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Pain typically evolves over time, and the brain needs to learn this temporal evolution
to predict how pain is likely to change in the future and orient behavior. This
process is termed temporal statistical learning (TSL). Recently, it has been shown
that TSL for pain sequences can be achieved using optimal Bayesian inference,
which is encoded in somatosensory processing regions. Here, we investigate whether
the confidence of these probabilistic predictions modulates the EEG response to
noxious stimuli, using a TSL task. Confidence measures the uncertainty about the
probabilistic prediction, irrespective of its actual outcome. Bayesian models dictate
that the confidence about probabilistic predictions should be integrated with incoming
inputs and weight learning, such that it modulates the early components of the EEG
responses to noxious stimuli, and this should be captured by a negative correlation:
when confidence is higher, the early neural responses are smaller as the brain relies more
on expectations/predictions and less on sensory inputs (and vice versa). We show that
participants were able to predict the sequence transition probabilities using Bayesian
inference, with some forgetting. Then, we find that the confidence of these probabilistic
predictions was negatively associated with the amplitude of the N2 and P2 components
of the vertex potential: the more confident were participants about their predictions,
the smaller the vertex potential. These results confirm key predictions of a Bayesian
learning model and clarify the functional significance of the early EEG responses to
nociceptive stimuli, as being implicated in confidence-weighted statistical learning.
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In order to survive, animals need to minimize their risk of harm and can do so by
learning to predict pain and other body threats. Learning to predict threats is necessary
to orient behavior. How does the brain learn to predict pain and aversive states? The
majority of previous work has focused on associative learning to predict pain outcomes
based on nonpain cues (1–4). Associative learning well describes the prediction of
isolated, transient threatening events but is insufficient to characterize learning to predict
long-lasting sequences of pain inputs (5), which typically occur in pain conditions
(6). When experiencing temporally evolving pain, the brain needs to learn to predict
forthcoming pain based on its past history. Recently, we have shown that learning to
predict pain sequences can be achieved using optimal Bayesian inference, in the absence
of nonpain cues (5). Probabilistic predictions of the frequency of feeling pain are encoded
in the human primary and secondary cortex, motor cortex, and right caudate, whereas
their precision is encoded in the right superior parietal cortex.

Bayesian inference frameworks make testable hypotheses about the role of confidence
in learning and its effect on neural activity. The confidence and error of neural predictions
are dissociable measures of uncertainty. Confidence is a measure of the variability of the
prediction, irrespective of the outcome of the prediction. In contrast, the prediction error
refers to the discrepancy between a prediction and reality. A Bayesian inference account
predicts that the confidence of a probabilistic inference 1) weights learning, 2) is integrated
with sensory information at early stages of information processing, and 3) is inversely
related to sensory cortical responses (i.e., high confidence reduces sensory responses) as
the brain relies less on incoming sensory inputs (7, 8). Here, we test these predictions
using a TSL task with thermal stimuli and EEG in healthy, human participants.

We focus on the largest wave that can be recorded from EEG in response to transient
sensory stimuli: the vertex potential (VP) (9). The VP is typically composed of a biphasic,
negative (N2 component) and positive (P2 component) waveform with a characteristic,
symmetric scalp distribution with a peak over the vertex (Cz-FCz). The VP can be
observed for stimuli in virtually any sensory modality (10), but despite its ubiquity, there
is no consensus over its functional significance.
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The functional significance of EEG
responses to pain has long been
debated because of their
dramatic variability. This study
indicates that such variability can
be partly related to the
confidence of probabilistic
predictions emerging from
sequences of pain inputs. The
confidence of pain predictions is
negatively associated with the
cortical EEG responses to pain.
This indicates that the brain relies
less on sensory inputs when
confidence is higher and shows
us that confidence-weighted
statistical learning modulates the
cortical response to pain.
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Fig. 1. Temporal statistical learning experiment. (A) Examples of sequences of stimuli of intensities I1 and I2 that are applied to the participants’ forearm.
Each sequence has different generative statistics (a majority of I2 or I1, more alternations or repetitions, etc.) and the interstimulus interval (ISI) is set to 3 s. (B)
Behavioral questions asked to the participants every 15±3 stimuli in the sequences to evaluate their stimulus probability estimates and confidence estimates
in these predictions. The sequences are paused for a maximum of 8 s per question. (C) Markovian generative process of the sequences of stimuli whose
intensities are I1 and I2. (D) Transition probability matrix in which the five generative pairs of transition probabilities (TPs) employed are indicated with bold
numbers. One example of a sequence generated with each of these five TPs is shown in (A).

The traditional interpretation is that the VP reflects the
intensity of a sensory stimulus (9, 11, 12). A recent study
using a pain conditioning paradigm did not find evidence for
a modulation of the VP by expectations and prediction errors,
suggesting that the VP mostly reflects the sensory processing
of a stimulus (13). However, other studies have shown that
the amplitude of the VP is modulated by the history and
unpredictability of previous stimuli and can be decoupled from
perceived intensity (14–18).

The seemingly divergent conclusions of previous studies could
stem from the different definitions of stimulus predictability and
uncertainty and the lack of a mathematical quantification of
these concepts. Here, we use a normative approach to dissect
the contributions of temporal predictions, their confidence, and
error on the event-related potentials (ERPs) elicited by sequences
of somatosensory, thermal stimuli. The stimulus sequences had
a probabilistic (Markovian) temporal structure, with underlying
statistics that can be learned (Fig. 1) (5).

Results

Thirty-one human participants received five different types of
probabilistic sequences of thermal stimuli delivered with a contact
thermode to the right forearm (Fig. 1A). In each sequence, there
were two types of stimuli—one stimulus was cool (I1), and
the other was painfully hot (I2, above the Aδ-fiber threshold),
to make the task easier and ensure that the participants were
able to effortlessly discriminate both intensities. The sequences
transitioned between the cool and hot stimuli according to
a Markovian process described with two generative transition
probabilities (TPs, Fig. 1 C and D). The participants were asked
to try and estimate these TPs. In this task, the primary goal
is to clarify how participants perform such inference and how it
affects the elicited ERPs, independently of the stimulus intensities
used. Occasionally, the sequence was paused and participants
were asked to predict the probability of the next stimulus
based on the previous stimuli and to report their confidence
in these estimates on a numerical rating scale (Fig. 1B). Each
participant received two sequences of 100 stimuli generated
with each of the five distinct TPs indicated in Fig. 1D in a

randomized order and was informed that the sequence statistics
changed across sequences (Methods). On average, along the whole
experiment, participants received similar numbers of stimuli
from both intensities and rated similar numbers of transitions
from both intensities (SI Appendix, Fig. S1). In line with our
previous work, participants were able to predict the frequency of
the stimulus intensities, as shown by the positive association
between generative and rated item frequencies in Fig. 2A.
Likewise, with a slightly improved accuracy, participants were
able to estimate the transition probabilities from one intensity
to the other, as indicated in Fig. 2 B and C . Finally, the
confidence estimates were quadratically related to the probability
estimates: Confidence estimates tended to increase for more
extreme probability estimates, as previously reported for auditory
and visual sequences (19).

Behavioral Modeling. First, we defined the computational prin-
ciples underlying the participants’ inference of the sequence
statistics. We therefore consider a series of models which are fed
with the exact same sequences of binary inputs as the participants.
Each of these models constructs predictions about the stimulus
probabilities along the sequences and can be compared to the
subjective reports to shed light on the mechanisms of pain
inference.

We fitted two families of three models to the subjective
probability estimates obtained in the statistical learning task. One
family of models uses Bayesian inference, whereas the other family
uses a heuristic, i.e., a nonprobabilistic delta rule (Rescorla–
Wagner model) with a fixed learning rate. The Bayesian models
use the confidence of the prediction to weight the update of the
representation of the stimulus statistics, whereas delta rule models
use a fixed learning rate which is not scaled by uncertainty. In
each family, the models differ according to what they predict:
the item frequency (IF), the alternation frequency (AF), or the
transition probabilities (TPs) of the stimuli.

At group level, we found that probability estimates were
best approximated by a Bayesian model which estimates the
transition probabilities (Fig. 3A). Given that the sequences were
not volatile, we used Bayesian models with fixed update of
beliefs and a leaky integration to account for forgetting. We
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Fig. 2. Participants identify the generative sequence statistics. (A) True and rated probabilities to receive a stimulus of intensity I1 are correlated subject-wise
(N = 31 subjects). The mean correlation across participants is 0.454 (t30 = 13.603 , P < 10−5, Cohen’s d = 2.443), indicating that participants identify the
trends within the sequences. The dotted line indicates identity; plain line, linear fit averaged across participants; and blue squares, mean rated probabilities.
(B) Participants also accurately identify the trends in the transitions from I1. The grand mean correlation between generative and estimated p(I1|I1) is 0.549
(t30 = 14.007, P < 10−5, Cohen’s d = 2.516). (C) Similar to (B) for the transitions from I2. The grand mean correlation between generative and estimated
p(I1|I2) is 0.489 (t30 = 11.585, P < 10−5, Cohen’s d = 2.443). (D) Confidence estimates are quadratically related to the probability estimates (mean coefficient of
determination of the quadratic fits: R2 = 0.47). Plain colored lines indicate individual quadratic fits, and the thick plain black line indicates quadratic fit averaged
across participants.

estimated that an integration time constant of approximately 8
stimuli best-approximated behavior (Fig. 3B), which corresponds
to 24 s and an integration half-life of around 6 stimuli. This
provides evidence that statistical learning for nociceptive stimuli
uses a Bayesian inference strategy, whereby the update of the
representation is weighted by confidence.

A minority of subjects (n = 11) favored a simpler Bayesian
inference strategy, predicting item frequencies instead of transi-
tion probabilities (Fig. 3C ). This somehow contrasts with our
previous study with volatile sequences, in which only a minority
of participants could predict the TPs between the stimuli, whereas
the majority of participants showed a preference for the simpler
strategy of encoding the IF (5). Here, the two models that
best approximate the subjective reports and are above the prior
uniform probability remain the Bayesian models learning the
IF or the TPs, but most participants were able to predict the
more complex temporal statistics that are the TPs (Fig. 3C ).
This discrepancy can be explained by the fact that the present
task was simplified by the absence of volatility in the generative
sequence statistics. Note that frequency can always be derived
from transition probabilities (the IF corresponds to the principal
diagonal of the TP matrix, Fig. 1D), so participants who prefer

a transition probability inference strategy should also access the
frequency of the stimuli.

To explore the quality of the fit (i.e., to which extent the
winning model is actually close to the participant’s responses),
we display the positive correlation between rated and model
probability estimates in Fig. 4A. Overall, participants’ reports
were highly correlated with the model outcomes (grand mean
correlation of 0.659, t30 = 24.4, P < 10−5). Importantly, the
confidence estimates (which were not used to optimize the fit
of the model) correlated with the confidence measures deduced
from the Bayesian model, Fig. 4B (grand mean correlation of
0.285, t30 = 9.3, P < 10−5). Bayesian confidence relates to
the statistical certainty about the estimated TPs, i.e., to the
inverse spread of the posterior distribution over these TPs. The
quality of the confidence fit was similar to previous works (20).
We then quantified the accuracy of probability and confidence
ratings as the correlation coefficients between these estimates and
the corresponding model outcomes and found that they were
positively correlated across participants (Fig. 4C , correlation of
0.493, P = 0.005). This indicates that optimizing the model to
probability estimates provides a good description of participant’s
confidence ratings; it also suggests that confidence and probability
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Fig. 3. Model comparison. Six different models are considered to explain the subjective reports (N = 31 participants): Bayesian learners inferring the
alternation frequency (AF), the item frequency (IF) or the transition probabilities (TPs), and delta rule, or Rescorla–Wagner (RW) models, inferring the same
sequence statistics (AF, IF, and TP). (A) Bayesian model comparison shows that the participants’ reports are best approximated by a Bayesian model learning
the TPs (the exceedance probability of this model—i.e., the probability for this model to be more frequent than the others in the population—is � = 0.974).
Colored bars: model probabilities; horizontal gray line: prior (uniform) probability. (B) Bayesian model averaging reveals that the participants’ integration of
observations is best approximated with a time constant ! of 8 stimuli. Horizontal line: uniform prior probability; shaded area: SEM across participants; plain
dot: curve maximum. The inset illustrates the exponentially decreasing weights that are used to count the number of past stimuli when n stimuli have been
delivered, with a time constant ! of 8. (C) Individual model probabilities (reflecting the similarity between estimated and modeled probabilities) indicate that
most subjective reports are best approximated by the Bayesian model learning the TPs and to a lesser extent by the Bayesian model learning the IFs, but not
much by RW models.
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Fig. 4. Quality of fit of the best model for the ratings. Subjective estimates of stimulus probability and confidence are highly correlated with Bayes-optimal
values obtained from a model learning the TPs with an integration time constant of 8 stimuli (N = 31 participants). (A) Scatter plot of estimated and modeled
stimulus probabilities, with one color per participant. The grand mean correlation is 0.659 (t30 = 24.398 , P < 10−5, Cohen’s d = 4.382). Dotted line: identity;
plain colored lines: individual linear fits; thick plain black line: linear fit averaged across participants. (B) Scatter plot of estimated and modeled confidence,
with the same color code as in (A). The grand mean correlation is 0.285 (t30 = 9.293 , P < 10−5, Cohen’s d = 1.669). (C) The accuracy of probability and
confidence estimates are positively correlated across participants (Pearson correlation: 0.493, P = 0.005). Each accuracy was computed as the correlation
coefficient between the subjective reports and the corresponding modeled quantities across trials. (D) Bayesian confidence is quadratically related to Bayesian
probability estimates (mean coefficient of determination of the quadratic fits: R2 = 0.59). Plain colored lines: quadratic fits obtained using the sequences of
each participant; thick plain black line: quadratic fit averaged across participants’ sequences.

estimates are derived from a common cognitive process, in
line with previous works (21, 22). Finally, Fig. 4D illustrates
the quadratic relationship between Bayesian model probability
estimates and confidence, similarly to what we observed for the
subjective reports (Fig. 2D).

EEG. Sixty-four channel EEG was recorded on all participants
while they were exposed to the sequences of thermal stim-
uli. As expected, the main evoked response consisted in a
biphasic waveform—the vertex potential (VP)—which peaked
over frontocentral electrodes (9, 23). Fig. 5A illustrates the
grand-average VPs following cool (I1) and hot (I2) stimuli, with
scalp topographies of their two main components: the N2 and
P2 waves. These two components peaked at 205 ± 17 ms and
318 ± 40 ms after stimulus onset for I1 and 369 ± 33 ms and
518±42 ms for I2 (mean± SD), similar to previous studies using
thermal stimulation (12, 24). The VPs in response to both types
of stimuli were analyzed separately given their different latencies
and thermal qualities. At a single trial level, the earlier N1 wave
was not clearly identifiable due to its low signal-to-noise ratio.

Crucially, we investigated whether the confidence and error of
the probabilistic inferences modulate the vertex potentials. Using
the learning model which best explains the subjective reports
(a Bayesian model learning the TPs with an integration time
constant of 8 stimuli), we regressed the single-trial EEG signals on
two distinct inferential quantities: the model residual confidence
and Bayesian prediction error (BPE). Confidence is defined as
the log precision of the posterior distribution over the latent
parameter and is therefore inversely proportional to the posterior
variance—confidence gets higher when the variance gets smaller
Eq. 7. The residual confidence is obtained from the confidence
by regressing out the predicted probability, its square, and its
logarithm to ensure that these quantities do not drive the effects
of modeled confidence (Methods and Eq. 14) (20). Besides, BPE
corresponds to the difference between the received intensity and
its predicted probability in the model Eq. 8. For each participant,
we included these two regressors in linear regressions at each time
point from −0.5 to 1 s around stimulus onset and at central
electrodes of interest (C3, Cz, FCz, CPz, and C4). To make
sure that BPE and confidence were not collinear, confidence
was regressed on BPE subject-wise, leading to average variance
inflation factors (VIFs) of 1 and 1 for I1 and I2 respectively,

(regression R2 < 10−5). Two variables are typically considered
to be highly collinear when their VIF is above 5 (25).

Grand averages of the t-statistics obtained from t-tests against
0 for the regression coefficients are shown in Figs. 5B and 6. First,
we found a clear modulation of the VP by residual confidence
for both intensities (Fig. 5B). The sign of these modulations is
opposite to the VP, meaning that the larger the model confidence,
the smaller the N2 and P2 components.

SI Appendix analyses show that using confidence in-
stead of residual confidence leads to comparable observations
(SI Appendix, Fig. S2, even though the VIFs are slightly larger in
this case). Considering the best fitting model for each individual
participant (model learning IF, AF, or TPs) also leaves these
outcomes unchanged (SI Appendix, Fig. S3). If the Bayesian
model learning the IF instead of the TPs is considered (second
best model fitted to the behavioral reports), results are also similar
(SI Appendix, Fig. S4).

Finally, we found no statistical evidence for a modulation of
the BPE on the EEG potentials, after correcting for the false
discovery rate (Fig. 6). However, the prediction error derived
from a Bayesian model learning the IF instead of the TPs
significantly modulates late EEG waves (SI Appendix, Fig. S4).
The IF model typically leads to more confident predictions than
the TP model because it is simply inferring one parameter (the
frequency) rather than two transition probabilities. However,
the IF model predictions are more likely to be “wrong” than
the TP model predictions because the sequences of stimuli were
generated using TPs rather than only IFs. Bigger BPEs should
yield stronger modulations of the late EEG waves, according to
a hierarchical Bayesian inference framework. This is what we
find, i.e., the IF BPE modulates more consistently late cortical
responses than the TP BPE.

Discussion

The brain needs to learn to predict forthcoming nociceptive
stimuli in order to minimize potential harm. When pain persists
over time, the brain needs to extract and learn structure or
patterns from streams of sensory inputs without relying on
explicit feedback or associated cues (26, 27). Using a statistical
learning task in conjunction with EEG, we provide evidence
in support of the view that the human brain uses confidence-
weighted Bayesian inference to learn to predict future pain levels
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Fig. 5. EEG correlates of Bayesian confidence. (A) EEG responses averaged over trials, blocks, and participants, for low (Left) and high (Right) stimulation
intensities. Global field power (GFP) time courses are shown in gray, with shaded SD across participants (N = 31). Labels of depicted electrodes, whose
positions are shown in the topoplot at the center: C3, Cz, FCz, CPz, and C4. (B) Encoding of residual confidence in the EEG responses—t-statistics for the
regression coefficients associated with model confidence. Confidence is obtained from the model which best explains the participants’ behavior: a Bayesian
model learning the TPs with an integration time constant of 8 stimuli. The shaded horizontal areas centered around 0 indicate the nonsignificant regions for
P < 0.05, two-tailed. Red bars at the bottom of the plots show intervals where the regression coefficients are significantly different from 0 after false discovery
rate (FDR) correction of the significance levels. Topographies of the largest effects are indicated.

(28) and that confidence modulates the cortical response to pain
(29–32). First, we found that subjective probability estimates of
thermal sensations and the associated confidence reports are well
approximated by a Bayesian inference model. The best fitting
model learns the transition probabilities within the sequences
and accounts for participants’ forgetting by integrating past
observations with a time constant of 8 stimuli (24 s). At the
opposite of non-Bayesian models, this winning model indicates
that the effect of prior expectations is weighted by confidence to
predict forthcoming nociceptive inputs (3, 5, 33). Second, the
modeled confidence was negatively associated with the amplitude
of the vertex potential (VP): The higher the participants’
confidence in the intensity prediction, the smaller the VP.
Prediction errors (PEs), measuring the discrepancy between the
expected stimulus and the one which was received, were only
weakly associated with increases in later EEG responses. These
findings were predicted by our hierarchical Bayesian processing
hypothesis: High confidence reduces the cortical response to
thermal stimuli because the brain relies less on incoming sensory
information and more on prior information, to generate an
inference.

The notion of confidence corresponds to a “feeling-of-
knowing” about some variables in an uncertain environment
(21). It is important to note that this notion is employed in

two kinds of situations, leading to different computational
definitions of confidence. First, confidence in a discrete variable
that is learned can be quantified by the probability for this
variable to take a given value; it corresponds to the so-called
choice or decision confidence (34–38). Second, confidence in the
value of a continuous variable instead relates to the spread (often
quantified by the SD) of the estimated posterior distribution of
this variable (21, 38, 39). For instance, in a TSL task like in this
work, the confidence in the next stimulus intensity corresponds
to the estimated probability to receive this intensity, while the
confidence in the sequence statistic that is learned (AF, IF,
or TP) is related to its estimated SD. As a consequence, decision
confidence—which has been the object of numerous publications
about choice and decision-making—should not be confounded
with the inferential confidence studied here. For the EEG analysis
presented in Fig. 5, the estimated probability of each intensity
has been regressed out to obtain the residual confidence, which is
neither linearly nor quadratically related to decision confidence.

Statistical models of sensory perception predict that inferential
confidence should serve as a weighting factor increasing the effect
of prior beliefs on perception (7, 32, 33). In the pain field, a few
works have studied this principle: From a behavioral viewpoint,
confidence indeed modulates pain perception by weighting the
effect of expectations (29, 30, 32). While it is clear that individuals
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are able to provide metacognitive judgments about pain to some
extent (40), some studies suggested that humans have a less
accurate sense of confidence in the sensory discrimination of
pain compared to other sensory modalities (41). This contrasts
with our finding that inferential confidence is correlated with
the Bayesian model confidence, suggesting that it is derived
from a near-optimal inference process. However, our study
did not focus on fitting different metacognitive models to the
subjective reports, and the match between modeled and estimated
confidences is not perfect—this indicates that there might be
other contributions to the actual confidence estimates, including
metacognitive bias or variability (41, 42).

Regarding the effects of confidence on brain response
dynamics, in a hierarchical Bayesian framework, we would
expect to see early modulations of EEG responses by confidence,
such that increased confidence would lead to a reduction of
these responses (8, 32). The few existing studies that looked at
confidence effects on EEG/MEG signals are consistent with this
view (31, 32) and suggest that confidence for pain is encoded
in the somatosensory cortex (28), but they have not tested its
key predictions on the main EEG responses to pain. Here,
we show that confidence in statistical inference has a negative
association with an early cortical response to nociceptive stimuli,
i.e., the VP. The functional significance of the VP has been
debated for decades. Traditionally, it was thought that the VP
reflects the sensory processing of a stimulus, and it is indeed
often used in clinical neurophysiology as a marker of sensory
function (9, 11, 12). Using nociceptive stimuli, the VP has been
associated with subjective pain intensity, and, as such, it could be
influenced by perceptual and attentional mechanisms (43, 44).
Other works have shown that the VP is more likely to encode
the differential intensity of a stimulus (with respect to baseline)
rather than its absolute intensity (45). Besides, several studies
have emphasized that the VP amplitude is not only affected by
stimulus intensity and the recent history of stimulation but also
by the unpredictability, novelty, and saliency of each stimulus
(15, 31, 46, 47). For instance, just repeating the same stimulus a
few times induces a dramatic habituation of the VP, despite the
fact that perception remains stable and peripheral habituation
can largely be ruled out (e.g., because a new skin spot has been
stimulated after each stimulus) (18, 46). Still, a more recent study
using a cued pain paradigm suggested that the VP is mostly
associated with the sensory processing of a stimulus, without

being affected by expectations and PEs (13). These different
interpretations can result from the lack of a computational
quantification of the pain learning process on a trial basis
that would enable fitting individual learning models to each
participant (41, 48). Indeed, the aforementioned works did not
have estimates of uncertainty or confidence at an individual level
because they relied on axiomatic approaches and/or cue-based
paradigms. Here, we introduce a computational approach which
quantifies nociceptive inference trial by trial, enabling the direct
correlation of information processing quantities to their brain
encoders instead of limiting the contextual information to binary
intensities or discrete stimulus and cues categories.

Another component of the statistical learning process is the
generation of prediction errors (PEs), measuring the difference
between what is predicted (based on previous experiences) and
what is actually received. PEs (or surprise) signals are expected
to modulate some brain responses regardless of the sensory
modality (49), though it is likely that the neural implementation
of these effects have some stimulus specificity (50). Here, we
did not find significant evidence for an effect of PE on the
VP, although there was a weak modulation of late-onset EEG
responses. In different paradigms, using shorter sequences of
stimuli, PEs can account for shorter time-scale habituation
(4, 45). This is not incompatible with our findings: in short
and/or cued sequences, PEs tend to be large, and this is likely to
lead to a stronger cortical modulation, as dictated by Bayesian
inference.

To conclude, we have shown that subjective probability
reports about nociceptive intensity are well approximated by
a Bayesian model learning the transition probabilities be-
tween high and low-intensity stimuli. The Bayesian model’s
confidence was correlated with the participants’ reported
confidence levels. Importantly, inferential confidence was neg-
atively correlated with the VP— the higher the confidence,
the smaller the VP. This indicates that the VP is modu-
lated by confidence-weighted statistical learning of sequences
of nociceptive inputs and is consistent with the predic-
tions of a hierarchical Bayesian inference framework. Given
that some pathological pain conditions have been associ-
ated with altered learning and predictive capabilities (51–54),
future works could assess how confidence representations are
modified in these patients, opening the path to promising
translational studies.
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Materials and Methods

Participants. Thirty-six healthy participants (19 females) were recruited for
the experiment, 32 of them being right handed. The study was approved by
the local ethics committee (Comité d’Ethique Hospitalo-Facultaire de l’Université
catholique de Louvain, B403201316436). All participants gave written informed
consent and received financial compensation. Five participants were excluded
from the analyses for the following reasons:

• participant #1 was a pilot subject and was excluded because different
stimulation parameters were used for her session than the experimental
group (500-ms instead of 250-ms stimuli and a lower I2),

• participants #15 and #33 fell asleep during the experiment, and their data
collection was therefore stopped,

• participant#11 made one mistake during a precheck stimulus discrimination
session (Procedure) and the experiment was terminated,

• and participant #28 made two errors during the postcheck stimulus
discrimination session (Procedure) and was hence excluded.

The procedure used to check discrimination is described below. After this
exclusion, there were 31 subjects (16 females) left, aged 18 to 30 y.

Experiments. The task aims to assess temporal statistical learning (TSL) using
sequences of nociceptive stimuli of two distinct intensities—I1 and I2. The core
principle is that as participants are exposed to a stream of stimuli, they are
able to track the sequence statistics to some extent. Indeed, as the sequence
goes, one collects evidence of whether the sequence contains more I1, more
I2, systematically more I1 following I1 or I2, etc. In our experiment, we aim to
understand how these learning mechanisms are implemented.
Stimuli and Generative Model. The stimuli were 250-ms-long thermal pulses,
applied to the participant’s right volar forearm with a contact thermode (QST Lab,
Strasbourg, France, active stimulation surface: 120 mm2, heating and cooling
ramps of 300 ◦/s, no active baseline temperature). To ease the task and ensure
that the participants were able to easily identify the stimulus intensities along
all the tested sequences, the intensity I1 was chosen to be nonpainful and
cool, while the intensity I2 was selected to be painful and above the individual
Aδ fiber threshold while being bearable. The temperatures employed were
therefore I1 = 15 ◦C and I2 = 58 ◦C, up to modifications based on individual
thresholds and/or discrimination capabilities, as detailed below. The intensity
I2 was described as painful and pricking by all participants.

The stimulus intensity yn ∈ {I1, I2} at each time step n along a given
sequence is uniquely generated according to a two-state Markovian process
such that

• p(y1 = I1) =
p(I1|I2)

p(I1|I2)+p(I2|I1)
.

• p(yn|y1:n−1) = p(yn|yn−1).

Each sequence is therefore characterized by its generative transition probabilities
(TPs, (p(I1|I2), p(I2|I1))), i.e., the probabilities of either intensity given the
previous stimulus intensity.
Procedure. Each participant underwent the following steps: 1) Aδ fibers
threshold estimation through a staircase procedure using reaction times, 2)
one precheck block to assess the discrimination of the two stimulus intensities,
3) one training block, 4) 10 testing blocks, and 5) one postcheck block to reassess
the discrimination of the two stimulus intensities at the end of the experiment.
The total duration of the experiment was approximately 3 h.
A� fibers threshold estimation. The threshold for activating Aδ fibers was
determined with an adaptive staircase procedure using reaction times (RTs)
as described in ref. 55. A 250-ms heat stimulus was assumed to activate Aδ
fibers when the perception RT was ≤ 650 ms. Starting with a 45 ◦C-stimulus,
temperature was increased until the RT became shorter than 650 ms, which led to
decrease the next stimulus temperature. The successive absolute temperature
differences were in {5, 2, 1, 0.1} ◦C, decreasing after each detection change

(RT shorter vs. longer than 650 ms). The threshold was defined as the mean
of 4 stimulation temperatures, which led to three consecutive changes of RT
shorter vs. longer than 650 ms. This led to thresholds of 52.7 ◦C (±5.1) on
average (±SD).
Check blocks. During each precheck and postcheck block, the participant
received a random sequence of 15 stimuli with intensities I1 and I2 fully random
TPs of(0.5, 0.5)and self-paced interstimulus intervals (ISIs). After each stimulus,
the participant was asked to report the stimulus identity (cool or hot), and the
thermode was displaced before delivering the next stimulus. If there were more
than 1 mistake in a precheck block, hesitations about the stimulus identity, or if I2
were unbearable, the stimulus intensities were adjusted accordingly. This led to
increase I1 to 20 ◦C for four participants, decrease I2 to 57 ◦C for 11 participants,
and exclude one participant who could not clearly identify the stimuli. After these
adjustments, if a participant made any further errors in the precheck session,
the experiment was terminated (this happened once). If there were more than
1 mistake in a postcheck block during the last sequences, the participant was
excluded from the analyses (this happened once). We did not allow a single
error in the precheck or postcheck sessions because the temperature difference
between the two stimuli was very large (on average 43 ◦C); we reasoned that
any error in the prechecked or postchecked sessions was likely to be due to
inattention in a healthy subject. SI Appendix, Table S1 indicates the outcomes
of the check blocks, the temperatures used, and the exclusion reasons for all
subjects who were recruited.
Training and testing blocks. During a training or testing block, the participant
was exposed to one sequence of stimuli whose intensities were generated
based on fixed TPs. The thermode was displaced on the forearm between
successive stimuli to avoid trial-to-trial habituation and sensitization which could
prevent the participant from easily distinguishing the two intensities and/or
suppress the Aδ response before the sequence end. The within-sequence ISI
was set to 3 s to leave enough time to slightly displace the thermode while
avoiding a confound between tactile and thermal components in the recorded
responses. The experimenter was equipped with an earpiece through which a
sound signaled the end of each stimulus +0.3 s, as an instruction to initiate
the displacement. Every 15 ± 3 stimuli, the sequence was paused to probe
the participant’s inference of the sequence TPs—the participant was asked to 1)
estimate the probability of the next stimulus intensity and then 2) rate their
confidence in this estimate, Fig. 1B. The scales were displayed on a computer
screen in front of the participant and numerical ratings were collected based on
keyboard inputs. A time limit of 8 s was set to answer each question to avoid too
long breaks within the sequences, which could affect learning (56).

The training block consisted of one sequence of 50 stimuli generated with
TPs(0.7, 0.4)and enabled the participants to understand the generative process
and familiarize themselves with the task. Subjects received feedback at the end
of this sequence on the correctness of their rating trend.

In each of the 10 testing blocks, the participant received one sequence of 100
stimuli. The first and last five sequences were generated with the five different TPs
indicated with numbers in Fig. 1D:(0.5, 0.5),(0.3, 0.7),(0.7, 0.3),(0.3, 0.3),
and (0.7, 0.7). The order of the blocks was randomized across participants, and
variable breaks were allowed between sequences.

Behavioral data were analyzed with Matlab R2019b (The MathWorks), and
Cohen’s d is reported as effect size for each t-test.

Learning Models. The generative parameters of the sequence can be continu-
ously estimated based on the stimuli received, leading to predictions about the
forthcoming stimulus. To understand how participants perform this inference
task, different models performing the same task were fitted to the subjective
probability estimates and compared.

Two families of learning models were considered to explain the sequence
statistics inference: a Bayesian learner and a non-Bayesian Reinforcement
Learning (RL) model which is called the delta rule or Rescorla–Wagner (RW)
model (19, 33, 57).
Bayesian model. A Bayesian model estimates the posterior distribution of a
latent parameterθ given the sequence of observed stimuli y1:n at each time step

PNAS 2023 Vol. 120 No. 4 e2212252120 https://doi.org/10.1073/pnas.2212252120 7 of 10

https://www.pnas.org/lookup/doi/10.1073/pnas.2212252120#supplementary-materials


n using Bayes’ rule (19). Each modelM estimates specific sequence parameters:
either the item frequency (IF) or the alternation frequency (AF) or the transition
probabilities (TPs). Given a model M, the parameter posterior is obtained by
combining the parameter prior and the likelihood of past observations:

p(θ |y1:n, M) ∝ p(y1:n|θ , M) · p(θ |M). [1]

We use a uniform (conjugate) prior distribution over the parameter values,
i.e., p(θ |M) ∼ Beta(θ |1, 1), which enables deriving analytical solutions
for the posterior. Using the Markovian assumption p(yn+1|y1:n, θ) =
p(yn+1|yn, θ), the likelihood can be decomposed as

p(y1:n|θ , M) = p(yn|yn−1, θ , M) · . . . · p(y3|y2, θ , M)·

p(y2|y1, θ , M) · p(y1|θ , M). [2]

This likelihood and thereby the posterior can be further simplified depending
on the model M as shown below.

1. IF learning. With this model, the inferred parameter is the probability to
receive a stimulus of intensity I1: θ = p(I1) := θI1 . The posterior is
therefore

p(θI1 |y1:n, M) ∼ Beta(θI1 |N1 + 1, N2 + 1), [3]

whereN1 andN2 are the numbers of stimuli of intensity I1 and I2 respectively
within y1:n.

2. AF learning. The inferred parameter is the probability of intensity alternation,
i.e., the probability to switch from I1 to I2 or vice versa within the sequence:
θ = p(alt.) := θalt.. The posterior distribution reads

p(θalt.|y1:n, M) ∼ Beta(θalt.|Na + 1, Nr + 1), [4]

with Na and Nr the number of alternations and repetitions of stimulus
intensities within y1:n.

3. TPs learning. The inferred parameter is now two-dimensional and corre-
sponds to the transition probabilities of the sequence of stimuli: θ :=
(θI1|I2 , θI2|I1), which leads to the posterior

p(θ |y1:n, M) ∼ Beta(θI1|I2 |N1|2 + 1, N2|2 + 1)·

Beta(θI2|I1 |N2|1 + 1, N1|1 + 1), [5]

where Nj|k is the number of transitions from Ij to Ik counted within y1:n.

To account for limited memory constraints during inference and an unknown
timescale of integration, a leaky integration of observations is considered (19). All
the models are endowed with a free parameterω ∈ [1,∞]—the integration time
constant—and the kth last observation counted (being it an item, an alternation,
or a transition depending on the model considered) is weighted according to an
exponential decay by a factor exp−k/ω .

For all Bayesian models, some outcomes of interest can be deduced from the
posterior at each position n within the sequence, when the observations y1:n
have been received:

• Theprobabilityof thenextstimulus is themeanoftheposteriordistribution:

p(yn+1|y1:n, M) =

∫ 1

0
p(yn+1, θ |y1:n, M)dθ

=

∫ 1

0
p(yn+1|θ , yn, M) · p(θ |y1:n, M)dθ. [6]

• The confidence in the learned parameter relates to the precision (inverse
variance, π := 1/σ 2) of the posterior (33, 38):

cn = − log(σ (p(θ |y1:n, M))) = 0.5 · log(π(p(θ |y1:n, M))). [7]

The confidence quantifies the certainty in the estimated continuous variable
and is typically expressed in log space so that the SD and variance are
proportional.

• The prediction error is defined like in a Bayesian predictive coding framework
(58, 59) as

en = 1− p(yn|y1:n−1, M). [8]

It can be noted that, likewise, the Shannon surprise (33) elicited by
the last stimulus also quantifies the discrepancy between the intensity
that was expected and the one that is received (yn), in a log space:
sn = − log(p(yn|y1:n−1, M)). Examples of posterior distributions and
their mean before (in gray) and after (in black) receiving a stimulus within
the sequence are shown in SI Appendix, Fig. S5, illustrating the concepts of
confidence and prediction errors.

To assess the extent to which these models and their parameter (the integration
time constant) are identifiable in our experiment, parameter and model recovery
analyses can be found in SI Appendix, Fig. S6.
Rescorla–Wagner, or delta rule, models. The delta rule model, or Rescorla–
Wagner (RW) model (57, 60), is compared to the Bayesian model. While the
latter weights the posterior updates by confidence (33), the delta rule uses a
constant and nonstatistical weighting of incoming observations to estimate the
latent parameter. The inferred parameter θ (IF, AF, or TPs) is initiated at 0.5 and
is seen as a state value V in the RW models, as detailed in what follows.

1. IF learning. The state value corresponds to the estimated probability to
receive a stimulus of intensity I1: Vn := θ̂I1 ,n.

At each step n in the sequence, the state is updated as

Vn = Vn−1 + α · (Rn − Vn−1), [9]

where Rn = 1 if yn = I1 and Rn = 0 if yn = I2,

and with the learning rate α ∈]0, 1[ being a free model parameter.
2. AF learning. The state value corresponds to the estimated probability of an

alternation within the sequence: Vn := θ̂alt.,n.

The state is updated as

Vn = Vn−1 + α · (Rn − Vn−1), [10]

where Rn = 0 if yn = yn−1 and Rn = 1 otherwise.

3. TPs learning. The state value is two-dimensional and corresponds to the
estimated transition probabilities: V1,n := θ̂I1|I1 ,n, V2,n := θ̂I1|I2 ,n.

The state is updated as
Vi,n = Vi,n−1 + α · (Rn − Vi,n−1), if yn−1 = Ii,

with Rn = 1 if yn = I1 and Rn = 0ifyn = I2,
Vi,n = Vi,n−1 if yn−1 6= Ii.

[11]

Model Fitting. To determine to which extent each model accounts for the
subjective reports, we quantify the relationship between subjective and model
probability estimates by linearly regressing the subjective reports on the
modeled estimates for each participant and model. Across trials indexed by
n, the probability report xn is hence regressed on the model probability of I1
pMi ,ωi
n deduced from each modelMi with free parameterωi as described above

(Bayesian and RW models learning the IF, AF, or TPs, with integration time
constant or learning rate as a free parameter) as:

xn = β0 + β1 · p
Mi ,ωi
n + ε, [12]

where β are the regression coefficients, estimated by OLS, and ε the residuals.
The quality of this fit is quantified by the model evidence (or marginal

likelihood) p(x|Mi), which is estimated with the Bayesian information criterion
(BIC) as:

p(x|Mi) ≈ exp(
−BIC

2
), [13]
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with BIC = N · log(σ 2
e ) + q · log(N), the mean squared error (MSE) of

the regression σ 2
e = minωi

1
N

∑N
n=1(xn − x̂Mi ,ωi

n )2, N the number of
observations and q the number of parameters (here there are two regression
coefficients and one model-free parameter). When comparing models with the
same number of parameters, minimizing the BIC amounts to minimizing the
MSE. We considered 99 possible learning rates for the RW models in the range
from 0.005 to 0.95, and 103 integration time constants for the Bayesian models
from 1 to 400 plus infinity (i.e., a perfect integrator).

Individual, subject-wise, model probabilities were obtained by normalizing
the model evidence estimated with the BIC as in Eq. 13.

Model Comparison. The model with the largest model evidence (or lowest BIC)
was considered to be the best fit for the ratings. To compare the six models Mi
described above, we conducted a Bayesian model comparison as implemented
in the VBA toolbox (61) and adopted a random-effect approach, assuming that the
optimal model can differ across participants. The analysis yielded the expected
probability of each model Mi and the probability for Mi to be more frequent
than all the other models in the population, which is called the “exceedance
probability” and is denoted by φ.

The model-free parameter which approximated the subjective reports best
on average was determined through Bayesian model averaging (49) for the
BayesianandRWmodelsseparatelybyestimatingp(ω|x) ∝

∑
i p(x|Mi,ω) ≈∑

i exp(−BIC(Mi,ω)/2).

Electrophysiological Recordings. EEG was recorded during the whole
experiment using 64 Ag–AgCl electrodes placed on the scalp according to
the international 10/10 system (WaveGuard 64-channel cap, Advanced Neuro
Technologies) and with an average reference. The synchronization of the stimuli,
triggers on the EEG, and behavioral questions was performed with the Data
Acquisition Toolbox and Psychtoolbox running on Matlab. Electrode impedances
were kept below 10 k. Eye movements were recorded using a pair of surface
electrodes placed above and on the right side of the right eye, and one
electrocardiogram (EKG) lead was recorded with two surface electrodes, one
below the right clavicle near the shoulder and the other on the last left rib.
Signals were amplified and digitized at 1,000 Hz. Participants were asked to
move as little as possible and keep their gaze fixed on the computer screen
in front of them, which displayed a fixation cross and occasional behavioral
questions (Experiments).
Preprocessing. The EEG recordings were analyzed using Matlab R2019b (The
MathWorks). First, the following preprocessing steps were conducted using
Letswave 6 (http://letswave.org) (62): high-pass filtering above 0.5 Hz with
a 4th order zero-phase Butterworth filter, 50-Hz bandpass notch filtering,
downsampling to 500 Hz, segmentation of trials from−1 to +1.5 s relative to
stimulus onsets, baseline mean correction, and rejection of stereotyped artifacts
using an independentcomponent analysis (ICA) decomposition(63). Then,using
Matlab, epochs were low-pass filtered below 30 Hz, and trials with amplitudes
reaching 80 μV were rejected, leading to keep 491± 17.3 and 490.2± 16.27
(grand mean± SD) stimuli of intensities I1 and I2. We also extracted gamma-
band oscillations, a typical EEG correlate of pain perception (54, 64); details and
results are reported in SI Appendix; (SI Appendix, Fig. S7).
Linear regressions. We sought to determine whether and how the vertex
potential (VP) reflects the behavioral outcomes observed during TSL. The model
which best approximated the participants’ behavior was considered (Bayesian
model learning the TPs with a time constantω = 8), and the VP was regressed

on its key inferential outcomes. Two regressors were included in the analysis:
the prediction error, Eq. 8, known to affect sensory responses (4, 49), and the
confidence in the estimates, which weights learning in a Bayesian framework
(33) Eq. 7.

To ensure that the effects of confidence on EEG signals were not driven by
confounding factors related to the prediction itself (p(I1|y1:n, Mi,ωi) := pn)
(20), we first computed the residual confidence crn from the confidence cn by
regressing out the predicted probability, its logarithm, and its square as:

cn = β r0,k+β
r
1 ·pn+β r2 ·p

2
n+β r3 · log(pn)+β r4 · log(1−pn)+crn, [14]

where k denotes the testing block index, n the trial index, andβ r the regression
coefficients. The first coefficient β r0,k is a fixed intercept grouped by testing
condition k (i.e., generative probabilities of the sequences). Then, for each
participant, at each channel and at each time point from −0.5 to 1 s around
stimulus onset, the EEG signal zn was regressed on the Bayesian prediction error
(BPE) en and residual confidence crn (omitting the dependence of the regressors
upon the model Mi and its parameterωi for clarity):

zn = β0,k + β1 · en + β2 · c
r
n + ε. [15]

The regressions were computed across all available trials.
The two considered regressors—BPE and residual confidence—deduced from

the optimal inference were not linearly related, enabling to compute and safely
interpret the regression coefficients. To confirm that they are not collinear, we
computed the variance inflation factors (VIFs) for (residual) confidence against
BPE (25): VIF = 1

1−R2 , where R2 is the coefficient of determination obtained
when linearly regressing (residual) confidence on BPE. Unless stated otherwise,
“residual” is assumed when mentioning confidence in this work. Significance of
the regression coefficients across participants was assessed using one-sample
t-tests against 0. The significance level was set to 0.05 and corrected for multiple
comparisons across time points and selected electrodes (C3, Cz, FCz, CPz, and C4)
with the false discovery rate (FDR) correction.

As suggested by a reviewer, we also assessed the effects of BPE and confidence
on the EEG responses from all the electrodes, using cluster-based significance
tests (by shuffling the regressors across trials). With this approach, SI Appendix,
Figs. S8 and S9 show all the significant clusters that are found for the TP and IF
models, respectively, ordered in decreasing order of cluster-level significance.
It can be noted that the largest significant clusters are concentrated around:
1) the N2-P2 components for confidence and 2) later potentials for prediction
errors, both effects being centrally distributed around the vertex. These analyses
provide additional validations of our main results.

Data, Materials, and Software Availability. The behavioral and EEG data
sets are publicly available on the OSF repository at https://osf.io/8xvtg/
(DOI https://doi.org/10.17605/OSF.IO/8XVTG). The codes used to conduct the
experiments, generate the model outcomes, analyze the data and produce all
figures are openly available at https://doi.org/10.5281/zenodo.7509927.

ACKNOWLEDGMENTS. This work was supported by a Medical Research
Council Career Development Award to FM (MR/T010614/1). B.S. was funded
by Wellcome (214251/Z/18/Z), Versus Arthritis (21537), and IITP (MSIT 2019-
0-01371). D.M. is a Research Fellow of the Fonds de la Recherche Scientifique,
FNRS.

1. L. Y. Atlas, N. Bolger, M. A. Lindquist, T. D. Wager, Brain mediators of predictive cue effects on
perceived pain. J. Neurosci. 30, 12964–12977 (2010).

2. L. Y. Atlas, T. D. Wager, How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).
3. M. Jepma, L. Koban, J. van Doorn, M. Jones, T. D. Wager, Behavioural and neural evidence for

self-reinforcing expectancy effects on pain. Nat. Hum. Behav. 2, 838–855 (2018).
4. A. Strube, M. Rose, S. Fazeli, C. Büchel, The temporal and spectral characteristics of expectations and

prediction errors in pain and thermoception. Elife 10, e62809 (2021).
5. F. Mancini, S. Zhang, B. Seymour, Learning the statistics of pain: Computational and neural

mechanisms. Nat. Commun. 13, 1–12 (2022).
6. E. Schulz et al., Prefrontal gamma oscillations encode tonic pain in humans. Cereb. Cortex 25,

4407–4414 (2015).

7. C. Büchel, S. Geuter, C. Sprenger, F. Eippert, Placebo analgesia: A predictive coding perspective.
Neuron 81, 1223–1239 (2014).

8. B. Seymour, F. Mancini, Hierarchical models of pain: Inference, information-seeking, and adaptive
control. NeuroImage 222, 117212 (2020).

9. G. Cruccu et al., Recommendations for the clinical use of somatosensory-evoked potentials. Clin.
Neurophysiol. 119, 1705–1719 (2008).

10. A. Mouraux, G. D. Iannetti, Nociceptive laser-evoked brain potentials do not reflect nociceptive-
specific neural activity. J. Neurophysiol. 101, 3258–3269 (2009).

11. A. C. Chen, D. M. Niddam, L. Arendt-Nielsen, Contact heat evoked potentials as a valid
means to study nociceptive pathways in human subjects. Neurosci. Lett. 316, 79–82
(2001).

PNAS 2023 Vol. 120 No. 4 e2212252120 https://doi.org/10.1073/pnas.2212252120 9 of 10

http://letswave.org
https://www.pnas.org/lookup/doi/10.1073/pnas.2212252120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2212252120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2212252120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2212252120#supplementary-materials
https://osf.io/8xvtg/
https://doi.org/https://doi.org/10.17605/OSF.IO/8XVTG
https://doi.org/10.5281/zenodo.7509927


12. R. De Keyser, E. N. van den Broeke, A. Courtin, A. Dufour, A. Mouraux, Event-related brain
potentials elicited by high-speed cooling of the skin: A robust and non-painful method to assess the
spinothalamic system in humans. Clin. Neurophysiol. 129, 1011–1019 (2018).

13. M. M. Nickel et al., Temporal–spectral signaling of sensory information and expectations in the
cerebral processing of pain. Proc. Natl. Acad. Sci. U.S.A. 119, e2116616119 (2022).

14. B. Bromm, R. D. Treede, Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp.
Res. 67, 153–162 (1987).

15. I. Ronga, E. Valentini, A. Mouraux, G. D. Iannetti, Novelty is not enough: Laser-evoked potentials are
determined by stimulus saliency, not absolute novelty. J. Neurophysiol. 109, 692–701 (2012).

16. D. Torta, M. Liang, E. Valentini, A. Mouraux, G. D. Iannetti, Dishabituation of laser-evoked EEG
responses: Dissecting the effect of certain and uncertain changes in stimulus spatial location. Exp.
Brain Res. 218, 361–372 (2012).

17. E. Valentini et al., The primary somatosensory cortex largely contributes to the early part of the
cortical response elicited by nociceptive stimuli. Neuroimage 59, 1571–1581 (2012).

18. F. Mancini et al., Characterizing the short-term habituation of event-related evoked potentials.
eNeuro 5 (2018).

19. F. Meyniel, M. Maheu, S. Dehaene, Human inferences about sequences: A minimal transition
probability model. PLoS Comput. Biol. 12, e1005260 (2016).

20. F. Meyniel, Brain dynamics for confidence-weighted learning. PLOS Comput. Biol. 16, e1007935
(2020).

21. F. Meyniel, D. Schlunegger, S. Dehaene, The sense of confidence during probabilistic learning: A
normative account. PLoS Comput. Biol. 11, e1004305 (2015).

22. S. Gherman, M. G. Philiastides, Neural representations of confidence emerge from the process of
decision formation during perceptual choices. Neuroimage 106, 134–143 (2015).

23. V. Legrain, G. D. Iannetti, L. Plaghki, A. Mouraux, The pain matrix reloaded: A salience detection
system for the body. Prog. Neurobiol. 93, 111–124 (2011).

24. I. De Schoenmacker, J. Archibald, J. Kramer, M. Hubli, Improved acquisition of contact heat evoked
potentials with increased heating ramp. Sci. Rep. 12, 1–11 (2022).

25. S. Sheather, A Modern Approach to Regression with R (Springer Science and Business Media,
2009).

26. J. Giorgio et al., Functional brain networks for learning predictive statistics. Cortex 107, 204–219
(2018).

27. H. Wang et al., Neural processes responsible for the translation of sustained nociceptive inputs into
subjective pain experience. Cereb. Cortex, 1–17 (2022).

28. F. Fardo et al., Expectation violation and attention to pain jointly modulate neural gain in
somatosensory cortex. Neuroimage 153, 109–121 (2017).

29. W. Yoshida, B. Seymour, M. Koltzenburg, R. J. Dolan, Uncertainty increases pain: Evidence for
a novel mechanism of pain modulation involving the periaqueductal gray. J. Neurosci. 33,
5638–5646 (2013).

30. A. Grahl, S. Onat, C. Büchel, The periaqueductal gray and Bayesian integration in placebo analgesia.
Elife 7, e32930 (2018).

31. E. Valentini, D. M. Torta, A. Mouraux, G. D. Iannetti, Dishabituation of laser-evoked EEG responses:
Dissecting the effect of certain and uncertain changes in stimulus modality. J. Cognit. Neurosci. 23,
2822–2837 (2011).

32. C. A. Brown, B. Seymour, W. El-Deredy, A. K. Jones, Confidence in beliefs about pain predicts
expectancy effects on pain perception and anticipatory processing in right anterior insula. Pain
139, 324–332 (2008).

33. F. Meyniel, S. Dehaene, Brain networks for confidence weighting and hierarchical inference during
probabilistic learning. Proc. Natl. Acad. Sci. U.S.A. 114, E3859–E3868 (2017).

34. A. Kepecs, N. Uchida, H. A. Zariwala, Z. F. Mainen, Neural correlates, computation and behavioural
impact of decision confidence. Nature 455, 227 (2008).

35. B. Hangya, J. I. Sanders, A. Kepecs, A mathematical framework for statistical decision confidence.
Neural Comput. 28, 1840–1858 (2016).

36. J. I. Sanders, B. Hangya, A. Kepecs, Signatures of a statistical computation in the human sense of
confidence. Neuron 90, 499–506 (2016).

37. J. Herding, S. Ludwig, A. von Lautz, B. Spitzer, F. Blankenburg, Centro-parietal EEG potentials index
subjective evidence and confidence during perceptual decision making. NeuroImage 201, 116011
(2019).

38. A. Pouget, J. Drugowitsch, A. Kepecs, Confidence and certainty: Distinct probabilistic quantities for
different goals. Nat. Neurosci. 19, 366–374 (2016).

39. M. Lebreton, R. Abitbol, J. Daunizeau, M. Pessiglione, Automatic integration of confidence in the
brain valuation signal. Nat. Neurosci. 18, 1159–1167 (2015).

40. T. C. Dildine, E. A. Necka, L. Y. Atlas, Confidence in subjective pain is predicted by reaction time
during decision making. Sci. Rep. 10, 1–14 (2020).

41. B. Beck, V. Peña-Vivas, S. Fleming, P. Haggard, Metacognition across sensory modalities: Vision,
warmth, and nociceptive pain. Cognition 186, 32–41 (2019).

42. M. Allen et al., Unexpected arousal modulates the influence of sensory noise on confidence. Elife 5,
e18103 (2016).

43. L. Garcia-Larrea, R. Peyron, B. Laurent, F. Mauguière, Association and dissociation between laser-
evoked potentials and pain perception. Neuroreport 8, 3785–3789 (1997).

44. M. C. Lee, A. Mouraux, G. D. Iannetti, Characterizing the cortical activity through which pain
emerges from nociception. J. Neurosci. 29, 7909–7916 (2009).

45. R. Somervail et al., Waves of change: Brain sensitivity to differential, not absolute, stimulus
intensity is conserved across humans and rats. Cereb. Cortex 31, 949–960 (2021).

46. G. D. Iannetti, N. P. Hughes, M. C. Lee, A. Mouraux, Determinants of laser-evoked EEG responses:
Pain perception or stimulus saliency? J. Neurophysiol. 100, 815–828 (2008).

47. Z. Zhang, L. Hu, Y. S. Hung, A. Mouraux, G. Iannetti, Gamma-band oscillations in the primary
somatosensory cortex a direct and obligatory correlate of subjective pain intensity. J. Neurosci. 32,
7429–7438 (2012).

48. V. M. Karlaftis et al., Multimodal imaging of brain connectivity reveals predictors of individual
decision strategy in statistical learning. Nat. Hum. Behav. 3, 297–307 (2019).

49. M. Maheu, S. Dehaene, F. Meyniel, Brain signatures of a multiscale process of sequence learning in
humans. eLife 8, e41541 (2019).

50. R. Frost, B. C. Armstrong, N. Siegelman, M. H. Christiansen, Domain generality versus
modality specificity: The paradox of statistical learning. Trends Cognit. Sci. 19, 117–125
(2015).

51. M. N. Baliki, P. Y. Geha, H. L. Fields, A. V. Apkarian, Predicting value of pain and analgesia: Nucleus
accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66,
149–160 (2010).

52. M. N. Baliki, A. T. Baria, A. V. Apkarian, The cortical rhythms of chronic back pain. J. Neurosci. 31,
13981–13990 (2011).

53. B. W. Smith et al., Habituation and sensitization to heat and cold pain in women with fibromyalgia
and healthy controls. Pain 140, 420–428 (2008).

54. M. Ploner, C. Sorg, J. Gross, Brain rhythms of pain. Trends Cognit. Sci. 21, 100–110 (2016).
55. M. Churyukanov, L. Plaghki, V. Legrain, A. Mouraux, Thermal detection thresholds of Aδ-and C-

fiber afferents activated by brief CO2 laser pulses applied onto the human hairy skin. PloS One 7,
e35817 (2012).

56. L. Y. Atlas, C. F. Sandman, E. A. Phelps, Rating expectations can slow aversive reversal learning.
Psychophysiol 59, e13979 (2021).

57. R. A. Rescorla, A. R. Wagner, “A theory of Pavlovian conditioning: Variations in the effectiveness of
reinforcement and nonreinforcement” in Classical Conditioning II: Current Theory Research (1972),
pp. 64–99.

58. L. Aitchison, M. Lengyel, With or without you: Predictive coding and Bayesian inference in the
brain. Curr. Opin. Neurobiol. 46, 219–227 (2017).

59. S. Geuter, S. Boll, F. Eippert, C. Büchel, Functional dissociation of stimulus intensity encoding and
predictive coding of pain in the insula. Elife 6, e24770 (2017).

60. R. R. Miller, R. C. Barnet, N. J. Grahame, Assessment of the Rescorla-Wagner model. Psychol. Bull.
117, 363 (1995).

61. J. Daunizeau, V. Adam, L. Rigoux, VBA: A probabilistic treatment of nonlinear models for
neurobiological and behavioural data. PLoS Comput. Biol. 10, e1003441 (2014).

62. A. Mouraux, G. D. Iannetti, Across-trial averaging of event-related EEG responses and beyond.
Magn. Reson. Imaging 26, 1041–1054 (2008).

63. A. J. Bell, T. J. Sejnowski, An information-maximization approach to blind separation and blind
deconvolution. Neural Comput. 7, 1129–1159 (1995).

64. G. Liberati et al., Gamma-band oscillations preferential for nociception can be recorded in the
human insula. Cereb. Cortex 28, 3650–3664 (2018).

10 of 10 https://doi.org/10.1073/pnas.2212252120 pnas.org


