodia frequency correlates 

with the metastatic load. To date, primary cells isolated from metastatic head and neck 

squamous cell carcinoma [97], glioma [98] and bladder cancer patients [99] were directly 

used in invadopodia assays and shown to degrade ECM in 2D. Puncta positive in Tks5 were 

shown to be present in human tumor surgical specimens of pancreatic adenocarcinoma 

[100]. In addition, in premalignant lesion biopsies, areas where cortactin, Tks5 and 

MT1-MMP expression were found co-localized were shown predictive of malignant 

transformation [32]. Inhibitors of ABL tyrosine kinase, expression of which correlates with 

poor prognosis and distant metastasis, were shown to inhibit invadopodia and metastasis 

in mouse xenografts [34]. This suggests that quantification of invadopodia frequency in 

surgically removed primary tumors holds a great potential as a prognostic marker for 

individual risk assessment for metastasis or effectiveness of neoadjuvant therapies to prevent 

or stop metastasis. Such analyses may in the future be followed by adjuvant treatments 

with invadopodia inhibitors. A number of drugs (>50) exist which can inhibit invadopodia 

assembly or ECM degradation [101]. Such drugs generally target families of GPCRs, 

ion channels, receptor and non-receptor tyrosine kinases, phosphatases, cytokines, growth 

factors and proteases. In addition, cancer cells can be steered away from assembling 

invadopodia by reducing collagen I cross-linking [48], [102]. While some of these drugs 

were identified in preclinical trials aimed at invadopodia, many of them are already in 

clinical trials or available on the market for other applications, and can be re-purposed as 

invadopodia inhibitors.

It is also important noting that, for future drugs that specifically target invadopodia to 

be properly validated in the clinic, ideal design of clinical trials may require stepping 

away from current end points. As of now, Phase II is focused on the shrinkage of the 

primary tumor or existing metastatic lesions, while the potential metastatic prevention is 

only considered if the drug is approved and enters the Phase III [103]. However, targeted 

invadopodia inhibitors may not affect growth of primary tumors or lesions. Depending on 

the target, primary tumor growth may even increase, if the drug causes the phenotypic 

switch from invasion to proliferation [104], [105]. Hence, new measurables, such as length 

of time before a new metastatic lesion is observed, are necessary to properly evaluate 

benefits of metastasis-preventing drugs [103].

Collectively, these studies suggest that invadopodia may hold a great potential for individual 

risk assessment as prognostic marker for metastasis or effectiveness of therapy, as well as 

therapeutic target.
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Figure 1. Invadopodia dynamics at different timescales:
Inside the cell, assembly of invadopodium precursor, precursor anchoring to the ECM and 

recruitment of MT1-MMP leading to invadopodium maturation occur on the timescale of 

minutes. Once invadopodium starts degrading ECM, cell remains static for several hours 

in the Invadopodia state. During this time, on the minute timescale, invadopodia oscillate 

between extension and retraction, controlled by actin polymerization and depolymerization 

cycles. When degradation of the adjacent ECM results in ECM loosening and accumulation 

of ECM fragments, cell disassembles invadopodia and enters Migration state, moving 

laterally towards the new pool of native ECM.
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Figure 2. Invadopodia are agents of protease-dependent motility:
In compliant matrices, with pore sizes commonly larger than cell nucleus, cells can squeeze 

through using amoeboidal, protease-independent motility. In contrast, matrices which are 

dense, stiff, cross-linked and with pore sizes smaller than nucleus deformability, require 

assembly of invadopodia to deliver proteases, exosomes and forces to the ECM, resulting in 

generation of ECM fragments and enlarged pore sizes in ECM.
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Figure 3. Invadopodia role in collective invasion:
During collective invasion, leader cancer cells form invadopodia that locally degrade the 

ECM by secreting MMPs. Followers migrate behind them as a cluster (with strong cell-cell 

adhesions among cells) or as a stream (with weak or no cell-cell adhesions). Invadopodia 

exert protrusive force onto the ECM, generating mechanical deformations. In addition, 

invadopodia release MMP-containing exosomes, resulting in long-range ECM degradation.
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Table 1.

Summary of intrinsic and extrinsic factors affecting invadopodia.

Biophysical factors Stiffness [104, 105]

ECM crosslinking [27], [106]

ECM pore size [106], [56]

ECM plasticity [55], [59]

ECM Fibrillar topography [107], [108]

Biochemical factors Growth factors (EGF, PDGF, VEGF, TGFb, HB-EGF, SDF-1a, HGF, CSF1) [18], [109]

Chemokines [18], [23]

ECM fragments [110]

ECM-associated proteins [111]

Hypoxia [112]–[116]

pH [43]

Metabolism (pyruvate, fatty acid synthesis) [119]–[122]

Genetic factors and gene expression Actin, actin-related proteins and adaptors (cortactin, Tks5, N-WASP, ARP2/3) [18], [20]

Non-receptor tyrosine kinases (Src [123], Arg [124] and Pyk2 [125])

Proteases (MT1-MMP, MMP2, MMP9, ADAM12, 15 and 19 [126], [127], serine proteases seprase and 
DPP4 [31]) [18], [20]

Adhesion molecules (integrin b1 and b4 [21], talin [128]) [18], [20], [129]

RhoGTPases and their regulators
(Rac1 [130], Cdc42, Rab GDI-1 [131], RalB [132], TOC10 [133]) [134]
RhoGAPs (ARHGAP17 [135])
RhoGEFs (Arhgef5 [136], TIAM1 [137])

Transcription factors (Twistl [138]

Epigenetic factors and cellular state Cell cycle [48]

Localized accumulation of mRNA and RNA-binding proteins [139]
Non-coding RNAs (circular, microRNAs and long non-coding RNAs) [139], [140]

Relative cell position in 3D: leader-follower [44]

Cell-cell contacts Macrophages [25]
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