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ABSTRACT Tracking the spread of infection amongst individuals within and between
communities has been a major challenge during viral outbreaks. With the unprece-
dented scale of viral sequence data collection during the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic, the possibility of using phylogenetics to
reconstruct past transmission events has been explored as a more rigorous alternative
to traditional contact tracing; however, the reliability of sequence-based inference of
transmission networks has yet to be directly evaluated. E. E. Bendall, G. Paz-Bailey, G. A.
Santiago, C. A. Porucznik, et al. (mSphere 7:e00400-22, 2022, https://doi.org/10.1128/
mSphere.00400-22) evaluate the potential of this technique by applying best practices
sequence comparison methods to three geographically distinct cohorts that include
known transmission pairs and demonstrate that linked pairs are often indistinguishable
from unrelated samples. This study clearly establishes how low viral diversity limits the
utility of genomic methods of epidemiological inference for SARS-CoV-2.
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The mapping of transmission networks is a powerful tool for understanding patho-
gen dynamics during an outbreak. While these networks have often been con-

structed using traditional contact tracing methods (1, 2), phylogenetic techniques can
also be used to infer transmission linkages between individuals by identifying samples
that map closely together on a phylogeny constructed from community sequences
(3, 4). Accounting for the spread of subconsensus variants between infected individu-
als can also enhance sequence-based transmission analyses (5, 6).

These sequence-based methods have been used as an alternative or a supplement
to traditional epidemiological tactics, especially in settings where contact tracing is
rendered less effective due to widespread host interactions within large interpersonal
networks (7–9). The complementation of traditional methods with genomic epidemi-
ology can therefore yield a more robust approach toward mapping transmission net-
works. For example, genomic methods have been employed to determine epidemio-
logical factors associated with the sustained circulation of antibiotic-resistant Staphylococcus
aureus in regions across the globe (10). During the 2016 Ebola outbreak, phylogenies of
sample sequences were constructed to track viral spread between countries (11), and
sequencing of dengue virus samples has been used to understand transmission dynamics
and identify factors that contribute to increased risk of outbreak (12).

The usefulness of these phylodynamic methods depends in part on the amount of
genetic variation present within the local pathogen population, however. If the patho-
gen in question readily generates and preserves mutations, samples from epidemio-
logically linked individuals may have differing sequences. If little population diversity
exists, sequence homology between samples may not necessarily indicate a transmis-
sion linkage. Therefore, not all infectious agents are equally appropriate candidates for
sequence-based transmission inference.
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During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic, sequence-based inference has been used to identify superspreading events
(13), track global viral transmission (14), and map community infection networks (15).
However, due to the relatively low mutation rates of coronaviruses (16) and the low
levels of within-host genetic diversity observed during acute infections (17–19), it is pos-
sible that the viral diversity generated during intracommunity circulation is inadequate
to distinguish true transmission linkages from unlinked samples. Insufficient community
sampling may also hinder the reliable inference of transmission networks and decrease
the accuracy of these methods, as low sequence availability will decrease the quality of
any phylogenetic inference. The dependability of sequence-based inference methods for
SARS-CoV-2 must therefore be validated before the technique can be confidently used.

Bendall et al. used SARS-CoV-2 sequence data from households where transmission
events between close contacts could be determined with high confidence to deter-
mine whether sequences from within a known transmission cluster are more similar to
each other than to sequences from the broader community (20). This approach allowed
for the evaluation of the accuracy of phylodynamic inference in a scenario in which
known transmission linkages were already defined.

Drawing on samples collected from three distinct household transmission studies,
the authors constructed phylogenetic trees comprised of SARS-CoV-2 sequences from
study participants alongside sequences from the surrounding communities. The amount of
community sequence data included on each tree was determined by estimating the overall
sampling densities in each study region (New York City, Utah, or Puerto Rico). Though
sequences sampled from participants within a household generally grouped together on a
phylogenetic tree, these clusters were often interspersed with other (sometimes identical)
sequences from the surrounding community that were unlikely to be directly linked by
transmission. In a situation where the probable transmission linkages were not already
known, this lack of differential clustering would confound efforts to accurately resolve trans-
mission chains. The low levels of SARS-CoV-2 genetic diversity within communities thus hin-
ders the detection of transmission chains from sequence data.

The authors also asked whether including subconsensus genetic variants in sequence
comparisons could improve efforts to match linked samples by providing an additional
level of genetic diversity. They found that the inclusion of subconsensus variants was
not always sufficient to resolve known transmission linkages from a larger pool of com-
munity sequences. Therefore, while sequence comparisons could confirm transmission
between individuals who were already known to be epidemiologically linked (i.e., house-
hold pairs), Bendall et al. show that phylogenetic clustering is not sufficient to confi-
dently determine SARS-CoV-2 transmission linkage in the absence of supplemental
contact tracing information.

This study highlights important limitations that should be taken into consideration
when reconstructing SARS-CoV-2 transmission networks based on sequence data
alone. While the authors note that their results may not translate to congregate set-
tings with higher infection densities, the lack of viral diversity observed in more dis-
persed communities poses a challenge to epidemiological inference. These findings
suggest that sequence data should be used to help confirm likely SARS-CoV-2 trans-
mission events, rather than to identify new ones. Furthermore, the authors demon-
strate that phylodynamic methods cannot be applied to all infectious agents with
equal effectiveness. The background population diversity and underlying biology of
the pathogen of interest must be considered before attempting to draw epidemiologi-
cal conclusions from sequence data.
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