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ABSTRACT Clostridia are a polyphyletic group of Gram-positive, spore-forming
anaerobes in the Firmicutes phylum that significantly impact metabolism and func-
tioning of the human gastrointestinal tract. Recently, Clostridia were divided into
two separate classes, Clostridia and Erysipelotrichia, based on phenotypic and 16S
rRNA gene-based differences. While Clostridia include many well-known pathogenic
bacteria, Erysipelotrichia remain relatively uncharacterized, particularly regarding their
role as a pathogen versus commensal. Despite wide recognition as a commensal,
the erysipelotrichial species Clostridium innocuum has recently been associated with
various disease states. To further understand the ecological and potential virulent
role of C. innocuum, we conducted a genomic comparison across 38 C. innocuum iso-
lates and 194 publicly available genomes. Based on colony morphology, we isolated
multiple C. innocuum cultivars from the feces of healthy human volunteers (n = 5).
Comparison of the 16S rRNA gene of our isolates against publicly available micro-
biota data sets in healthy individuals suggests a high prevalence of C. innocuum
across the human population (>80%). Analysis of single nucleotide polymorphisms
(SNPs) across core genes and average nucleotide identify (ANI) revealed the presence of
four clades among all available genomes (n = 232 total). Investigation of carbohydrate
and protein utilization pathways, including comparison against the carbohydrate-activat-
ing enzyme (CAZyme) database, demonstrated inter- and intraclade differences that were
further substantiated in vitro. Collectively, these data indicate genetic variance within
the C. innocuum species that may help clarify its role in human disease and health.

IMPORTANCE Clostridia are a group of medically important anaerobes as both com-
mensals and pathogens. Recently, a new class of Erysipelotrichia containing a number
of reassigned clostridial species has emerged, including Clostridium innocuum. Recent
studies have implicated C. innocuum as a potential causative agent of diarrhea in patients
from whom Clostridioides difficile could not be isolated. Using genomic and in vitro com-
parison, this study sought to characterize C. innocuum in the healthy human gut. Our
analyses suggest that C. innocuum is a highly prevalent and diverse species, demonstrat-
ing clade-specific differences in metabolism and potential virulence. Collectively, this
study is the first investigation into a broader description of C. innocuum as a human gut
inhabitant.

KEYWORDS Clostridium innocuum, genomics, metabolism, virulence, growth assay, gut
microbiota, human microbiome

Commensal bacteria, viruses, fungi, and protozoa, collectively termed microbiota,
dominate all surfaces of multicellular hosts. The collective genes provided by indi-

viduals or groups of microbes maintain health of the host, providing functions such as
colonization resistance against pathogens via multiple mechanisms, including nutrient
niche exclusion (1–3), modulation of oxygen or pH gradients along the gut (4, 5), and
production of metabolites that harm pathogens (6, 7). However, variability of the gut
microbiota across individual hosts (8, 9) and lack of characterization of many common
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gut inhabitants (10) complicate discernible conclusions about many individual mem-
bers. Recent genomic and phenotypic studies have highlighted strain-level diversity
within prominent gut species that can extricate our understanding of the microbiota
in health (11–13), which is not captured by 16S rRNA gene-based surveys.

The human gut microbiota is predominantly occupied by anaerobic bacteria, with
the most abundant phyla being Firmicutes and Bacteroidetes (14). The diversity and
function of several prevalent Bacteroidetes species have been extensively investigated
(15), leading to their use as prominent model organisms to understand gut microbiota
function (16). For example, species within the Bacteroides genus are known to harbor
hundreds of polysaccharide utilization loci (PULs) that degrade different glycans and
carbohydrates (16), ultimately supplying nutrients to both the host and surrounding
microbes that contribute to protection from pathogens. Many prevalent taxa within
the polyphyletic, Gram-positive Firmicutes phylum remain more nebulous. Within the
gut, the Firmicutes phylum is comprised of three classes based on analyses of 16S rRNA
nucleotide sequence, Bacilli, Clostridia, and Erysipelotrichia (17–19). Bacilli and Clostridia
comprise well-studied members with major implications in industrial applications,
health, and disease (20–23). Clostridia as a group have been demonstrated to induce
beneficial immune responses, in part via their ability to produce short-chain fatty acids that
can attenuate gut inflammation (24, 25). In comparison, the importance of Erysipelotrichia in
the human gut microbiota remains relatively unexplored. Erysipelotrichia include species
that share a genomic resemblance to Mollicutes, a class of parasitic bacteria that are charac-
terized by their distinct lack of cell walls compared to the phylum Tenericutes (26). As a
group, Erysipelotrichia in the gut have been associated with host lipid metabolism (27, 28)
and disease in humans (29). In mice, expansion of Erysipelotrichia species has been observed
following antibiotic treatment (30) or when fed a Western diet (31).

The role of the erysipelotrichial species Clostridium innocuum in human health remains
especially ambiguous. C. innocuum was first isolated from an appendiceal abscess but was
deemed innocuous due to a lack of virulence observed in mice and guinea pigs (32).
Recently reclassified from its original clostridial designation (33), C. innocuum has been
identified as part of the “normal” gut microbiota via its capability to biodegrade glucose
ureide (34). Although initial phenotypic description of the organism suggests a nonmotile,
nonvirulent nature of C. innocuum (32), current literature suggests otherwise. It has been
implicated in extraintestinal infection and Clostridioides difficile-like antibiotic-associated di-
arrhea (34–36), as well as in case studies of bacteremia, endocarditis, osteomyelitis, and
peritonitis (27, 37–39). Most recently, a study on Crohn’s disease (CD) conducted in mice
identified C. innocuum in inflamed intestinal tissue of patients with CD (40). Despite these
studies, a direct virulence mechanism has yet to be identified (36, 40–42).

Given the putative prevalence of C. innocuum in the human gut microbiota, we
aimed to investigate the genomic and phenotypic diversity of C. innocuum. We com-
pared genomic phylogeny, functional capacity, and virulence factors across single iso-
lates and publicly available genomes. Using a custom 16S rRNA database, we identified
C. innocuum as a highly prevalent human gut inhabitant. Single nucleotide polymor-
phisms in core genes suggest that the C. innocuum species splits into multiple clades,
characterized by differences in metabolism. While comparison to known virulence
factors did not identify a direct link to previously associated disease studies, we did
identify clade-specific putative virulence factors. Together, these data support a role
for C. innocuum and related erysipelotrichial species in modulating the gut nutrient
landscape, as well as a strain-specific role for potential virulence.

RESULTS
Clostridium innocuum is a prevalent human gut microbe. We screened five fresh

fecal samples for the presence of C. innocuum strains as part of a larger study focused on
cultivation of gut commensal bacteria (Fig. 1A). Sanger sequencing of the full-length 16S
rRNA gene from morphologically distinct colonies confirmed the presence of 38 isolates
that matched C. innocuum (80% similarity) (see Table S1 in the supplemental material),

Clostridium innocuum in the Human Gut mSphere

January/February 2023 Volume 8 Issue 1 10.1128/msphere.00569-22 2

https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00569-22


with each fecal sample yielding at least three distinct colonies. While metagenomic and
16S rRNA gene-based surveys suggest C. innocuum may be a common resident of the
human gut microbiota, its prevalence across the human population is unknown. To
broadly identify the presence of C. innocuum within the human gut microbiota, we com-
pared multiple available 16S rRNA data sets from previous human gut microbiota studies
to a curated database consisting of the 16S rRNA gene from our isolates (43, 44). Within
these data sets, approximately 80% of samples (n = 420) contained C. innocuum sequen-
ces, suggesting a high prevalence of C. innocuum within the human gut microbiota
(Fig. 1B). Although the relative abundance (RA) of C. innocuum in feces retrieved from 16S
rRNA gene-based sequencing data was relatively low across all samples (mean RA = 0.22%),
samples collected from patients on antibiotics (mean RA = 0.40%; n = 96) or with sepsis
(mean RA = 0.46%; n = 24) were significantly increased compared to healthy controls (mean
RA = 0.16%; n = 250).

Whole-genome comparison reveals four C. innocuum clades. We next sought to
identify genomic heterogeneity among all available C. innocuum genomes, including iso-
lates within the current study (n = 38), genomes available on the Genome Taxonomy
Database (GTDB) (n = 40) (40), genomes sequenced in a previously published study asso-
ciated with Crohn’s disease (n = 31) (45), a newly published data set from clinical sam-
ples (n = 119) (46), and four fully annotated genomes (C. innocuum strains 14501, I46,
LC-LUMC, and 2959) (47–49) (Table S1). Isolates were sequenced using Illumina technol-
ogy, assembled (average depth of coverage, 90�), and annotated using Prokka (50). The
newly assembled full-length 16S rRNA gene from all 232 C. innocuum genomes was used
for taxonomic identification using both NCBI BLAST and EZBioCloud databases. These
comparisons, as well as the full genomic assembly compared against the GTDB database,
confirmed all genomes as Erysipelotrichaceae species. An initial maximum-likelihood tree
of the full-length 16S rRNA gene obtained from the whole-genome assemblies revealed
that most species clustered under one branch (Fig. S1A), suggesting that the 16S rRNA
gene may not be an appropriate proxy for distinguishing C. innocuum strains.

We next analyzed the pangenome from de novo-assembled whole genomes of all
putative C. innocuum genomes available (n = 232) using Roary (95% blast percentage
identity) (Table S1) (51). Assemblies of 232 unique genomes averaged 4.6 Mbp, close
to the type strain C. innocuum ATCC 14501 at 4.7 Mbp (48). We observed an average of

FIG 1 C. innocuum is a prevalent human gut bacterium. (A) Isolation pipeline design for C. innocuum.
(B) Detection of C. innocuum in human feces across previously published 16S rRNA data sets using a
custom classifier, categorized by published disease status. Log10 of relative abundance is displayed on
the x axis, with prevalence (percent detected based on presence or absence). Pairwise Wilcoxon rank-
sum test; *, P , 0.05; **, P , 0.005.
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4,400 protein-encoding genes by coding sequences (CDS) obtained from Prokka (50).
The gene accumulation curve followed Heap’s law withg = 0.3322 6 0.06 (R2 = 94.68%)
(Fig. S2A). Heap’s decay parameter, alpha, totaled less than one (alpha = 0.794), suggest-
ing an open pangenome for C. innocuum. This was further supported by the distribution
of gene abundance across the number of genomes (Fig. S2B), which demonstrated that
the number of unique genes (524 genes) common to all 232 genomes was less than
those observed in a single genome, indicating extensive gene transference within and
outside the species.

The average nucleotide identity (ANI) (52) computed across all genomes revealed
four distinct clades. Clades III and IV were 90% or less similar to clades I and II, less than
an expected cutoff for a genus (90%)- or species-level (95%) comparison (53, 54)
(Fig. 2). Clades I and II were more closely related with >95% ANI, and they included all
four available reference genomes. We then used Anvi’o to assign core (present in all),

FIG 2 C. innocuum exhibits an open pangenome. C. innocuum pangenome displaying presence or absence of core (orange; present in 100% of
genomes), soft-shell core (green; present in 95 to 99% of genomes), and accessory (blue; present in ,95% genomes) genes, with hierarchical
clustering based on average nucleotide identity (ANI) in the right-hand corner (coloring based on 40 to 100% similarity). Clade and cluster
designated in the legend. Analyses incorporate all available unique C. innocuum genomes (n = 232).
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soft-shell (present in 95 to 99% of genomes), and accessory genes (present in less than
95% of the genomes), which totaled 524 core and 28,915 accessory genes across all
232 genomes (Fig. 2). When excluding clade III and IV genomes, these totaled 2,058
core and 18,256 accessory genes, with the pangenome still open as indicated by the
alpha and gamma parameters (Fig. S3).

A maximum-likelihood tree using the core genome of all strains reiterated cluster-
ing of C. innocuum genomes into four clades as observed by ANI (Fig. 3A), demonstrat-
ing widespread distribution of the isolates from this study across clades I, II, and IV.
Additionally, there was not an observable overrepresentation of C. innocuum strains
isolated from clinical cases within any clade. A maximum-likelihood tree based on a set
of 400 selected protein markers present across all bacteria and archaebacteria con-
structed using PhyloPhlAn (55, 56) maintained the overall integrity of the four clades,
with some shuffling between the closely related clades I and II (Fig. S1B).

Genomic differences within C. innocuum and related strains are driven by me-
tabolism. Principal-coordinate analysis (PCoA) based on Bray-Curtis dissimilarity of
presence or absence of COG genes demonstrated significant clustering of strains by
clade (P , 0.001, permutational multivariate analysis of variance [PERMANOVA]), with
clades I, II, and III closer together than clade IV (Fig. 3B). Overall, the pangenome of
C. innocuum displayed ;28,000 gene clusters categorized using the COG database
(Fig. 3C). At least 25% of the core genome and 50% of the accessory genes were classi-
fied as general functions (R), unknown functions (S), or did not map to the COG data-
base (NA). Genes responsible for basic cellular processes and information storage and
processing were equally distributed between the core, soft-shell core, and accessory
genomes. Genes involved in metabolism (C, G, E, F, H, I, and P) were highest in the core

FIG 3 Clade-specific differences in metabolism and potential virulence drive genomic differences in C. innocuum strains. (A) Maximum-likelihood tree
based on single nucleotide polymorphisms in 524 core genes from 500 replications, colored by clade (node color) and source (circle color) as specified in
the legend. (B) Principal-coordinate analysis (PCoA) based on a Bray-Curtis distance matrix of COG gene assignments (presence or absence) generated
using Prokka, colored by clade (legend) (PERMANOVA; **, P , 0.001). (C) Relative abundance of major COG categories (color coded in the legend)
represented in core, soft-shell core, and accessory genes. (D) Differentially enriched KEGG modules across clades (false-detection rate using an adjusted q
value below 0.05), colored by fraction of genomes within each clade.
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genome and included genes associated with basic energy-producing pathways like
ATP synthesis, gluconeogenesis, tricarboxylic acid (TCA) cycle, urea cycle, or Entner-
Duodonoff pathway. From these functions, carbohydrate metabolism (G) held the
highest percentage across all gene categories and was increased in the soft-shell core
genes.

Interestingly, genes in the mobilome COG category (X) were overrepresented in the
accessory genome of C. innocuum. Core mobilome representation included only a sin-
gle mobilome gene, bacteriophage protein gp37, which forms a fibrous parallel homo-
trimer at the end of the long tail fibers in bacteriophages (57). Some phage-related genes,
such as phage-related holin belonging to COG4824, which also harbors C. difficile TcdE
(lysis protein), killer protein of prophage maintenance systems (Doc), predicted transpo-
sases (InsQ, InsG, and Tra8), and competence proteins (ComCG), were present in the soft-
shell genome. The majority of the mobilome genes were present in the accessory genome,
comprising a multitude of predicted transposases, transcription/translation proteins, and
phage-related regulatory proteins. This included a plasmid stabilization system protein,
ParE, identified across clades I, II, and IV strains, which, in Enterobacteriaceae, confers heat
and antibiotic tolerance by maintaining IncI- and IncF-type plasmids and a DNA damage-
inducible protein D, which has a role in recombinational DNA damage repair, as seen in
Escherichia coli (58, 59).

To identify completeness of metabolic pathways (>75% of total genes), we used
Anvi’o for metabolic reconstruction of the strains using the KEGG database. Completed
carbohydrate metabolism pathways across all genomes (Fig. S4A) included the pen-
tose phosphate pathway, pyruvate oxidation, glycolysis, glycogen biosynthesis and
degradation, Embden-Meyerhof pathway, and ascorbate degradation pathway. All four
clades demonstrated incomplete TCA cycle pathways. Several completed amino acid
metabolism pathways were identified across all clades (including valine, proline, threo-
nine, tryptophan, leucine, isoleucine, arginine, and ornithine) except for clade III, which
also demonstrated a complete module for lysine (Fig. S4B). For lipid metabolism, com-
pleted pathways included fatty acid biosynthesis, initiation, and elongation (Fig. S4C).

We used the Anvi’o functional enrichment tool to identify differentially abundant
KEGG modules across clades (P , 0.05). Overall, clade I and II genomes exhibited simi-
lar profiles to each other compared to clade III and IV, although differences were
observed between clades III and IV genomes (Fig. 3D). Clades I and II shared genes
related to biosynthesis of terpenoids and polyketides that were less represented in
clades III and IV. The glucuronate (uronate), ascorbate biosynthesis, and ubiquinone
biosynthesis pathways were almost exclusively represented within clade IV strains
compared to other clades. These pathways consisted of only single KOfam assignments
belonging to the pathways UDP-glucose-6-dehydrogenase (EC 1.1.1.22), flavin prenyl-
transferase (EC 2.5.1.129), and xylulokinase (EC 2.7.1.17).

While module representation across all strains suggests that lipid biosynthesis and
utilization are prevalent within C. innocuum (Fig. S3), acylglycerol degradation (triacyl-
glycerol lipase [EC 3.1.1.3]) was observed for strains only in clade III and IV. Our analysis
included C. innocuum genomes (SRA accession nos. SRR12535151 and SRR12535143)
recently isolated from creeping fat in patients with Crohn’s disease as belonging to
clade IV (40). A Helicobacter pylori cagA pathogenicity island signature module (K02283)
was also identified as differentially represented in clade IV genomes. This includes the
type IV pilus assembly protein CpaF (EC 7.4.2.8).

To identify more specialized polysaccharide metabolism in C. innocuum, we used
dbCAN and the CAZy database to identify carbohydrate-active enzymes (CAZymes)
(60). Glycoside hydrolases in the GH1 group and GT2.2 glycosyl transferases were the
most abundant CAZymes in C. innocuum collectively, albeit with some variability across
the four clades (Fig. 4A). GT14, which produces a glycogen-branching protein, was
present in all clades, while GT11, a fucosyltransferase, was only present in clade IV.
Compared to clade II strains, strains in clade I were more likely to contain glycoside hy-
drolases involved in alpha- or beta-D-glycosidic bond hydrolysis (GH2, GH43_35, GH65,
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GH106, GH140, and GH36). GH146, a b-L-arabinofuranosidase that cleaves b-L-Araf
bonds in plant pectins, was present in all clade III strains and a subset of clade I (61).
The acetyl-mannosamine transferase GT26 was only present in clade III strains. Only
three types of carbohydrate esterases (CEs) were identified across all C. innocuum
strains, all involved in plant cell degradation, CE6 (acetyl xylan esterase), CE4 (chitin
deacetylase), and CE9 (N-acetylglucosamine 6-phosphate deacetylase) (62, 63). Four
carbohydrate-binding modules were also observed across all clades, including CBM66,
part of the LPXTG cell wall anchor domain-containing protein that degrades fructoside
residues in fructans, and CBM48, associated with the GH13 family of CAZymes respon-
sible for degrading starches (64). Other carbohydrate-binding modules, such as
CBM50, which is often associated with GH25 to degrade chitin or peptidoglycan (65),
and CBM32, involved in galactose and/or lactose metabolism, were observed sporadi-
cally across clades I, II, and IV.

C. innocuum exhibits strain-level variation in substrate use in vitro. To examine
differences in nutrient use across strains, we selected seven representative strains to
examine their ability to use distinct carbohydrate sources in vitro. Representative
strains were selected from a 99% dereplication cutoff of C. innocuum genomes, which
clustered the genomes into seven groups, representing three of the four clades. We
assessed both growth and acid production of the strains in minimal media supple-
mented with single carbohydrates. After 24 h of growth assessment, acid production
was assessed using the colorimetric pH indicator bromocresol purple (BCP), which
approximates pH changes as a result of fermentation (Fig. S5). Acid production signify-
ing fermentation was determined as low (pH 5.5 to 6.5 and optical density at 588 nm
[OD588] of 0.26 to 0.44) or high (pH , 5.5 and OD588 , 0.26).

We observed variation in the ability of strains to grow on minimal media supplemented

FIG 4 C. innocuum strains display clade-specific carbohydrate-activating enzymes (CAZymes). (A) Number of CAZyme types detected
normalized to the total number of genomes within each clade, color coded by clade type. (B) Heatmap of number and type of CAZymes
in individual genomes, clustered using Euclidean distance. GT, glycosyltransferase; GH, glycoside hydrolase; CE, carbohydrate esterase; CBM,
carbohydrate-binding module.
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with single carbohydrate sources (Fig. 5). None of the strains could grow on lactose or raffi-
nose, confirming previous observations for C. innocuum (27, 42). In contrast to previous
reports (32), salicin did not support growth of any of the strains tested. Most strains dem-
onstrated high growth (defined by both significant increases in OD and high acid produc-
tion) in glucose and fructose, albeit at various growth rates. Significant growth on glucose
and mannose was observed by all but one strain in each, CM647 and CM152, respectively
(analysis of variance [ANOVA] on the area under the concentration-time curve [AUC],
P, 0.05). Cellobiose, mannitol, and trehalose all supported growth and acid production in
most strains (ANOVA, P, 0.05). Maltose supported the growth of only one strain, CM208A
(ANOVA, P , 0.05), whereas sorbitol only supported growth of two strains, CM647 and
CM220 (ANOVA, P, 0.05).

Only some of the variable growth aligned with their clade designation. Within clade
I, both CM152 and d22_429 followed a similar pattern of acid production (Fig. 5B) and
grew at various efficiencies in glucose, fructose, mannitol, and trehalose (Fig. 5A).
Within clade IV, both strains CM220 and CM679 grew efficiently in several carbohy-
drates and more efficiently on sucrose than most strains (ANOVA, P , 0.0001). The
most variation was observed in clade II strains, with CM647 consistently displaying
minimal growth on most carbohydrates. In contrast, both CM208A and CM151C exhib-
ited some of the highest growth in glucose, cellobiose, and mannose compared to
other strains (ANOVA, P , 0.005), but CM208A did not grow in mannitol compared to
CM151C (ANOVA, P , 0.005). CM208A also consistently produced less acid than
CM151C, except for growth in fructose (Fig. 5B).

C. innocuum exhibits clade-level variation in putative virulence factors and
toxins. An exotoxin has not been identified from C. innocuum despite previous evi-
dence of association with infection (66). Using PathoFact to identify potential virulence
(bit score > 50), we observed differential distribution of putative virulence factors
across the four clades (Fig. 6A) (67). Overall, clade III strains had lower numbers of viru-
lence factors detected over the other clades, which also lacked the type II toxin-anti-
toxin system from the YafQ/RelB/ParE family and phage lysis holins. Some factors were
present across all clades, including members of hemolysin III, hlyIII and tlyC; NlpC/P60
family, pspA and pspC (identified as entD in the software); and a type III toxin-antitoxin
system from ToxN/AbiQ (Fig. 6A). GGGtGRt, tlyC, and hlyIII demonstrated the highest
bit scores across all clades, including within the reference strain C. innocuum 14501.

FIG 5 C. innocuum exhibits strain-specific differences in nutrient utilization in vitro. (A) Growth curves of strains (n = 7) inoculated into basal medium with
Casamino Acids (BMCA) with indicated carbohydrate source over 24 h, measured at OD600. Gray indicates the negative control (strain inoculated into BMCA
without addition of carbohydrate). The significance of growth was determined by ANOVA on area under curve per strain (within each sugar type), followed
by Tukey’s honestly significant difference (HSD); *, P , 0.05; **, P , 0.005; ***, P , 0.0001. (B) Growth (from OD600) and acid production (from bromocresol
purple assay) data were combined to show nutrient utilization patterns in representative strains. High acid production was classified as pH of ,5.5 and OD
of ,0.26; low acid production was classified as pH 5.5 to 6.5 and OD588 of 0.26 to 0.44 (legend). Clade and strain designation indicated by the legend.
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While we identified the presence of C. difficile tcdAB-like genes in all clades, a BLAST
search across the NCBI databases revealed that they likely belong to the NlpC/P60 fam-
ily of proteins, either as surface protein pspAC alongside a penicillin-binding protein
mrcB or as a glucan-binding domain-containing protein, not yet fully characterized. A
PCoA based on the Bray-Curtis dissimilarity distance from the presence or absence of
putative virulence genes from C. innocuum strains isolated from either diarrheal
patients or healthy controls (n = 119) (46) did not demonstrate clustering based on
clinical status (Fig. S7), suggesting that no groups or single putative toxins were associ-
ated with disease. Additionally, using functional enrichment for general pathways
(Anvi’o) within this genome set did not identify significantly enriched KEGG or COG
classes.

The chromosomal location of virulence and antibiotic resistance genes identified
by PathoFact were visualized in conjunction with genomic islands (using IslandViewer
4), with C. innocuum 14501 as a reference (Fig. 6B) (68). Resistance genes against vanco-
mycin glycopeptide (vanRS), tetracycline, as well as several ABC transporters and amino-
glycoside genes were identified in all clades. Bacitracin resistance (bcrAC) was found only
in clades I and III (Fig. S6). Results from IslandViewer 4 predicted 42 genomic islands,
with 113 virulence factors and 7 toxin genes aligning with genomic island locations
(Fig. 6B). While none of the hemolysins aligned with genomic island predictions, a type II
TA system involving RelE/StbE family of toxin-antitoxin system (with 11 additional genes)
and a group of NlpC/P60 glucan-binding proteins (labeled as tcdAB by PathoFact, with 9
additional genes), each aligned with a predicted genomic island.

FIG 6 Certain clades of C. innocuum display enhanced potential virulence. (A) Average bit score of select putative
secreted and nonsecreted toxins (bit score > 50) across C. innocuum clade, identified using PathoFact. (B) Location
of antibiotic resistance genes (AMR), putative virulence factors, and toxins identified using PathoFact (three
innermost circles) and genomic islands, identified using IslandViewer 4 (penultimate outer circle; green, forward
orientation; brown, reverse; purple, bidirectional orientation).
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DISCUSSION

To date, this study marks the most comprehensive characterization of genomic vari-
ability within the human gut inhabitant C. innocuum. While C. innocuum has originally
been designated a commensal from initial isolation studies (32, 34), it has also been
recently associated with various disease states (29, 37–40). We recovered C. innocuum
strains from all individuals sampled in this study, suggesting a high prevalence of
C. innocuum in the “healthy” human gut. This is further strengthened by the prevalence
of C. innocuum in human 16S rRNA gene-based surveys using a custom classifier spe-
cific for C. innocuum 16S rRNA sequences, which also identified increased abundance
of C. innocuum following antibiotic use. These data, in addition to the consistent asso-
ciation of C. innocuum with disease in culture-based studies, support a closer look at
the role of C. innocuum in the gut microbiota.

Our genomic analysis of C. innocuum clarifies some of the functions attributable to
C. innocuum colonization of the gut. We identified several complete modules in both
carbohydrate and amino acid metabolism within the C. innocuum core genome. These
also included multiple genes associated with utilization of saccharides, such as glucose,
mannose, fructose, xylose, mannitol, chitin, xylan, and other starches and peptidoglycans,
indicating an ability to use plant polysaccharides directly or by-products of polysaccharide
degradation by other commensals. Additionally, all C. innocuum strains exhibited several
partial and complete modules for lipid metabolism. None of the tested strains were able
to grow in lactose, salicin, and raffinose, corroborating descriptions of C. innocuum clinical
isolates growth using a Biolog platform (40, 69).

Our genomic comparison also revealed strain-specific diversity in C. innocuum. Both
ANI and phylogenetic analysis of C. innocuum genomes demonstrated four distinct
clusters. Clades III and IV were, collectively, 90% or less similar to clades I and II, which
contained all available C. innocuum reference strains, suggesting that these clades may
represent a new erysipelotrichial species related to C. innocuum. Even after exclusion
of clade III and IV genomes, the pangenome of C. innocuum remains highly open as
assessed by Heap’s law (70). It has been suggested that an open genome may reflect a
more sympatric lifestyle, whereby related species interacting with each other can easily
share genetic elements (71). While our current study did not specifically focus on iden-
tification of mobile elements, most mobilome-related genes were present in the acces-
sory portion of the C. innocuum pangenome, suggesting a high degree of horizontal
gene transfer among C. innocuum and the two related species.

The ability to acquire new genes can provide a competitive metabolic advantage in
a microbially dense environment. As the nutrient niche theory stipulates, colonization
by an invading microbe, pathogenic or commensal, is at least partially dependent on
its ability to better utilize nutrients to outcompete extant microbes in that environ-
ment (72). For example, coexistence of the highly abundant gut inhabitant Bacteroides
thetaiotaomicron is likely possible at least in part due to the diversity of polysaccha-
ride-utilizing loci observed across different strains that allow flexibility in resource utili-
zation (73). We observed coexistence of several C. innocuum strains within a single
fecal sample, none of which were 100% identical to each other, and some of which
spanned multiple clades within an individual. Overall, the CAZymes observed across
C. innocuum were fewer than previously characterized gut commensals (13, 74, 75), with
some clade-specific CAZymes. These genome-encoded CAZyme differences between
clades and potential new species could indicate niche partitioning to support related
strains within the same environment or the ability to localize into distinct gastrointestinal
locations.

The realized, or expressed, niche of strain coexistence is likely more complicated (76).
Our in vitro growth assays support niche partitioning within the canonical C. innocuum
clades I and II at both clade- and strain-specific levels. For example, both CM152 (clade I)
and CM151C (clade II), isolated from the same individual, could use fructose, glucose,
mannose, and trehalose for growth. Yet the former grew significantly better with fruc-
tose, whereas the latter grew better on glucose, mannose, and trehalose. Despite the
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observation of clade-specific genomic patterns in CAZymes, we did not observe overt
clade-specific growth patterns in vitro. This suggests that realized metabolic niche parti-
tioning can occur within an individual beyond the categorical genomic features
assessed, emphasizing the importance of regulatory or additional genes that contribute
to successful coexistence of related strains. These differences also likely influence or are
influenced by other members of the collective microbiota within an individual.

The demonstrated genomic and phenotypic variability observed across the C. innoc-
uum species may also be of clinical importance. C. innocuum is commonly isolated in
conjunction with gastrointestinal tissue or fecal clinical samples (35, 40, 66). A recent
retrospective study in a Taiwanese clinical cohort isolated C. innocuum rather than
C. difficile from patients with C. difficile-like clinical presentation (35). The C. innocuum
isolates in this study were reported to cause a range of cytotoxicity and enteropatho-
genic effects in vitro. Most recently, Cherny et al. reported that C. innocuum isolates
from pediatric patients enrolled in C. difficile studies cross-reacted with the enzyme im-
munoassay (EIA) diagnostic test for C. difficile toxins A and B (66). The study identified a
putative C. innocuum toxin EIA cross-reactive factor (ErF) similar to the NlpC/P60 family
of toxins in all isolates tested but observed no cytotoxicity. We identified the same pu-
tative toxin A/B gene in clades I and II, with a significantly higher similarity score for
tcdA/B in clade II genomes. C. innocuum has also been postulated as a potential causa-
tive agent of “creeping fat,” an extraintestinal phenomenon correlated with Crohn’s
disease (CD) (40). Ha et al. demonstrated that C. innocuum isolated from various human
intestinal mucosal locations could translocate into tissue in a mouse model of inflam-
matory bowel disease (IBD). Our analysis, which included genomes from that study,
did not identify clade-specific clustering based on the anatomical site. However, the
two clade IV representatives identified as part of this study were both isolated from
creeping fat lesions. Yet genomic content, either comprehensively or within a subset
of putative virulence factors, did not correlate with disease status (46). Furthermore,
genomes associated with disease state (either with C. difficile or in association with
“creeping fat” in CD) spanned the four clades identified in this study, demonstrating no
definitive “virulent” strain. Together, these data suggest the possibility of C. innocuum or
a closely related species as an opportunistic, rather than an absolute, pathogen.

In summary, we demonstrate strain-specific variation of a prevalent gut “commen-
sal” that, until recently, was considered relatively benign in the gut environment. The
increased association of C. innocuum with gastrointestinal conditions supports further
investigation of the role of C. innocuum in the gut, with an emphasis on identification
of novel virulence or invasive factors that might enable C. innocuum to cause disease.
Furthermore, our results reveal the importance of understanding strain variation that
can be extended to other gut commensals.

MATERIALS ANDMETHODS
Isolation of C. innocuum. This study was approved by Clemson University’s Institutional Review

Board. Healthy donors were over 18, had not taken antibiotics or been diagnosed with any infections
within 6 months, and were not immunocompromised or diagnosed with chronic gastrointestinal condi-
tions. Upon receipt, fecal samples were placed under anaerobic conditions (Coy Laboratory Products,
Grass Lake, MI, USA; 85% nitrogen, 10% hydrogen, and 5% carbon dioxide) and streaked onto brain
heart infusion (BHI) (77), BHI supplemented with fetal bovine serum (FBS; 50 mL/L BHI), or taurocholate
cycloserine-cefoxitin-fructose (TCCFA) (78, 79) by using different streaking strategies. Streaks were incu-
bated at 37°C for at least 24 h and then picked and streaked for purity. Samples were stored at 280°C in
20% glycerol stocks for future in vitro work or DNA extraction (see Text S1 in the supplemental material).

DNA extraction and identification of C. innocuum. All isolates were heat extracted at 95°C for
20 min for PCR using Go Taq (Promega; catalog no. M7132) and 8F and 1492R primers to amplify the
whole 16S rRNA gene (4). PCR products were cleaned up using) and sent to Eton Biosciences for Sanger
sequencing, using EzBioCloud and RDP databases Illustra ExoProStar kit (Cytiva; catalog no. US78210for
identification (80, 81). DNA extraction for sequencing was performed from 1.8 mL of overnight culture
using the Qiagen DNeasy UltraClean microbial kit (Qiagen; catalog no. 12224-250). Extracted DNA was
diluted to 10 ng/mL concentration (Qubit, Life Technologies; catalog no. Q33230) and sent to the Microbial
Genome Sequencing Center (MiGS), Pittsburgh, Pennsylvania (https://www.seqcenter.com/), for Illumina
sequencing using the NextSeq 2000 platform.

Prevalence of C. innocuum in human 16S rRNA gene-based surveys. FASTA sequences of full-
length 16S rRNA sequences from C. innocuum genomes were formatted for alignment in mothur (43)
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and aligned using the SILVA database (v132) (82). Previously published sequences from fecal microbiota
samples representing healthy (83), hospitalized, and/or septic (84) or antibiotic-exposed (85) individuals
were processed in mothur using the Schloss lab standard operating procedure (SOP), aligning to the
SILVA database (44) and then classifying to the custom classifier using the classify.seqs command in
mothur (cutoff = 95) or directly to the RDP database (v16) for comparison (86). The log10 relative abun-
dance of C. innocuum was plotted in R using the Kruskal-Wallis test in R with a pairwise Wilcoxon rank-
sum test for pairwise comparisons between groups.

In vitro growth of C. innocuum. Representative strains were chosen from all available C. innocuum
strains based on 99% dereplication using pyANI in anvi-dereplicate-genomes (52, 87). Strains from
freezer stocks were initially streaked onto TCCFA in an anaerobic chamber and incubated at 37°C for
24 h. A single colony was added into 4 mL TCCF broth (TCCFB) and incubated at 37°C for 24 h. We centri-
fuged 1.8 mL of overnight culture at 6,000 rpm for 5 min. Ten microliters of the resuspended pellet in
1.8 mL of prereduced water was added into wells of a 96-well plate (CoStar) containing 100mL basal me-
dium (88) with Casamino Acids (BMCA) with or without selected carbohydrate sources at 4% (wt/vol). A
positive control of the resuspended strain in TCCF broth and BMCA without strain was included on each
plate. The prepared plate was placed into a plate reader (Tecan Sunrise) for growth at 37°C, measuring
the optical density at 600 nm (OD600) every 15 min for 24 h. A bromocresol purple (BCP) assay was used
on the plate growth to assess pH (Text S1).

Whole-genome assembly and phylogeny. Full commands are available at https://github.com/
SeekatzLab/C.innocuum-diversity and are further described in Text S1. Briefly, raw reads were quality
checked and adapter trimmed using Trim Galore! (89) and assembled using SPAdes (90) as optimized
with MEGAHIT (91). Quast with MultiQC was used to calculate assembly statistics (Table S1) (92, 93).
Average coverage was calculated using Bowtie 2 and SAMtools (94, 95). Prokka was used to annotate
assemblies (50). To verify the assembly identity, annotations were run through NCBI BLAST and EzBioCloud.
Assemblies were also mapped onto the Genome Taxonomy Database (GTDB) (45) through GTDB-tk using
classify_wf (96). Maximum-likelihood trees from the C. innocuum core genome SNP sites were determined by
Roary using RaXML 8.2.12 with bootstrapping 500 times. The 16S rRNA maximum-likelihood tree was aligned
using Clustal Omega and bootstrapped 500 times by RAxML (97, 98). The amino acid fasta phylogenetic tree
was mapped against the PhyloPhlAn database with DIAMOND using PhyloPhlAn (55). Trees were visualized
using GraPhlAn (99) or the ITOL web server (https://itol.embl.de/) (100–102).

Pangenome analysis, functional enrichment, average nucleotide identity, and dereplication.
Contigs from SPAdes were reformatted and annotated with the COG and KEGG databases using Anvi’o
v7.0 (87). Anvi’o was also used to create and visualize the pangenome, determine average nucleotide
identity (ANI), and dereplicate strains within the data set (Text S1). Heap’s law was calculated in R (for-
mulated as n = kNg, where n is the pangenome size, N is the number of genomes used, and k andg are
the fitting parameters), and the a parameter was calculated using micropan (70, 103). ANI was com-
puted using the anvi-compute-genome-similarity with pyANI (52). Dereplication between strains was
computed using anvi-dereplicate-genomes at 90, 95, 98, 99, 99.9, and 100% similarity threshold. The
false-detection rate correction for P values for functional enrichment was applied using the package
qvalue from Bioconductor (104) and visualized using dplyr, ggplot2, and readxl packages (105–107).
Principal-coordinate analysis and associated PERMANOVA statistics were performed in R using vegan
and ape packages (108, 109).

CAZyme and putative virulence. CAZymes were predicted using dbCAN v2.0.6 (60), using the
FASTA nucleotide sequences generated from Prokka for each of the strains. Prokka-generated nucleotide
FASTA files (FNA) were processed through PathoFact (67) to predict virulence factors, toxins, and antimi-
crobial peptides. Genomic islands were predicted in C. innocuum 14501 using the web computational
tool IslandViewer 4 (68). Circos was used to visualize chromosomal locations on reference sequence
ATCC 14501 (68).

Data availability. All raw sequence data and associated information have been deposited in the
NCBI Sequence Read Archive under BioProject accession no. PRJNA841489. All data analysis from raw
sequence processing and additional data tables (containing information on dereplication reports, me-
dium composition for in vitro studies, average number of new genes versus number of genomes, full list
of bioinformatics resources, and list of antibiotic resistance genes) for the final manuscript are available
at https://github.com/SeekatzLab/C.innocuum-diversity.
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