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Adaptive immunity is driven by specific binding of hypervariable receptors to diverse
molecular targets. The sequence diversity of receptors and targets are both individually
known but because multiple receptors can recognize the same target, a measure of
the effective “functional” diversity of the human immune system has remained elusive.
Here, we show that sequence near-coincidences within T cell receptors that bind specific
epitopes provide a new window into this problem and allow the quantification of how
binding probability covaries with sequence. We find that near-coincidence statistics
within epitope-specific repertoires imply a measure of binding degeneracy to amino
acid changes in receptor sequence that is consistent across disparate experiments.
Paired data on both chains of the heterodimeric receptor are particularly revealing
since simultaneous near-coincidences are rare and we show how they can be exploited
to estimate the number of epitope responses that created the memory compartment.
In addition, we find that paired-chain coincidences are strongly suppressed across
donors with different human leukocyte antigens, evidence for a central role of antigen-
driven selection in making paired chain receptors public. These results demonstrate the
power of coincidence analysis to reveal the sequence determinants of epitope binding
in receptor repertoires.

T cells | receptor-ligand binding | repertoire sequencing | specificity

Which epitopes are recognized by an individual’s T cells? The specificity of T cells is
encoded genetically in the loci coding for the hypervariable loops of the T cell receptor
(TCR) chains (1), and thus in principle reading out the immune repertoire by sequencing
provides the information to answer this question (2–4). Yet, deciphering the complex
sequence ‘code’ for the many-to-many mapping between TCRs and peptide-major
histocompatibility complexes (pMHCs) remains an open problem (5).

Aspects of this code are coming into view thanks to data from multiple experimental
approaches. Structural studies have revealed the spatial arrangements in which TCRs
bind pMHCs (6–11). Mutagenesis experiments (12, 13) have provided early evidence
that some amino acid substitutions in TCRs maintain or even increase binding affinity
to a given epitope. Such local degeneracy of the binding code has been confirmed
more recently by sequencing of epitope-specific groups of TCRs (14–21), and sequence
patterns in these datasets are now used in machine learning approaches to predict further
binders to the same epitope (22–26).

Direct experiment can, however, examine only a minute fraction of all the possible
binding combinations, due to the enormous diversity of potential receptors and epitopes:
more than 1012 different peptides (27) are presented on 1000s of human MHC alleles
(28) to up to 1061 possible TCRs (29) generated by the recombination machinery. As a
result, rules that generalize across epitopes would be of utmost utility, but TCR diversity
has made it difficult to find such rules.

To address this problem, we here introduce a statistical framework that quantifies the
sequence degeneracy of receptors that bind to a common target by counting sequence
coincidences in epitope-specific TCR repertoires and comparing them with the rate at
which they occur in suitably chosen “background” repertoires. The specific repertoires we
study can be created in a controlled way in an experiment, or can arise organically, as when
a memory compartment is formed in response to an infection. Generalizing the analysis to
inexact coincidences (pairs of sequences with high sequence similarity), we find that they,
too, are enhanced in epitope-specific repertoires. We demonstrate mathematically that
the ratio of near-coincidence probabilities between data and background, as a function
of sequence distance, is a direct measure for how specificity is correlated across sequence
space.
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Applying this framework to epitope-specific T cell repertoires
that have been acquired in different ways (14–17) reveals a
common coincidence enhancement signature of specific binding
across disparate experiments. We relate this signature to the
existence of a typical average local binding degeneracy, defined
as the fraction of the available sequence neighbors of a specific
T cell receptor (available in the sense of being present in a natural
repertoire) that will also bind to the same pMHC. In addition, we
see a weaker version of this signature in paired chain repertoires
that have not been subjected to explicit ex vivo enrichment
for epitope-specific T cells (30). We exploit this observation
in two ways: we provide clear evidence that this signature is
associated with MHC presentation of antigen by demonstrating
that coincidences between different donors are strongly affected
by the overlap between their human leukocyte antigen (HLA)
types; in addition, after some mathematical analysis, we use
it to quantify the effective functional diversity of the memory
repertoire, in the sense of an estimated number of epitope
recognition events it records. Taken together, these results
illustrate how coincidence analysis can help to quantitatively
address immunological questions whose answers have so far
remained elusive.

1. Overview of Analysis Strategy

We illustrate the broad strategy of our approach on a repertoire of
CD8+ T cells specific to an Epstein-Barr Virus peptide presented
on HLA-A*02:01. The data are from Dash et al. (14) and were
obtained using single-cell receptor sequencing of tetramer-sorted
T cells binding the specific pMHC.

Fig. 1A shows a clustering by pairwise amino acid sequence
distance of all distinct nucleotide sequence clones. In this
visualization, each position in the heatmap records the sequence
distance 1 between the amino acid sequences of a pair of
distinct T cell clones. TCRs are heterodimeric, and the heatmaps
above (below) the diagonal record distances between the β
(α) hypervariable complementary-determining region 3 (CDR3)
loops of the sequence pair. Clustering is based on the sum of
distances between α and β chains. Here, and throughout this
work, we define sequence distances as the minimal number of
edits (insertions, deletion, or substitutions) that change one
sequence into another, known as the Levenshtein distance.
We only consider sequence distances between CDR3 loops
for simplicity, but the mathematical framework we develop is
general and could also be used with distance measures that
include other hypervariable receptor regions. By clones we mean
lineages of cells that go back to the same ancestral recombination
event, which we define in practice based on nucleotide sequence
identity. A zero distance pair arises when due to convergent
recombination two distinct nucleotide sequences have the same
amino acid translation. We chose to ignore the number of times
a given nucleotide sequence is sampled, as clone sizes also reflect
TCR-independent lineage differences (31, 32). Instead, we
analyze convergent selection imposed on distinct clones with
the same or similar TCR as a stringent measure of epitope-driven
functional selection. In the experiments that we consider in this
manuscript, TCRs are selected for binding to a specific pMHC
ligand, and our analysis quantifies the imprint of this filtering
funnel on TCR sequence statistics. We use the word “selection”
to refer to this filtering process, which is distinct from, and not
to be confused with, thymic selection.

Fig. 1A allows some direct conclusions about important
features of the TCR-pMHC binding code: First, it highlights the
remarkable sequence similarity among specific TCRs and it shows
that this similarity also holds for TCRs from different donors.

Second, it shows that there are several clusters of sequences
differing by a few substitutions from each other, plus a substantial
number of isolated sequences that differ from all other sequences
by many substitutions. Fig. 1B shows sequence logos for two
prominent clusters. Interestingly, they are quite different from
each other, even when accounting for chemical similarity of
amino acids. This suggests that clusters might represent broad
structurally distinct binding solutions, each with local residue
degeneracy. This view is supported by the V and J gene usage,
which is highly restricted within each cluster but nonoverlapping
between them. Third, it demonstrates that chain-pairing is biased
even among specific binders as similarity on one chain is often
associated with similarity on the other chain.

To compare statistics of sequence similarity across epitope
targets, we next compress the off-diagonal elements of the
clustermap into a normalized pairwise distance histogram that we
denote by pC (1). We normalize coincidences by N (N − 1)/2,
the number of possible pairs (i.e., upper diagonal elements in the
matrix), so that pC (1) is a probability distribution on 1. Fig. 1
C and D show the histograms for α and β chains, respectively.
Fig 1E shows the histogram for the complete αβ-TCR, with
paired chain sequence distance defined as the sum of distances
of both chains. These normalized pairwise distance distributions
are the basic element of our analysis framework. We also plot
the pC (1) distributions derived from bulk sequencing of a
“background” sample as a proxy for the expected distribution
prior to selection. We use sequencing data from Minervina et
al. (16) of total peripheral blood mononuclear cells (PBMCs)
from a healthy individual for these background curves for α and
β chains. For the paired chain background curve, we currently
lack sufficiently deeply sequenced datasets. Fortunately, previous
studies have concluded that α and β chain gene usages are largely
uncorrelated (30, 33, 34), so we use the convolution of the α
chain and β chain distributions from Minervina et al. (16) as a
plausible paired chain background prior to selection. In section
7, we will present further evidence supporting the use of this
assumption.

The central observation is that pC (1) is orders of magnitude
larger in epitope-specific repertoires than the corresponding
background for small 1. Exact coincidence frequencies are in
excess by surprisingly large factors (∼109 and ∼104 for paired
and unpaired chains, respectively). This excess extends to near-
coincidences, but for large enough 1, the selected and the
background values of pC (1) approach each other. The manner
in which their ratio falls to unity will turn out to be roughly
the same across different types of experiments, an intriguing
fact that points to shared underlying biophysical rules of specific
binding.

2. Theory of Coincidence Analysis

A. Definitions and Statistical Estimation. The T cell clones that
enter the immune repertoire are drawn from a background
distribution P(σ ) over all possible nucleotide sequences σ
that code for the TCR hypervariable chains. This distribution
summarizes the statistics of the recombination process by which
the receptor coding genes are rearranged, and it is known that
probabilities of individual sequences range over many orders
of magnitude (35). Experimentally, clones are identified by
distinct nucleotide sequences, and coincidences (exact or near)
are defined by the corresponding amino acid sequence (since that
is what determines functional identity or similarity). Generation
probabilities are such that it is unlikely that two separate T cell
generation events will give the same nucleotide sequence, but
it is less uncommon for them to give the same CDR3 amino
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Fig. 1. Patterns of sequence similarity within an epitope-specific repertoire. (A) Sequence-similarity clustermap of TCRs binding to an Epstein-Barr Virus epitope
as obtained by single-cell TCR sequencing following tetramer sorting (Data: Dash et al. (14), antigen BMLF). Lower (Upper) triangle shows pairwise distances of
CDR3� (CDR3�) sequences. Sequences are ordered by average linkage hierarchical clustering based on summed �� distance. Columns on the left show the
subject of origin and cluster assignment; sequences not belonging to a cluster based on a cutoff distance of 6 are shown in black. (B) Sequence logos for two
clusters of specific sequences. Amino acids are colored by their chemical properties, and V and J gene usage within the cluster is displayed alongside the logo.
(C–E) Normalized histograms of pairwise distances between (C) CDR3�, (D) CDR3�, and (E) CDR3�� sequences specific to the epitope show vastly increased
sequence similarity relative to background expectations.

acid sequence. Therefore, the practical limitation of identifying
clones by distinct nucleotide sequences instead of recombination
events introduces only minimal bias. The normalized histogram
of pairwise distances defined operationally in the previous section
is then an empirical estimate of coincidence probabilities, more
formally defined as

pC [P](1) =
∑
σ ,σ ′

P(σ )P(σ ′)Id(σ ,σ ′)=1, [1]

where I is the indicator function, the sum is over independent
pairs of nucleotide sequences, and d(σ , σ ′) is the sequence
distance between the amino acid translations of the sequences.

Given the diversity of TCRs, it is surprising that we are able to
find any coincidences in small epitope-specific repertoires. The
occurrence of coincidences at sample sizes much smaller than the
space of all sequences is connected to the “birthday problem” in
probability theory (36, 37): In a sample of N distinct sequences,
there are N (N −1)/2 distinct pairs, and the expected number of

pairs at distance 1 is thus pC (1)N (N − 1)/2. This means that
we can estimate normalized pair probabilities pC (1) ∼ 10−3

using repertoires of only N ∼ 102 sequences. This is fortunate
since it is precisely this combination of orders of magnitude that
we encounter when we estimate pC (1) from epitope-specific
repertoires at small values of 1 (Fig. 1 C–E).

B. Intuition for Why Coincidences Increase in Epitope-Specific
Repertoires. To gain intuition, we define a probability distribu-
tion on amino acid sequences by marginalizing over nucleotide
sequences,P(τ ) =

∑
σ∈Tτ P(σ ), whereTτ is the set of sequences

that translate to amino acid sequence τ . In this notation, we can
give an alternative definition of the exact coincidence probability
(the value of Eq. 1 at 1 = 0) as

pC [P] =
∑
τ

P(τ )2. [2]
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This expression is Simpson’s diversity index from ecology (36).
Its inverse 1/pC is known as a true diversity, an estimate of an
effective number of species present in a population. Here, amino
acid receptor sequences take the role of species, which means that
pC is an index of the diversity of amino acid sequences coded for
by the different clones in the repertoire. Only some receptors bind
an epitope, thus we expect epitope-specific repertoires to have
lower diversity. This provides an intuitive explanation why pC ,
the inverse of true diversity, increases with selection. From this
perspective, Eq. 1 represents a generalization of Simpson’s index
to a similarity-weighted measure of diversity (38). As epitope-
specific repertoires consist of TCRs with similar sequences, we
expect similarity-weighted diversity to also be restricted. This in
turn helps rationalize why pC (1) is increased in epitope-specific
repertoires for some range of small 1. A central point of this
paper is that a great deal of information is contained in the
generalization of Simpson’s index to inexact coincidences.

To develop this intuition further, let us represent T cells with
distinct nucleotide sequences as nodes in a graph and connect
pairs of clones with the same TCR amino acid sequence with a
link. Fig. 2A displays such a graph representation for 100 notional
background T cells, together with the result of selecting half
of them according to two different protocols. The probability
that a randomly chosen pair of nodes are linked is equal to
pC = 2|E |/(|V |(|V |−1)), where |E | is the number of edges and
|V | is the number of vertices. The preselection repertoire is shown
in the left panel, where links were arbitrarily chosen such that
pC = 0.02. The middle and right panels show the results of two
selection protocols mimicking random subsampling and epitope-
specific sorting, respectively: selecting nodes with probability
1/2, ignoring linkage (Center), or selecting clusters of nodes
with probability 1/2 (Right). When selecting cells at random,
the coincidence probability pC = 0.02 is unchanged: the mean
number of linked pairs decreases by a factor 4, but so does the
total number of possible node pairs. Selecting clusters in contrast,
implies that the number of edges decreases by only a factor 2.
Normalizing by the total number of node pairs, the coincidence
probability increases two-fold to pC = 0.04. The selection of
connected clusters mimics sorting by epitope-specificity, in the
sense that cells belonging to the same clonotype, defined by
identical amino acid sequence, all share the same specificity.

C. Formal Analysis. We now mathematically derive how coin-
cidence probabilities change when specific TCRs are identified
within a larger pool. We analyze this as follows: letQ(σ ), normal-
ized by 〈Q(σ )〉P(σ) = 1, be a selection factor that characterizes
whether sequence σ meets the chosen selection condition. The
distribution of selected sequences is thenQ(σ )P(σ ). As we derive
in SI Appendix, Appendix 1, the coincidence distributions of the
two ensembles are related via the cross-moments of the selection
factors,

pC [QP](1)
pC [P](1)

= 〈Q(σ )Q(σ ′)〉
σ
1
∼σ ′

, [3]

where 〈.〉
σ
1
∼σ ′

indicates that the average is calculated over random
pairs of sequences at distance 1, i.e., over the distribution
P(σ , σ ′|d(σ , σ ′) = 1).

To gain intuition, we consider a simple class of selection
functions of relevance to antigen-specific selection, where Q
weights equally a specific subset S of sequences and gives zero
weight to all others:

Q(σ ) = IS(σ )/P(S), [4]

where P(S) =
∑
σ∈S P(σ ) is the fraction of all clones

(i.e., distinct nucleotide sequences) that are specific to the
epitope in question. Given the statistical process that created
the background repertoire, any given background sequence has
an expected number of ‘neighbors’ at sequence distance 1; if
the sequence in question is selected, we can ask what fraction
fσ (1) of its neighbors at distance 1 are also selected. Plugging
Eq. 4 into Eq. 3 we find that the coincidence enhancement ratio
is proportional to the average of that fraction over the selected
sequences 〈fσ (1)〉σ∈S = 〈IS(σ ′)〉

σ
1
∼σ ′,σ∈S

:

pC [QP](1)
pC [P](1)

=
〈 fσ (1)〉σ∈S

P(S)
. [5]

Note that 〈 fσ (1 = 0)〉σ∈S = 1 because specific binding only
depends on amino acid sequence, so that all exact coincidences
with a selected sequence must also be selected. Thus, the increase

A

B

C

D

Fig. 2. How selection increases coincidences. (A) How different selection
procedures change the graph of sequence neighbors. Cells (nodes) in a
background graph (Left) are connected by edges if they share an identical
TCR. Random sampling of nodes (Middle) does not change the coincidence
probability. Random sampling of clusters (Right) increases the coincidence
probability. Selected nodes and links in orange; unselected background
nodes in light blue. (B–D) Coincidence probabilities for synthetic data
generated by selecting 1% of cells (B), 1% of amino acid clonotypes (C), and
1% of meta-clonotypes (generated by including 10% of neighbors of each
selected sequence). (D) at random. These random selection protocols act
on a background CDR3� repertoire (data from ref. 16). The gray lines show
estimates for 20 repetitions of the sampling procedure, and the orange line
shows their average.
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in exact coincidence probability is inversely proportional to
the selection fraction P(S). If the selection fraction is small,
the coincidence ratio is large, in line with the interpretation of
this ratio as a measure of the strength of selection. What follows is
a direct way to estimate the average number of specific neighbors:

pC [QP](1)
pC [P](1)

=
pC [QP](0)
pC [P](0)

〈 fσ (1)〉σ∈S . [6]

How coincidence ratios decrease with distance 1 is thus a
measure of the average sequence degeneracy of specific binding.
Applying this equation to experimental data will allow us to
estimate this fundamental quantity. In comparing with data,
the empirical coincidence distribution within an epitope-specific
repertoire is our measure of pC [QP], and pC [P] is determined
from a background set of sequences. To simplify notations, we
will thus refer to their ratio as pC/pC,back.

D. Simulation of Selection on Real Data. To make the preceding
formal analysis concrete, we next turned to numerical simulation
of selection of sequences from a realistic background T cell
repertoire. To get intuition of the effect of selection by a generic
pMHC complex at a gross statistical level, we filter sequences
from a background dataset of approximately 105 CDR3 β
sequences taken from whole blood (data from ref. 16) according
to different random sampling protocols.

We first compare selecting random cells (Fig. 2B) with
selecting random clonotypes (Fig. 2C ), in each instance selecting
1% of sequences. For the former, apart from statistical noise,
pC (1) is the same for the selected set as for the background. For
the latter, the exact coincidence frequency increases hundredfold.
This increase corresponds to the inverse of the selection fraction
P(S) ∼ 10−2, exactly as predicted by Eq. 3. Such random
selection of clonotypes was used successfully in Elhanati et al. (39)
to predict TCR sharing numbers among a large number of human
individuals. However, for1 6= 0, coincidence frequencies do not
differ from the background (in contrast to empirical data, such
as Fig. 2C ).

We thus next sought to incorporate sequence correlation in
selection between similar amino acid sequences to model the
local degeneracy in antigen recognition apparent in Fig. 1A.
To this end, for each selected sequence σ , we also select a
fraction pcorr of sequences that are within sequence distance1corr
from σ . The construction of such a sequence-correlated random
selection model is somewhat subtle as a naive scheme oversamples
sequences with many neighbors. We derived a corrected sampling
scheme explained in SI Appendix, Appendix 4 that overcomes
this bias. The results of such a selection of metaclonotypes for
1corr = 1 and pcorr = 0.1 are shown in Fig. 2D. As expected,
sequence correlations lead to an enhancement of pC (1) over
background that extends to near coincidences. Also, the selection
enhancement ratio changes by a factor of∼0.1 (the value of pcorr)
between1 = 0 and1 = 1, in accord with our expectation from
Eq. 6.

We note from these illustrations that the enhancement ratio
pC (1)/pC,back(1) (plotted in the right-hand columns of Fig. 2
B–D) gives a particularly direct diagnostic of the nature and
strength of the selection that acts on the background. We will
use it in the next sections to put a wide range of experimental
data into a common framework.

3. Common Features of Selection Across
Datasets

We now use the lens of coincidence analysis to examine a broad
set of experimental datasets that use different assays to select T cell
repertoires specific to epitopes from different sources (details in
Material and Methods) (14–17, 30). Our analysis of these diverse
datasets (Fig. 3) reveals striking similarities in the functional
dependence of excess coincidences on sequence distance, together
with wide variation in the magnitude of the enhancement of
coincidence frequencies over background.

We first apply coincidence analysis to paired chain data from
Dash et al. (14) (Fig. 3A), Minervina et al. (17) (Fig. 3B), and
Tanno et al. (30) (Fig. 3C ), taking the distance between two
paired sequences to be the sum of distances between the two
chains. Minervina et al. sequenced paired-chain αβ TCRs that
were determined by DNA-barcoded MHC dextramers to have
specificity to chosen SARS-CoV-2 epitopes, while Tanno et al.
provides a large dataset of paired-chain total T cell repertoires
that have not been directly subjected to ex vivo selection. We
compute the coincidence probability ratio pC (1)/pC,back(1)
against a synthetic background computationally constructed
from single chain data under an independent pairing assumption,
as described previously.

We next apply coincidence analysis to the single chain data
from Nolan et al. (15) (Fig. 3H ) and Minervina et al. (16)

A

D

F G H

E

B C

Fig. 3. Excess coincidences follow a common functional form across exper-
iments. Sequence similarity of specific T cells for paired ��-chain repertoires
(Top), �-chain repertoires (Middle) and �-chain repertoires (Lower) compared
with background expectations. In each panel, the assay type used to enrich
for epitope-specific T cells and the antigen source are noted in the upper
right. Panel C is special as analyzed TCRs are from unsorted blood and
have not been explicitly selected for binding to a specific epitope. A common
reference curve is plotted for visual guidance. Its parameter K is set equal to
the empirical value at 1 = 0. Z is determined by normalization. Datasets: A,
D, and F–(14); E and G–(16); H–(15); B–(17); C–(30).
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(Fig. 3 E and G). Nolan et al. sequenced β-chain sequences
of T cells selected by passage through the MIRA pipeline (40)
for recognizing individual peptides in a broad panel of peptides
from the SARS-Cov-2 genome, while Minervina et al. identified
α and β chain sequences of T cells that responded dynamically
during the SARS-Cov-2 infection of two human subjects using
longitudinal sequencing. As a comparison, we also analyze single
chain sequences from the Dash et al. (14) paired chain dataset
across the three studied viral epitopes, ignoring the chain pairing
(Fig. 3D andF ). For each repertoire, we compute the coincidence
probability ratio pC (1)/pC,back(1) against background bulk
sequences of the same chain. To smooth out variability, we then
average over epitopes or subjects, respectively.

Together, these analyses highlight major differences across
chains and experiments (Fig. 3, rows and columns, respectively)
in how much coincidence probabilities are increased relative to
background, pC (1)/pC,back(1) at small 1. The fold increase
for sequence identity (1 = 0) is highest in paired chain
tetramer-sorted repertoires against immunodominant epitopes
of common viruses (Fig. 3A) and decreases from this value when
chains are considered separately (Fig. 3, 2nd and 3rd row) or in
sequence repertoires identified by other assays (Fig. 3, 2nd and
3rd column). We will provide a potential mechanistic explanation
for some of these differences in Section 6.

There are also some striking common features to note. First,
the analyses show that, for small 1 and across experiments, the
excess coincidence ratio declines from its value at 1 = 0 at a
similar exponential rate; second, across all datasets, coincidence
rates reduce to those of the background for distances substantially
less than the mean distance between sequences in the background.
In other words, the statistical differences between selected
repertoires and the background are limited to small sequence
distances 1. The red curves plot a simple parametric function
(specified in the legend) that captures the two key features: it
interpolates between an initial exponential decrease by roughly
one power of ten per unit increase in 1 and asymptotes to
a constant. The parameter K is set to the value of excess
coincidences at 1 = 0, and the parameter Z is determined self-
consistently by normalization. Without any additional fitting
parameters, the reference curve is in good agreement with
the empirical data across all experiments, highlighting their
similarity.

The exponential falloff for small 1 is a quantitative measure
of binding degeneracy with respect to small sequence changes.
According to Eq. 6 the observed common falloff rate means that,
on average, about one tenth of the1 = 1 sequence neighbors of
a T cell that recognizes an epitope will also recognize the same
epitope (and roughly one percent of the 1 = 2 neighbors, etc).
This degree of sequence degeneracy is observed both for α-chains
(Fig. 3 D and E) and β-chains (Fig. 3 F–H ). Note that this
analysis relates to the fraction of available sequence neighbors,
i.e., those present in the pool before sorting for specificity in
accord with the TCR generation probabilities and sample size
and takes into account only the CDR3 region and not other
hypervariable regions. The observation that this parameter agrees
across experiments and chains is striking and suggests that it
is a fundamental biophysical feature of TCR-pMHC binding
interactions.

4. Diversity of Both Chains and Their Pairing Is
Restricted in Specific TCRs

Epitope-specific repertoires sequenced at the paired-chain level
can be used to quantify the relative contribution to binding

specificity of the two chains. Fig. 3 D and F show that there
is, on average, a strong diversity restriction (as measured by
excess coincidences) for both chains individually due to epitope
selection. If the selected chains could be freely paired without
affecting specificity, then the overall excess coincidence factor
for paired chains would be the product of the factors for the
individual chains (as discussed in SI Appendix, Appendix 3).
In fact, Fig. 3A shows that paired chain coincidences are more
frequent than this expectation by perhaps as much as a factor
10 (out of an overall increase by a factor of ∼109). For further
insight, we repeated the analysis separately for each individual
epitope (Fig. 4): the paired chain selection factor is in each
instance the product of two large factors due to selection of the β
and α chains individually times a smaller factor that arises from
restricting pairing among the selected sets of chains, and there
is only limited variation in the contributions of the three terms
across epitopes. These results show why paired chain information
is essential for accurately predicting the specificity of a TCR. An
important correlate of the strong restriction of diversity within
epitope-specific repertoires is that when fixing one chain the other
shows only very limited variation: As shown in Fig. 1 paired chain
coincidences are nearly as frequent as coincidences on either chain
alone. A related phenomenon was recently described comparing
naive and memory antibodies (41), and termed chain coherence.
Our analyses suggest that such coherence also occurs for TCRs.

5. The Selection Signature Constrains the
Binding Landscape

What are minimal features of a T cell-epitope binding landscape
that can explain the coincidence enhancement signature? To
explore this question, we go beyond the random selection models
considered in Fig. 2 and treat selection more realistically as due
to sequence-dependent binding. This exercise could be carried
out at many levels of sophistication (42, 43), but we will focus
on a simple, schematic, and analytically tractable model for
TCR-pMHC interactions. In what follows, we sketch the model
and the conclusions we draw from it. Details are presented
SI Appendix, Appendix 6.

We model TCRs as random amino acid strings of fixed length
k = 6 (corresponding to the mean number of hypervariable
residues within a typical CDR3 loop). Background TCR se-
quences are generated by drawing six amino acids independently
at random from the q = 20 amino acids. The set of TCRs
binding to a specific pMHC is specified by a sequence logo, or

Fig. 4. Epitope binding restricts diversity of both chains individually and
also restricts their pairing. Bar chart shows the decomposition of paired
chain exact coincidence probability ratios (Fig. 3A) for individual epitopes in
the dataset from Dash et al. (14) into contributions from selection of � chains
(Fig. 3D) and � (Fig. 3F ) individually (blue, orange), plus a smaller contribution
from restricting the pairing of the two chains (green).
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A B

Fig. 5. Coincidences in a mixture of motifs model. (A) Coincidence probabil-
ities and (B) coincidence probability ratios to background for simulated data
generated from a mixture of motifs model with different numbers of motifs
M and c = 3. (B) also shows analytical expectations from Eq.8 (lines), which
agree well with the numerical results (crosses). The model reproduces key
features of the empirical data: pC/pC,back decays exponentially for small 1
and asymptotes to a constant for large 1 at sufficiently large M.

motif, condition: at each of the k variable positions, we require
that the residue lie in a randomly chosen subset of size c ≤ q of
the amino acids (a different subset at each position).

Calculating the coincidence enhancement factor for a particu-
lar epitope and binding motif reduces to a combinatorial exercise
in this model, with the result:

pC (1)
pC,back(1)

=
(
c − 1
q − 1

)1 (q
c

)k
. [7]

This expression reproduces the exponential falloff of excess near-
coincidences with 1 that is seen in real data. The falloff rate
depends on the number of allowed amino acids c at each position,
with c ∼ 3 amino acids per position reproducing the empirical
rate.

However, this expression does not capture the second observa-
tion in the empirical data, namely, that beyond a certain sequence
distance 1, the enhancement ratio asymptotes to a roughly
constant value. To address this, we recall that Fig. 1 strongly
suggests that there are multiple “solutions” to the problem of
recognizing a given epitope. Sequence similarity between TCRs
binding in different manners is expected to be low, thus the
existence of multiple solutions might explain the flattening of
the coincidence probabilities for large 1. We thus extend our
binding model to incorporate this idea: For each epitope, let
there be M different randomly chosen motifs and declare that
a T cell recognizes the epitope if any of the motifs are satisfied.
T cells selected by this model are a mixture of those selected by the
individual motifs. Applying results for coincidences in mixture
distributions (derived in SI Appendix, Appendix 2), we obtain an
analytical prediction for excess coincidences:

pC (1)
pC,back(1)

≈
1
M

(
c − 1
q − 1

)1 (q
c

)k
+ 1−

1
M
. [8]

Fig. 5 displays this analytical result for different values of M .
In addition, it shows the almost identical results of numerical
simulations of the model with a more realistic nonuniform amino
acid usage (drawn according to the amino acid usage in CDR3α
hypervariable chains reported in ref. 16). The key observation
is that, for multiple motifs, the ratio pC/pC,back both shows
exponential decay for small 1 and asymptotes to a constant
(close to unity) as 1 approaches the maximum possible value in
this setup, 1 = 6.

6. Functional Diversity Links Coincidences
Across Scales

We now revisit the intriguing observation of a selection-like
signature in paired chain sequencing data from whole blood
(specifically, the coincidence enhancement displayed in Fig. 3C ).
In Fig. 6, we compare coincidence frequencies obtained from
direct paired chain sequencing of blood samples with coinci-
dence frequencies among multimer-sorted T cells that recognize
individual epitopes. We note that coincidences within multimer-
sorted repertoires exceed those in blood samples by four orders
of magnitude. Also, the comparison with sorted memory and
naive repertoires shows that coincidences in the total repertoire
are primarily driven by memory cells. Bearing in mind that the
whole blood coincidence analysis compares sequences within
and between all the memory sub-compartments created by
past infections, we hypothesize that the coincidences in whole
blood reflect high-levels of sequence similarity among groups of
memory cells selected in response to specific epitopes encountered
in the past. Intuitively, we then expect coincidences in whole
blood to depend on the diversity of the memory repertoire,
i.e., on how many different epitope exposures the immune system
is remembering. To make this intuition quantitative, we develop
a mathematical formalism to predict coincidences in mixture
distributions.

We propose to model TCRs in an individual’s memory
compartment as a mixture distribution over the set5 of peptide-
MHC complexes (pMHCs) that have driven past immune
responses in that individual. For each π ∈ 5, there is a
distribution of T cell sequences P(σ |π) that target π . The
distribution of TCRs in the memory compartment will then
be the mixture distribution

P(σ ) =
∑
π∈5

P(σ |π)P(π), [9]

where P(π) is the proportion of all TCRs selected for binding
to pMHC π . The coincidence probability for mixtures can be
calculated using the following mixture decomposition theorem,
which we derive in SI Appendix, Appendix 2:

Fig. 6. Comparison of near-coincidence probabilities across paired-chain
datasets. The highest values come from TCR repertoires specific to individual
epitopes (solid orange curve: average over epitopes studied in Dash et al. (14)
and Minervina et al. (17)). Paired-chain sequencing of whole blood (green),
sorted CD4+ memory (dashed red) and CD4+ naive (purple) repertoires,
data averaged over subjects from Tanno et al. (30) give much smaller values.
Background coincidence probabilities (calculated assuming independent
chain pairing) are shown in blue. See text for a discussion of the large
difference in coincidence probabilities between repertoires.
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pC [P(σ )] = pC [P(π)] 〈pC [P(σ |π)]〉
+ (1− pC [P(π)]) 〈pC [P(σ |π1), P(σ |π2)]〉,

[10]

where the averages are over P(π |π1 = π2 = π) and
P(π1,π2|π1 6= π2), respectively. It is noteworthy that such
an exact decomposition of coincidence probabilities in mixtures
exists. For example, no equivalent formula exists for Shannon
entropy, an alternative measure of diversity, which has led to
long-running debates within ecology about the decomposition
of diversity in pooled communities (44–46).

Eq. 10 is a sum of two nonnegative terms, each of which
can be given an intuitive interpretation. We recall that the
probability of exact coincidence is the probability with which
two randomly chosen sequences σ1 and σ2 are coding for
the same TCR, pC [P(σ )] =

∑
σ1,σ2

P(σ1)P(σ2)Id(σ1,σ2)=0.
The decomposition formula then represents a conditioning
on the mixture identity for σ1 and σ2: The overall probability
of coincidence is a weighted mean of average within-group
coincidence probabilities (first term) and of average between-
group coincidence probabilities (second term). The relative
weight given to within group comparisons is given by the
probability with which two randomly chosen elements come
from the same group, i.e., the coincidence probability of the
group assignments pC [P(π)] (defined in the sense of Eq. 2).

Multimer sorting followed by sequencing gives draws from
P(σ |π) for specific pMHCs π (14, 17), and these data can be
used to estimate the average within-epitope-group coincidence
probability 〈pC [P(σ |π)]〉. In the absence of better information,
we shall assume that the average value pC [P(σ |π)] ∼ 10−4

found in these experiments is the typical order of magnitude
for all epitopes. We further assume that the between-epitope-
group term in Eq. 10 is negligible. Then, the only remaining
quantity is pC [P(π)], the Simpson diversity of the set of epitope-
specific groups within the repertoire. Putting the numbers
together, we obtain an effective diversity 1/pC [P(π)] ∼ 104,
a not implausible value for the pMHC diversity of a memory
compartment.

In other words, the large ratio between coincidence frequencies
in a repertoire selected ex vivo by an individual pMHC complex
and the coincidence frequencies in the memory compartment as
a whole is informative about the number of epitope recognition
events that created the memory compartment in the first
place. While the precise numbers are likely to change as more
comprehensive data becomes available, the calculation above
gives a clear recipe to settle the question of how functionally
diverse our immune repertoire is. More broadly, mixture aver-
aging also likely explains why coincidence probabilities among
longitudinally identified TCRs (presumably specific to multiple
immunodominant epitopes) are lower than among TCRs specific
to individual epitopes (Fig. 3 E vs. D and G vs. F and H ).

7. HLA Overlap Determines Cross-Donor
Coincidences

How many TCRs are shared between donors? In previous studies
of T cell repertoires, there has been much interest in such shared
sequences, on the grounds that such “public” sequences may
point toward common pathogen exposures (39, 47). Since in
order to mount a common response to a pathogen epitope, two
subjects must not only share (up to near-coincidence) T cells
with the same TCR, but must also share an MHC molecule
on which the epitope can be presented, we expect more T cell
sharing between donors that share HLA alleles. In line with this

expectation, Tanno et al. (30) observed an association between
exact sharing of paired αβ TCRs and the number of shared HLA
alleles. By our logic, it makes sense to broaden the definition
of public T cells to those that are nearly coincident across
donors and present at rates well above an appropriately estimated
background. We will thus revisit the analysis by Tanno et al.
by applying our coincidence analysis framework to their dataset.
Specifically, we calculate the histogram of sequence distances
between TCRs drawn from pairs of repertoires and ask how the
strength of any selection signal depends on the similarity of HLA
type between the two repertoires.

We grouped subject pairs by HLA overlap defined as J =
|A ∩ B|/max(|A|, |B|), where A and B are the sets of HLA
alleles in the two subjects. The overlap ranges between J = 1
for identical twins to J = 0 if there is no common HLA
allele. We also applied additional filtering steps to control for
confounding factors (SI Appendix, Appendix 5). To mimic the
filtering applied to intrasample analyses of the data from Tanno
et al. (30), we did not count coincidences where either chain had
exact nucleotide identity. This filtering also allowed us to exclude
exact nucleotide coincidences when comparing repertoires of
twins. Exact nucleotide-level sharing of full αβ TCRs between
twins can represent long-lived clones shared via the blood supply
during fetal development (48, 49) and is thus not necessarily
evidence of convergent selection on the TCRs. Additionally,
we removed sequences whose α-chain V and J genes match
those of two noncanonical T cell subsets, mucosal associated
invariant T cells (MAITs), and invariant natural killer T cells
(iNKTs), that recognize nonpeptide ligands not presented on
classical MHC (50).

The results of the analysis are shown in Fig. 7: Near-
coincidence probabilities between whole blood repertoires de-
crease systematically with decreasing HLA overlap (Fig. 7A), and
the same trend holds in sorted CD4+ memory (Fig. 7B) and
CD4+ naive cells (Fig. 7C ). These HLA-dependent effects are
large: exact coincidence probabilities range over two orders of
magnitude as HLA overlap varies. This contrasts with prior
studies that have found only a small influence of HLA type in
single-chain repertoires (51). The interpretation suggested by our
earlier analysis (Fig. 4) is that HLA binding requires specific pairs
of α and β chains. To confirm that our observed large effect sizes
are compatible with weak signals in single chain repertoires, we
constructed synthetic distributions for randomized αβ pairings
by convolving the single-chain distance distributions within HLA
overlap groups. The results are shown as dashed lines in Fig. 7
(using the same color coding for the HLA overlap groups as
for the real data). They reveal that single-chain coincidences are
almost independent of HLA overlap, even though this procedure
retains the correlations between individual chains and HLA type.

The comparison of coincidence probabilities between these
different ways of filtering and segregating the data is informative
about how different mechanisms might contribute to chain
pairing biases. First, Fig. 7C shows no significant deviations
from pairing independence (dashed lines in the figure) across
naive cells from nontwin donors. This limits the strength of
chain pairing correlations that might arise through pMHC-
independent processes, such as VDJ recombination, or from
steric and biophysical constraints between chains for protein
folding (33, 34). We note that this finding validates the use
of the independent chain pairing assumption for generating
background distributions representative of repertoire statistics
before selection has acted. Second, Fig. 7C also shows a clear
signal of correlated chain pairing in naive cells both intrasample
(black line) and across twin pairs (blue line). This strongly
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A B C

Fig. 7. Intersubject coincidences depend on HLA overlap. Pairwise interdataset coincidence frequency analysis for the 15 paired-seq datasets from Tanno et
al. (30) grouped by pairwise HLA overlap. A: pairs of unsorted PBMC repertoires; B: pairs of CD4+ memory repertoires; C: pairs of CD4+ naive repertoires.
Each plot shows means over pairs whose HLA overlap lies within the indicated ranges together with estimated standard errors assuming Poisson sampling.
For comparison, the mean intradataset coincidence distribution is shown in black. Background distributions constructed by scrambling the � and � chain
associations within individuals are shown as dashed curves (colored according to the same HLA overlap code). These curves show no near-coincidence
enhancement signal and very weak dependence on HLA overlap class.

suggests that thymic positive and negative selection substantially
contribute to the pairing biases. Third, Fig. 7B shows that within
the memory repertoire coincidences between twins occur at
remarkably similar rates to the intrasample coincidence rates,
which suggests that memory selection is driven by prevalent
pMHCs encountered by both donors (herpesviruses are one
potential source of such pMHCs (52)). Alternatively, sequences
binding a certain HLA might generally show substantially
restricted pairing independently of which peptide is presented
(53, 54)—something we will soon be able to test as more epitope-
specific repertoires for different peptides presented on the same
MHC are characterized. In summary, HLA-dependent selection
leads to major biases in the pairing of TCR α and β chains at
the repertoire level, the outcome of a combination of thymic
and peripheral selection pressures. As dataset sizes continue to
increase, the strategy we have described here provides a strategy
for untangling these pressures in detail.

8. Discussion

In this work, we have introduced a versatile statistical framework
for measuring selection in T cell receptor repertoires. Simply
put, we have evidence of selection if the number of exactly
(and nearly exactly) coincident receptor sequence pairs in a
repertoire is substantially larger than the number that one would
find in a reference repertoire. Importantly, we showed that this
intuitive notion can be developed into a mathematical theory
relating the number of excess coincidences to quantities of direct
immunological interest, such as the extent of sequence degeneracy
of T cell binding to particular epitopes, or the functional diversity
of an individual’s memory repertoire.

We take a probabilistic approach to selection, where each target
epitope defines a probability distribution on the unselected, or
naive, T cells that make up the immune repertoire. Experiments
that query blood samples for binding to a specific pMHC
represent a draw from this probability distribution, and experi-
ments that capture T cell responses to multiple targets sample a
mixture of distributions over targets. Certain global quantities of
immunological interest are averages over these distributions and,

in our approach, the experimental data serve to give empirical
estimates of these averages. We highlight two salient examples:

First, we quantify the fraction of sequence neighbors of a typi-
cal specific sequence that share the same specificity. Our analysis
predicts that when varying single amino acids in the hypervariable
regions in accord with the TCR generative statistics, roughly one
out of ten such changes lead to a receptor that still binds the same
target. Across disparate datasets, this measure of local recognition
degeneracy shows remarkable consistency. We envisage that it can
be used to guide bioinformatic clustering methods for finding
groups of T cells with common specificity (14, 19, 55), for
instance to put data-driven constraints on threshold choices.
Importantly, the predicted level of local degeneracy is in
rough accord with measured distributions of binding affinity
changes between point-mutated TCRs (56, 57) and results from
systematic mutational scans of specific binding upon changes
in TCR hypervariable regions (58). To quantitatively compare
our results with such scans, it will be necessary to develop a
framework for appropriately weighing the exhaustive mutational
scanning data by the probability with which mutated TCRs
occur in natural repertoires. With the rapid increase in the
number of assayed epitopes, another area for future work will
be to characterize in detail variation around the average selection
strength and binding degeneracy, including for example between
TCRs binding MHC-I or MHC-II (most data analyzed in the
current study relates to MHC-I binding).

Second, we provided a recipe to quantify the functional
diversity of a T cell compartment, as measured by the number of
different epitopes that have selected the T cells comprising the
compartment. From paired-chain sequencing data on human
blood samples (30) we derived a rough estimate of the functional
diversity of a typical memory compartment. This coarse-grained
functional diversity is orders of magnitude smaller than TCR
sequence diversity, which is consistent with the relatively small
number of immunodominant epitopes typically targeted in
response to individual pathogen infections (59) and theoretical
predictions that adaptive immunity learns sparse features of the
epitope distribution (60). Additionally, cumulative coincidence
probabilities at different sequence distances should provide a
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useful measure of repertoire diversity weighted by sequence
similarity, a subject of recent interest in the field (38, 57, 61).

Beyond the quantification of functional diversity, our analysis
of deeply sequenced paired chain repertoires across individuals
suggests additional research directions. We identify a substantial
number of TCR specificity groups that the data suggest are in
large part driven by common epitopes across individuals. Guided
by such TCR groups it would be interesting to generalize the
recently proposed reverse epitope discovery approach (62, 63)
to the repertoire scale: cross-referencing coincident TCRs with
other data, such as TCR-epitope databases (20, 64) and computa-
tionally predicted HLA binding of putative peptides, might guide
the identification of the targets of these groups of T cells. More
broadly, as dataset sizes increase an analysis of the dependence of
cross-donor coincidence probabilities on which HLAs the two
donors share could allow an unbiased apportionment of the
immune repertoire selected by different HLA types.

In summary, our results reveal both complexity and pre-
dictability in the immune receptor code. The emerging picture
is captured schematically in the mixture of motifs model that we
have introduced: Epitope-specific repertoires are characterized
by globally diverse binding solutions that sometimes share
surprisingly little sequence similarity but also display remarkably
consistent signatures of local degeneracy. This picture, if further
confirmed in structural studies (8, 9), can help focus future
machine learning efforts in this area. The consistent signal of
local degeneracy suggests that a promising direction will be to
use machine learning to refine metrics, such as TCRdist (14, 55),
that can group TCRs specific to a common target within large
mixtures. Our framework should be of use in such efforts, as it
can readily turn any definition of TCR similarity, not just the
simple edit distance we have considered here, into probabilities of
shared specificity. The existence of multiple binding solutions, on
the other hand, might explain why purely sequence-based models
for computationally predicting binding partners of epitopes (i.e.,
in the absence of any experimentally determined binders) have
had limited success (23) and why structural modeling might
be needed to resolve the complex sequence determinants of the
different binding solutions (65).

Materials and Methods

In this paper, we analyze datasets that represent significantly different
approaches, both conceptual and experimental, to creating functionally selected
T cell repertoires. They are succinctly described as follows:

The Dash dataset (14) is based on tetramer sorting of CD8+ T cells from
blood,usingthreewell-studiedstandardviralepitopes(HLA-A*02:01-BMLF1280
(BMLF), HLA-B*07:02-pp65495 (pp65), and HLA-A*02:01-M158 (M1)), followed
by single-cell TCR sequencing to obtain paired TCRα and TCRβ reads of the
captured cells. This protocol was repeated for 32 donors, resulting in a list of 415
paired αβ TCRs associated with the three epitopes.

The Minervina 2022 dataset (17) uses DNA-barcoded MHC dextramers to
identify T cells specific to 19 SARS-CoV-2 epitopes by sequencing. T cells were
identified across a cohort of donors with a varied history of SARS-CoV-2 exposure
and vaccination. We focused our analysis on the eight epitopes for which there
are at least 150 characterized αβ TCRs each.

The Nolan dataset (15) is obtained by sorting about 3 × 107 T cells from a
subject blood sample, then incubating the sorted cells with a cocktail of several
hundred SARS-CoV-2 epitopes (chosen for their broad MHC presentability) to
uniformly expand clones that recognize any of these epitopes. In the next
step, aliquots of the expansion product are incubated with individual epitopes
from the cocktail, followed by TCRβ sequencing to identify T cells that have
expanded in this second step in response to individual epitopes. This yields a

list of TCRβ clonotypes that recognize the epitope. This protocol is repeated for
blood samples from about a hundred subjects, about a third of whom have had
no known exposure to SARS-CoV-2 (“healthy” subjects). Summing over subject
samples for each epitope, we get a list of a few tens to a few thousand clonotypes
that recognize a given epitope. All told, the dataset is a list of some 105 TCRβ
recombination events that respond to individual SARS-CoV-2 epitopes. We note
that the α chains associated with each β chain are not known and also that
a given epitope may be presented on different MHC molecules in different
individuals. To have adequate statistical power, we consider only epitopes from
Nolan et al. (15) which are recognized by at least 150 distinct clones and we
restrict our analysis to MHC-I epitopes.

The Minervina 2021 dataset (16) is based on a longitudinal study of TCRβ
sequences in the blood of two unrelated subjects who contracted mild COVID-19.
Analysis of time-separated samples allowed the identification of T cell clones,
whose clone sizes changed significantly in response to infection. We focus on
the several hundred CD8+ clones, whose size decreased between the peak
immune response at 15 d and a postinfection time point at 85 d. The specific
epitopes to which these T cells respond are unknown, but they are presumably
a subset of the SARS-CoV-2 viral epitopes that provoke the strongest immune
response and therefore constitute an interesting “selected” subset of the T cell
repertoire.

The Tanno dataset (30) consists of paired-chain TCRs from a total of fifteen
donors, including six pairs of twins. The mean number of reads is about 31,000
(minimum of 7,400 and maximum of 69,000). For three pairs of twins and three
unrelated donors, total PBMC samples were sequenced. Sorted CD4+ naive
(CD45RA+, CCR7+) and memory (CD45RA−) cells were sequenced for three
additional twin pairs. All fifteen subjects were HLA typed on the allele level. We
used processed data as described in the original study but applied additional
filtering steps, the rationale for which is described in SI Appendix, Appendix 5.
For the naive repertoire, we also removed any overlap with clonotypes that were
also found within the memory repertoire from the same individual. To compare
coincidence frequencies across repertoires from different individuals (Fig. 7), we
sum the number of coincidences across all comparisons within an HLA overlap
bin. We add a pseudocount of 0.1 to the summed counts for visualization
purposes, and we display Poisson errorbars as

√
c/ctot , where c is the count at a

specific distance and ctot the sum of all counts across distances. These errorbars
represent lower bounds, as in addition to counting error there is heterogeneity
between individuals.

For all datasets, we filtered out clones whose CDR3 amino acid sequence did
not start with the conserved cysteine (C) or end on phenylalanine (F), tryptophan
(W), or cysteine (C).

To calculate background coincidence probability distributions, we used
unpaired PBMC α and β chain data from ref. 16 (sample F1 from a pre-COVID
baseline sample in 2018 from donor “W”). To calculate paired chain background
coincidence probability distributions, we randomly associate chains from bulk
single chain datasets. For efficient numerical calculation, we exploit the fact
that such independent pairing leads to coincidence probability distributions
for paired chain TCRs that are a convolution of the single chain distributions,
pC,αβ(1) =

∑1
δ=0 pC,α(δ)pC,β(1− δ).

To generate the sequence logos displayed in Fig. 1, we built on the Python
logomaker package (66), adding the ability to also display V and J gene usage.
We colored amino acids by their chemical properties using the “chemistry” color
scheme.

Data, Materials, and Software Availability. To facilitate adoption of the
methodology presented in this paper by the field, we alongside this paper release
a Python package for immune repertoire analysis called Pyrepseq, available at
https://github.com/andim/pyrepseq. This package implements key algorithms
for coincidence analysis in a modular, easy-to-reuse manner. Detailed source
code reproducing the results reported in this manuscript is available online at
https://github.com/andim/paper_coincidences. All the data used in our analyses
are publicly available and scripts for downloading it from the experimental data
repositories are included in our software repository.
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