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ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen that
can cause life-threatening infections in humans. Unlike other Candida species that col-
onize the gut, C. auris efficiently colonizes the skin and contaminates the patient's
environment, resulting in rapid nosocomial transmission and outbreaks of systemic
infections. As the largest organ of the body, the skin harbors beneficial microbiota
that play a critical role to protect from invading pathogens. However, the role of skin
microbiota in the colonization and pathogenesis of C. auris remains to be explored.
With this perspective, we review and discuss recent insights into skin microbiota and
their potential interactions with the immune system in the context of C. auris skin col-
onization. Understanding microbiota, C. auris, and host interactions in the skin is im-
portant to develop microbiome-based therapeutic approaches to prevent and treat
this emerging fungal pathogen in humans.
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C andida auris, an emerging multidrug-resistant fungal pathogen that predomi-
nately colonizes the skin, has been classified as an urgent threat by the U.S.

Centers for Disease Control and Prevention (CDC) Antibiotic Threats Report (2019) and
ranked in the critical priority group by the World Health Organization (WHO) in a
recently released list of fungal priority pathogens (1, 2). C. auris is endemic at high
prevalence in some long-term care facilities and acute care settings, where it can
spread from patient to patient, resulting in outbreaks and systemic infections (3, 4).
Several isolates of C. auris exhibit resistance to all three major classes of FDA-approved
antifungal drugs, i.e., azoles, polyenes, and echinocandins. This poses a significant chal-
lenge to treat infections caused by this fungal pathogen (5, 6). Unlike most other
Candida species, which colonize the gastrointestinal tract, C. auris efficiently colonizes
the skin and contaminates the patient's environment (7), which may be related to C.
auris’s unusual ability compared to other yeast to cause health care-associated out-
breaks. Individuals colonized with C. auris can have a high fungal burden on their skin,
which has been positively correlated with environmental contamination, transmission,
and outbreaks of infections (7). Because skin colonization likely facilitates C. auris trans-
mission and subsequent invasive disease, understanding the factors regulating C. auris
skin colonization is critical to developing novel approaches to prevent and treat this
emerging fungal infection in humans.

In human skin, C. auris coexists with commensal bacteria and fungi (3). Skin is colon-
ized by a diverse set of commensal organisms (microbiota) that inhibit the growth and
colonization of pathogens either by directly secreting small molecules and/or stimulating

Editor Aaron P. Mitchell, University of Georgia

Copyright © 2023 Tharp et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Anuradha
Chowdhary, chowdhary.anuradha@gmail.com, or
Shankar Thangamani, sthangam@purdue.edu.

The authors declare no conflict of interest.

Published 25 January 2023

January/February 2023 Volume 8 Issue 1 10.1128/msphere.00623-22 1

PERSPECTIVE

https://orcid.org/0000-0003-1086-8041
https://orcid.org/0000-0002-0031-2392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/msphere.00623-22
https://crossmark.crossref.org/dialog/?doi=10.1128/msphere.00623-22&domain=pdf&date_stamp=2023-1-25


skin immune factors (8, 9). Results of this interaction can define the colonization level
and pathogenesis of skin pathogens in humans. An interesting recent study by Proctor
et al. investigated the associations between skin microbiota and C. auris colonization in
humans (3). Utilizing 16S rRNA and internal transcribed spacer 1 (ITS1) of the rRNA gene
locus sequencing approaches, bacterial and fungal communities were characterized
using skin swabs from various body sites in both C. auris-positive and -negative individu-
als (Fig. 1). C. auris-negative individuals mainly harbored commensal bacteria such as
Staphylococcus hominis, Staphylococcus epidermidis, Staphylococcus caprae, Anaerococcus
nagyae, Peptoniphilus tyrrelliae, Anaerococcus octavius, and Corynebacterium tuberculos-
tearicum. In contrast, C. auris-positive patients showed a different bacterial community,
mainly containing Proteus mirabilis, Pseudomonas aeruginosa, Klebsiella pneumoniae,
Providencia stuartii, and Morganella morganii. Fungal members also displayed a consider-
able shift in C. auris-positive individuals (3, 10). Fungal microbiota in C. auris-negative
individuals were dominated by Malassezia species such as Malassezia restricta, Malassezia
globosa, Malassezia furfur, and Malassezia arunalokei. On the other hand, the microbiota
fungal community of C. auris-positive individuals was dominated by a mixture of Candida
species, including C. auris, C. albicans, C. tropicalis, C. glabrata, and others (3, 10). The differ-
ence in both commensal bacteria and fungi communities present in C. auris-positive and
C. auris-negative patients provides evidence that the host microbiome may play an impor-
tant role in the colonization of C. auris on the skin. Although microbiota dysbiosis was
observed in the skin of C. auris-colonized individuals, it is still not known whether altera-
tions in the microbial community are a consequence of C. auris colonization or whether
microbiota dysbiosis contributes to C. auris colonization in the skin.

Commensal microbiota induce innate and adaptive host immune factors to elimi-
nate skin pathogens (11–13). To operate optimally, microbiota, and the immune sys-
tem need to communicate effectively. Though the role of skin immune factors in C.
auris skin colonization is rudimentary, recent studies indicate that skin immune factors
such as LL-37 and interleukin 17 (IL-17) inhibit C. auris growth and skin colonization

FIG 1 The figure illustrates the commensal microbiota and host factors in the C. auris-negative and -positive skin. The
homeostatic portion (left) depicts a skin environment that has not been colonized by C. auris, while the dysbiosis
(right) portion represents a skin that has been colonized by C. auris. Antimicrobial peptides such as LL-37, dermcidin,
human b-defensin 2 and 3, and immune cells such as macrophages, neutrophils, ILCs, and dendritic cells that are
integral to the skin immune defense against pathogens are shown in the C. auris-negative and -positive skin.
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(14, 15). LL-37, a major antimicrobial peptide (AMP) expressed by human keratinocytes,
inhibits C. auris growth in vitro (15). LL-37 showed fungistatic and fungicidal activity
against C. auris at concentrations of 25 to 100 and 50 to 200 mg/mL, respectively.
Furthermore, LL-37 caused fungal cells to undergo extensive surface changes, inhibited
the cell cycle, and induced oxidative stress in C. auris (15). Mice express cathelicidin
antimicrobial peptide (CAMP), a homologue of human LL-37 peptide. CAMP is regulated
by the hypoxia-inducible factor 1 alpha (HIF-1a) transcription factor. Mice lacking CAMP
peptide or HIF-1a alone in the skin are highly susceptible to skin bacterial pathogens
(16–18). CAMP and HIF-1a are also highly expressed in the intestine, where they are nec-
essary to provide gut microbiota-mediated resistance to C. albicans intestinal colonization
(19). On the other hand, skin microbiota such as Staphylococcus epidermidis induce LL-37
(CAMP) in keratinocytes (20). Among three AMPs (LL-37, defensin-1, and defensin-2)
induced by S. epidermidis, LL-37 expression was increased 100-fold compared to 10-fold
induction of defensin peptides in treatment with S. epidermidis (20). However, currently,
the role of microbiota-LL-37 interactions in C. auris skin colonization is not clear. Future
studies, such as using CAMP knockout mice, are critical to understanding the role of skin
microbiota and AMP regulation in C. auris colonization in the skin.

Another recent study by Huang et al. identified that epicutaneous infection with C. auris
elicited different immune cell types (14) (Fig. 1). T helper 17 cells (CD4-positive [CD41] IL-
17A1 and CD41 IL-17F1), IL-17A- and IL-17F-producing CD81 T cells, IL-17A-producing gd
T cells, and IL-17A-producing innate lymphoid cells (ILCs) were significantly increased in the
skin samples 14 days after infection. Using mice deficient in IL-17R-associated adaptor mol-
ecule Act1, which lacks IL-17 responses, the authors demonstrated that IL-17A/IL-17F
response is associated with protection against C. auris. Significantly increased fungal load
was observed in the skin samples of Act12/2 groups compared to wild-type mice. Further
using Rag22/2 (which lacks T cells) and Rag22/2 II2rg2/2 (which lacks T cells and ILCs)
mouse models, the authors identified that fungal load in skin samples from these mice was
significantly increased, indicating the contribution of IL-17A/IL-17F produced by ab T cells,
gd T cells, and ILCs to control C. auris colonization in the skin. On the other hand, skin
microbiota such as S. epidermidis induces IL-171 T cells to control cutaneous C. albicans skin
colonization (21). However, given that host immune response to C. auris differs from C. albi-
cans (22, 23) and there is a difference in immune response elicited by different commensal
species of bacteria (21), findings from C. albicans and S. epidermidis cannot be readily ex-
trapolated to C. auris and other microbiota species, respectively. Future studies are neces-
sary to understand microbe-immune cell interactions in the context of C. auris infection.

Given that the skin of C. auris-positive individuals lacks several skin commensal bacteria
present in the skin of C. auris-negative individuals (3), understanding the role and mechanisms
through which skin microbiota regulate C. auris will expand the knowledge about the micro-
biota and host immune factors that control C. auris skin colonization. Restoring commensal
microbiota in the C. auris-positive and/or individuals highly susceptible to C. auris colonization
may be important in establishing a normal microbial ecosystem and preventing C. auris coloni-
zation of skin. An expansion of a diverse microbial community will enhance microbial diversity
and immune defense that could prevent the selective growth of skin pathogens, including C.
auris (11, 13, 24, 25). Furthermore, microbiota synergize with host immune factors to inhibit
the colonization of skin pathogens (11, 13, 24, 25). Harnessing the immunomodulatory
capacity of symbiotic factors from skin microbiota has a potential therapeutic role against C.
auris. However, several questions remain to be answered (Fig. 1). How do skin commensals
regulate C. auris colonization? Are the host AMPs (LL37, b-defensin 1, b-defensin 2, b-defensin
3, RNase 7, and dermidicin) and immune cells (innate and adaptive) involved in the defense
against C. auris skin colonization? Identification of commensal microbes that regulate C. auris
colonization will open the door for novel approaches to prevent C. auris skin colonization, sub-
sequent nosocomial transmission, and mortality due to invasive C. auris infection in humans.
For example, skin microbiota such as Staphylococcus hominis are currently in human clinical tri-
als for the treatment of skin bacterial pathogens and atopic dermatitis (9, 12). This supports the
feasibility of future interventions using commensal bacteria to prevent and treat C. auris skin
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colonization. Taken together, identification of bioactive microbial factors and the relevant host
immune pathways regulated by specific microbiota will not only increase our understanding
the microbiota-mediated mechanisms regulating C. auris skin colonization but also will provide
a platform to develop novel antifungal therapeutics.
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