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Abstract

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences

in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenome-

non occurs and how it varies across tissues and in a population is as yet unclear. To charac-

terize incidence and variability of escape across individuals and tissues, we conducted a

transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells

in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear

model of genes’ allelic fold-change and XIST-based degree of XCI skewing. We identify 62

genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range

of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23%

demonstrating tissue-restricted escape, including cell type-specific escape across immune

cells of the same individual. We also detect substantial inter-individual variability in escape.

Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic

factors may underlie inter-individual differences in escape. However, discordant escape

also occurs within monozygotic co-twins, suggesting environmental factors also influence

escape. Altogether, these data indicate that XCI escape is an under-appreciated source of

transcriptional differences, and an intricate phenotype impacting variable trait expressivity in

females.

Author summary

The difference in the number of X-chromosomes between mammalian males and females

is compensated by a process known as X-chromosome inactivation (XCI), which turns off
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one of a female’s X chromosomes. XCI is incomplete: some sections of the silenced X

chromosome escape inactivation. The ’escape’ is complex, and can vary across tissues and

potentially across individuals. Because the X chromosome is enriched of genes with

immune and neurological functions, this phenomenon has high biomedical relevance.

We studied the extent to which escape occurs and varies across tissues and individuals in

a large population of twins. We identify novel candidate escape genes, and genes whose

escape is specific to a tissue or immune cell type. There is also substantial variability in

escape across individuals. Using data from twins, which enable the assessment of the influ-

ence of genetics and environment on a trait, we found that both genetic and environmen-

tal factors influence escape. Our results allow detailed characterization of escape, and

suggest that escape may influence disease risk and phenotype differences between the

sexes, and within females.

Introduction

The X chromosome is a paradigmatic genetic model [1]. It carries>1000 genes, representing

>5% of the haploid human genome. It is differentially inherited between the sexes. The

unequal X-linked transcriptional dosage between the sexes is partially compensated by random

silencing of one X in each female somatic cell [2]. This process, known as X-chromosome inac-

tivation (XCI), involves synergistic DNA-RNA-protein interactions that mediate heterochro-

matinization of the X designated for inactivation [1,3,4] (known as "Barr Body" [5]). Non-

coding RNAs play key roles in XCI. The master long non-coding (lnc) RNA XIST spreads in

cis along the inactive X chromosome (Xi) and promotes a progressive epigenetic silencing

[4,6,7]. However, XCI is incomplete, with over 15% of X-genes reported to escape silencing

and exhibit expression from both parental alleles within a diploid cell [8,9]. Mary Lyon pre-

dicted that genes with Y-homologues (e.g. pseudo autosomal regions (PARs)), are naturally

dosage compensated and thus expected to escape [10]. Today, most known escapees lack func-

tional Y-homologues, thus being a potential source of sexual dimorphism [9,11]. Chromosome

X is enriched for genes with immune- and neuro-modulatory functions [12,13]; changes in

escape may thus underpin not only sexual dimorphism, but also phenotypic and disease risk

variability across females [12,14–16]. Despite its biomedical relevance, the inter-individual var-

iability of escape at population level, and across cells and tissues within an individual, has not

been systematically examined. Furthermore, the extent to which genetics and environment

influence the escape remains largely undefined.

Our current knowledge of XCI escape in humans largely rely on conventional studies of

male/female expression ratio, human/mouse hybrid cells, and epigenetic marks [8,11,17,18].

In most females, the random nature of XCI results in expression of both X-linked alleles at a

tissue level. This limits the ability to distinguish mono- from biallelic expression and thus iden-

tification of escape [9]. To circumvent the problem, strategies like single-cell analyses (e.g.

scRNAseq) or sex comparison have been used to infer escape [9,11,19,20]. However, scRNA-

seq is infeasible for large cohorts and is limited to highly and consistently expressed genes due

to allelic drop-out and transcriptional burst, which both can inflate monoallelic expression

ratio. On the other hand, sex differences may not directly reflect the allelic expression ratio of

X-genes in a tissue. These limitations can be circumvented by using tissue samples exhibiting

skewed XCI patterns–a common event in the female population [21–25]–which, as opposed to

random XCI, enable detection and measurement of escape directly in skewed females (Note A

in S1 Appendix). This strategy has been employed, but either sample sizes were limited (e.g.
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single GTEx donor), or the study relied on arrays and other indirect biological models

[8,11,26].

Here, we characterize XCI escape using paired bulk RNAseq and DNAseq data in a multi-

tissue dataset sampled from 248 skewed female twins of the TwinsUK bioresource [27]. We

investigate escape prevalence and variability across adipose and skin tissue, lymphoblastoid

cell lines and purified immune cells (monocytes, B-cells, T-CD4+, T-CD8+ and NK cells), and

individuals. We identify novel genes exhibiting tissue- and immune cell type-specific escape,

and genes escaping XCI with high variability across tissues and individuals. We observe that

escape varies across tissues and immune cells within an individual and across individuals, a

phenomenon with high biomedical relevance. Using twins, we demonstrate that regulation of

XCI escape has both heritable and environmental components, implying a complex interplay

between genetic and non-genetic factors.

Results

Escape from X-inactivation is a prevalent phenotype in both solid and

blood-derived tissues

We quantified escape in multiple tissues concurrently sampled from female twins of the Twin-

sUK cohort [27]. We determined XCI patterns using the gene-level XIST allele-specific expres-

sion (XISTASE) from paired RNAseq and DNAseq data [7,28,29]. From over 2200 tissue

samples interrogated, we obtained XISTASE calls for 522 LCLs, 101 whole-blood, 421 adipose,

and 373 skin samples. In samples exhibiting skewed XCI (XISTASE�0.2 or�0.8, Methods)

including 166 LCLs (32%), 26 whole-blood (26%), 57 adipose (14%), and 64 skin (17%) sam-

ples, the levels of escape of each X-linked gene were measured using a metric—herein referred

to as Escape Score or ’EscScore’—derived from the gene’s allelic fold-change adjusted for the

sample’s XCI skew (Methods). EscScore values range from 0 (no escape, monoallelic expres-

sion) to 1 (full escape, equal expression from inactive (Xi) and active X (Xa)). We interrogated

a total of 551 genes, of which 85% are protein-coding and 15% non-coding RNA genes. Based

on a publicly available catalogue of XCI statuses [30] (’Balaton’s list’), our interrogated genes

were categorized as XCI-silenced (n = 326), fully or mostly escaping XCI (n = 52), or variable

escapees (n = 23). Variable escape refers to genes whose escape is variable across cells, tissues,

or individuals [8,11,30]. We also included a subset of 41 genes whose XCI status was reported

as discordant across studies or undefined [30]. The summary statistics indicated that EscScore

differs between different categories (Table A in S1 Appendix). In all tissues, the EscScore of

genes annotated as fully or mostly escaping XCI significantly differed from genes annotated as

either silenced or variable escapees (Fig 1A and Table B in S1 Appendix), supporting the reli-

ability of our escape metric to discriminate different XCI statuses.

Next, we conducted additional testing of EscScore, identified genes escaping XCI in our

dataset, and benchmarked our call set with other studies. For X-genes annotated as silenced

[30], the average EscScore was 0.26, 0.33, and 0.34 in LCLs, adipose and skin tissues, respec-

tively, whose mean is 0.31 and median 0.33. When including all X-linked genes interrogated,

we detected average EscScore of 0.32, 0.36, and 0.37 in LCLs, adipose and skin, respectively,

whose mean is 0.35 and median 0.36. We tested several EscScore cutoffs by comparing result-

ing gene classification with the Balaton’s list of XCI status [30]. We found that a threshold of

0.36 resulted to both overall higher reproducibility of gene calls and lower discordance with

previously annotated XCI status (Table C in S1 Appendix). Based on these observations, we

classified genes with a median (across�3 skewed tissue samples) EscScore�0.36 as escapees in

that tissue, while genes with EscScore<0.36 as silenced. In line with current knowledge, most

X-genes are subject to XCI in all tissues (84% in LCLs, 74% in adipose, 71% in skin). We
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Fig 1. (A) EscScore distinguishes between silenced and escape genes. Boxplots show the distribution of median EscScore values (across skewed

samples) of genes with different previously annotated XCI status [30]. (B) Genes exhibiting constitutive XCI escape in all three tissues. Barplots show

the tissue-specific gene’s EscScore. Horizontal line denotes the EscScore cutoff to call XCI escape. (C-D) PPI, Gene Ontology (GO) and Pathway

analysis. (C) PPI network between protein-coding X-genes escaping XCI in at least one tissue and a reference map of human proteome interactome

[32]. The network inner circle shows protein-coding escape genes characterized within the proteome interactome. The bars for the genes in the inner
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observed a higher incidence of escape in solid tissues than LCLs, with 16%, 26% and 29% of

genes escaping XCI in LCLs, adipose and skin tissues, respectively. Altogether, 157 X-genes

exhibited escape in at least one tissue in our dataset (S1 Table). Expectedly, PAR-linked genes

escaped XCI. We used a hypergeometric test to assess overlap between the Balaton’s list [30]

and our list of escapees, and found significant overlap (N = 50; P�0.05). Among our escape

calls, about 60 genes retain a Y-pseudogene or Y-homologue, and 13 are PAR-linked, support-

ing their escape [30]. For a more comprehensive comparison, we merged the Balaton’s list of

escapees with additional external lists of escapees including (i) the GTEx XCI survey [11]; (ii)

Katsir et al. [20]; (iii) Shvetsova et al [21]; (iv) Garieri et al. [19]; (v) Sauteraud et al. (predicted

from GEUVADIS) [16]. We found that 60% (N = 95) of our escapees overlapped with this uni-

fied list of escapees, while the remaining (N = 62) represent novel calls in our study. Notably,

31% of our novel escape calls are annotated as ncRNA, while the remaining are protein-cod-

ing. We establish the first evidence that the lncRNA AL683807.1 (ENSG00000223511) escapes

XCI. AL683807.1 is PAR1-linked, explaining its escape ability. We examined the chromosomal

distribution of escape genes and confirmed a higher escape incidence on the short arm [31]

(Note B in S1 Appendix and Fig C in S1 Appendix). Altogether, these data further support the

suitability of our study design. We show that in our data, escape is more prevalent in adipose

and skin than LCLs, and is wider than previously reported estimates.

Escape from X-inactivation exhibits both constitutive and tissue-specific

patterns

Presently, the extent to which tissue-specific escape occurs in humans is unclear. We used the

gene’s median EscScore (across�3 tissue samples) as a measure for tissue-specific levels of

escape. We found significant differences across tissues (Kruskal-Wallis (’KW’) P-value<10−10;

Fig D in S1 Appendix), suggesting tissue differences in escape. Using a subset of 213 genes with

EscScore available in all tissues (S2 Table), we identified 24 genes exhibiting escape in both

LCLs and solid tissues (Fig 1B), suggesting constitutive escape. We observed that tissue-specific

EscScore remained below 80% in most cases, in line with data showing that Xi/Xa expression

ratio would not exceed 80% [11]. Notably, PLCXD1, ASMTL,DHRSX, SLC25A6 and AKAP17A
are PAR-linked. We show that PUDP and PIN4, whose escape status have remained so far

unclear, show constitutive escape in all tissues. Among the constitutive escapees, there are the

highly biomedically-relevant genesDDX3X, KDM5C and KDM6A, whose escape may contrib-

ute to lower cancer incidence in females than males [14]. We also observed that PRKX, PUPD,

DDX3X and JPX each had significantly different escape between tissues (KW P�0.05). We con-

firmed the escape status of CLIC2 in skin, as identified in GTEx [11], and also found it escapes

in adipose in our data. Tissue-specificity of escape was further supported by identification of 49

genes exhibiting escape restricted to a single tissue. Notably, 24 of these, of which 2 non-coding

RNAs and 22 protein-coding genes, are novel escape calls (S3 Table).

We investigated whether the escapees may interact with other factors and be involved in

biological processes. To address this, we selected genes exhibiting escape in at least one tissue

and conducted protein-protein interaction network analysis using a recent human protein

interactome as reference [32]. We found that protein-coding escape genes interact with other

factors on a genome-wide scale (Fig 1C). Gene ontology analysis revealed that members of this

proteome network are involved in distinct biological processes such as epigenetic regulation

circle show the tissue-specific gene’s EscScore. The network outer circle shows proteins from the reference proteome [32] that have (i) at least 1

interaction with our escapee genes and (ii) edge confidence score�0.4. The size of each node reflects the number of interactions (edges). (D) GO and

REACTOME Pathways analysis of PPI network. The top 10 Biological Processes and REACTOME terms are shown.

https://doi.org/10.1371/journal.pgen.1010556.g001
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by chromatin assembly and nucleosome organization, and regulation of steroid hormone sig-

naling. These data were supported by REACTOME pathway analysis which revealed multiple

pathways for epigenetic control of genes, such as histone methylation and acetylation, and

DNA methylation (Fig 1D and S4 Table). Altogether, these data suggest that escape is shaped

by an interplay of tissue-shared and tissue-specific factors, and participates in genome-wide

interactions involved in varied biological processes.

Escape from X-inactivation exhibits intra- and inter-individual variability

Understanding the extent to which escape varies across tissues within an individual is of high

biological interest. We investigated this phenomenon in 6 donors, each exhibiting skewed XCI

in LCLs, adipose and skin. This strategy was employed in the GTEx survey using a single

skewed female donor [11]. Within each donor, we examined all genes with available EscScore.

We identified genes exhibiting escape (EscScore�0.36 in a tissue within a donor) in 1, 2 or 3

tissues and found that their prevalence varied between donors (Fig 2A and Table D in S1

Appendix). Occurrence of genes escaping XCI in all tissues in multiple donors suggests shared

regulatory mechanisms across tissues and individuals. Genes exhibiting such a behaviour

included the zinc-finger protein ZFX and the histone demethylase KDM5C which is linked to

intellectual disability and autism [33,34]. We also observed genes escaping XCI in all tissues

but in only 1 of the 6 donors. Examples are the leukaemia-protecting histone demethylase

KDM6A [14,35], FMR1, a gene linked to Fragile-X and learning disability [36], and the

Duchenne muscular dystrophy gene DMD [37]. In parallel, we found instances of genes whose

EscScore widely ranged across tissues within a donor, as ASMTL which escaped XCI in all tis-

sues with EscScore ranging from 0.6 to over 0.8. ASMTL’s behavior was also highlighted in

GTEx [11]. Aside from these cases, most of the interrogated genes exhibited tissue-restricted

escape, supporting the occurrence of tissue-specific factors exerting dominant effects.

To robustly investigate the inter-female diversity in escape, we used a subset of 125 genes

escaping XCI in at least 1 tissue, and with EscScore available in at least 10 individuals per tis-

sue. For a given gene, we defined its EscScore to be consistent within a tissue if in at least 80%

of individuals the gene’s EscScore lay between ±1 standard deviation from the gene’s average

EscScore in the tissue. This strategy revealed both genes with consistent and genes with vari-

able EscScore. We identified 35 genes (~30% of the interrogated genes) showing consistent

EscScore across individuals in at least 1 tissue (S1 Fig). Representative examples are BTK, a

gene involved in the control of lymphocyte maturation, and CD99L2, involved in leucocyte

homeostasis. Both genes exhibited consistent EscScore across most donors in LCLs (Fig 2B

and S5 Table). A subset of 3 genes (ARHGAP6, SAT1, RAP2C-AS1) also exhibited consistency

across most donors in both LCLs and a solid tissue (S1 Fig). Genes exhibiting inter-female var-

iability in EscScore in multiple tissues (S2 Fig) accounted for about 50% of the interrogated

genes. Examples are DDX3X, KDM6A and UBA1, which exhibited variability in LCLs and at

least one solid tissue (Fig 2B and S5 Table). Interestingly, inter-female variability occurred

more frequently in solid tissues (62% of cases) than LCLs (38% of cases). Altogether, these data

are indicative of complex escape patterns. Variable escape across females complements with

and may be driven by variable escape across tissues and cells within a female. Inter-female vari-

ation has high biomedical relevance as it may underlie predisposition to and manifestation of

X-linked traits.

Escape from X-inactivation exhibits immune cell type-specificity

Females have a higher risk of autoimmune disease than males, and such risk may correlate

with increased X-dosage [38,39]. This has raised the hypothesis that XCI escape may
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Fig 2. (A) Analysis of intra-individual EscScore variation within each of the 6 female donors exhibiting skewed XCI in all

tissues. Each dot shows the gene’s EscScore in each tissue. Genes with EscScore�0.36 in all three tissues within a donor are

colored in red (LCLs), blue (adipose), green (skin). (B) Representative subset of genes to assess inter-individual variation in

EscScore. Each green dot shows the gene’s EscScore in a tissue sample. BTK and CD99L2 show consistent EscScore in LCLs

across individuals. DDX3X, KDM6A andUBA1 show inter-individual variability of EscScore in LCLs and a solid tissue.

Similar plots for other genes are shown in S1 and S2 Figs.

https://doi.org/10.1371/journal.pgen.1010556.g002
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contribute to autoimmunity [12,40]. The extent to which escape varies across different

immune cells within an individual is not well known. We addressed this question by interro-

gating 257 X-genes in multiple immune cell types purified from two identical co-twins (Fig E

in S1 Appendix). Monocytes, B-cells and T-CD8+ cells were available from both co-twins,

while T-CD4+ and NK-cells from one co-twin. Per each immune cell type, when data were

available from both co-twins, we calculated the average gene’s EscScore across the 2 co-twins

as a proxy for immune cell type-specific escape. We observed differences between cell types in

the average EscScore (Av.EscScoreMonocytes = 0.24; Av.EscScoreB-cells = 0.27; Av.EscScoreT-CD4

+ = 0.24; Av.EscScoreT-CD8+ = 0.28; Av.EscScoreNK-cells = 0.25; KW P�0.01; Fig 3A). These

results were consistent when comparison was limited to a subset of 53 genes with EscScore

data available in all cell types (S6 Table; Av.EscScoreMonocytes = 0.245; Av.EscScoreB-cells = 0.27;

Av.EscScoreT-CD4+ = 0.26; Av.EscScoreT-CD8+ = 0.285; Av.EscScoreNK-cells = 0.245; P�0.01).

The incidence of escape varied between cell types, being 15% in monocytes, 20% in B-cells,

22% in T-CD4+, 25% in T-CD8+, and 29% in NK-cells. Thus, in line with current knowledge,

most X-genes are subject to XCI in immune cells. In parallel, our data indicate that escape is

heterogeneous across immune cell types, with overall higher incidence in lymphocytes than

monocytes. To investigate intra-lineage variation, we compared the EscScore(s) between lym-

phoid cell types and also found substantial differences (P�0.01), indicating intra-lineage varia-

tion. Among the 53 genes with EscScore data available in all cell types (S6 Table), we identified

12 genes (ARSD, PRKX, PUDP, CA5B, AP1S2, ZFX, USP9X, DDX3X, CASK, KDM6A, JPX,

DIAPH2) escaping XCI in at least three immune cell types. CASK is a novel candidate escapee.

The genes PRKX, ZFX, JPX and DIAPH2 escaped XCI in all 5 immune cell types, in line with

their behavior as constitutive escapees across tissues. For most of these genes, the escape status

in immune cells is a novel finding. Interestingly, KDM6A exhibited highest EscScore in

T-CD8+ cells, possibly because of its roles in T-cells control [35]. We identified 9 genes exhibit-

ing escape restricted to one immune cell type, supporting immune cell type-specific factors

(Fig 3B). Intriguingly, immune cell type-specific events were restricted to lymphocytes but not

monocytes. This might suggest differences between lymphoid and myeloid lineages, and aligns

with evidence of increased X-linked biallelic expression in lymphocytes [41]. We also assessed

the skewed LCL samples which were also available from both co-twins. We found that in these

two donors, about 21% and 22% of genes with available data had EscScore�0.36. These values

are similar to the incidence of escape we detected in lymphoid cells (B, T-CD4+ and T-CD8

cells). Altogether, these data indicate that escape varies between immune cell types within an

individual. Presumably, this heterogeneity is driven by mechanisms with immune cell type-

specific effects.

Escape from X-inactivation is influenced by heritable and environmental

factors

Twin studies are a unique strategy to assess the contribution of genetic factors to complex

traits. Using 27 complete twin pairs (17 monozygotic (MZ or identical); 10 dizygotic (DZ or

fraternal)), we quantified the concordance in the escape in LCLs between co-twins and com-

pared such concordance between MZ and DZ twins. We correlated the EscScore (using�5

genes) between co-twins of each pair (Fig 4A and 4B), and found that the average correlation

across MZ and DZ twins was 0.6 and 0.46, respectively (ρ0s t-test, P�0.05; Fig 4C). These data

indicate that MZ share significantly more similar escape than DZ twins. To support this find-

ing, we examined each interrogated gene in a twin pair, and observed higher rates of discor-

dant XCI (gene escaping XCI only in one of the two co-twins) between DZ than MZ twin pairs

(Av.Disc.RateDZ = 27.1%; Av.Disc.RateMZ = 19.5%). These data suggest a significant genetic
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Fig 3. (A) Distribution of EscScore(s) in each immune cell type. (B) Genes exhibiting XCI escape restricted to a single immune cell

type. Barplots show the immune cell type-specific gene’s EscScore. (C) Genes exhibiting discordant XCI status (escaping XCI only in

one co-twin) between the two MZ co-twins. The two bars shows the gene’s EscScore in an immune cell type (T-CD8+ cells, B-cells and

monocytes) in the two co-twins.

https://doi.org/10.1371/journal.pgen.1010556.g003
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Fig 4. Scatterplots of EscScore(s) of genes (�5) with data available in both co-twins of a pair. A total of 27 complete twin pairs

(both co-twins exhibiting skewed XCI in LCLs) were used. Each dot represents a gene, colored in blue if silenced in both co-

twins, red if escaping XCI in both co-twins, and green if exhibiting discordant XCI (escaping only in one co-twin). (A)

Monozygotic (MZ) twin pairs (N = 17); (B) Dizygotic (DZ) twin pairs (N = 10). (C) Boxplots of coefficients of correlation

between EscScore(s) in the two co-twins of each pair.

https://doi.org/10.1371/journal.pgen.1010556.g004
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component of escape, in line with a previous report on MZ twins [17], and the higher similar-

ity in skewing between MZ than DZ twins in blood-derived tissues [23,28]. In parallel, discor-

dance between MZ twins suggests environmental influences. To gain insights at the cell type

level, we next examined the concordance of EscScore in immune cells between two MZ co-

twins, and observed significant correlations (ρmonocytes = 0.8; ρB-cells = 0.68; ρT-CD8+ = 0.6;

P<1e-10). Genes with discordant XCI status were observed in all three immune cell types, and

their prevalence differed between cells ranging from 6.4% in monocytes to 11% in B-cells, and

18% in T-CD8+ cells. Interestingly, the genes CA5B and ZNF81 exhibited discordant XCI

between the two co-twins in both T-CD8+ and B-cells. In all other cases, discordant XCI events

concerned distinct gene subsets in distinct immune cell types (Fig 3C and S7 Table). Taken

together, our data indicate that genetic and environmental factors may interplay to regulate

XCI escape. Variability between immune cell types may also suggest an immune cell type-spe-

cific response to environmental influences.

Discussion

In this study, we investigated escape in tissues and immune cells using paired transcriptomic

and genotype data from nearly 250 female twins from the TwinsUK bioresource [27]. The

large sample size and strategy of using bulk tissue samples with skewed XCI as a platform to

infer escape [8,9,11,26,42], enabled us to systematically distinguish silenced from escape genes

and identify novel candidate escapees, as predicted [9]. While samples with random XCI are a

mosaic of cells with either parental X silenced, in skewed samples expression would be mostly

restricted to one haplotype. We quantify escape from the residuals of linear model of genes’

aFCs and XIST-based degree of XCI skewing in skewed samples. Our data show the incidence

of escape varies across tissues, and is higher in solid than blood tissues. The higher escape rate

in solid tissues than LCLs and purified cell types might be a reflection of their higher biological

heterogeneity resulting from the more complex cell type composition. Most of our escape calls

align with previously annotated XCI statuses, however we identified 62 novel candidate escap-

ees, of which 43 (69%) are protein-coding and 19 (31%) lncRNA genes. Protein network analy-

ses show that X-linked protein-coding genes escaping XCI interact with other proteins on a

genome-wide scale, and regulate varied biological processes and pathways such as epigenetic

changes and hormone signaling. These data indicate that XCI escape may play genome-wide

effects, in line with recent findings on the effects of XCI changes on global proteome [43].

Thus, de-regulated escape caused by mutations or other disrupting events may have complex

phenotypical consequences. Future studies are needed to investigate the functional effects of

X-autosomal interactome. Our discovery set includes the PAR1 lncRNA AL683807.1, which

escaped XCI in LCLs, in line with GTEx data on the novel transcript ENSG00000223511.6,

whose expression is substantially higher in EBV-transformed lymphocytes than all other tis-

sues. The X chromosome is enriched for non-coding RNAs, yet their transcriptional modes

and roles are unclear. Due to their unique ability to recruit factors and target a genomic

address [1], lncRNAs play critical roles in genome regulation and health. The study of

lncRNAs escaping XCI may reveal novel mechanisms of inter-female phenotypic variation

and sexual dimorphism.

We identified genes that constitutively escaped XCI in all tissues, and genes with tissue-spe-

cific escape. Co-occurrence of both patterns suggests involvement of tissue-shared and tissue-

specific determinants. Presumably, genetic variants (e.g. eQTLs) with constitutive or tissue-

specific effects, modulate the escape dosages. We found genes with consistent and with hetero-

geneous EscScore across individuals. We reasoned that genes with key physiological roles may

be subject to shared regulation across females. Examples are BTK and CD99L2, which, in line
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with their roles in lymphoid cells, exhibited consistent EscScore in LCLs, but inter-female vari-

ability in adipose and skin. Thus, the escape behaviour could depend on the gene’s functional

context. The tumorigenesis-related genes DDX3X and KDM6A both escaped XCI, in line with

previous studies [11,30,44], and showed inter-female variability in all tissues. These genes may

underlie sexual dimorphism in cancer [14], and plausibly their variable escape contributes to

inter-female diversity in cancer risk. We found that the histone demethylase KDM5C and the

transcription factor ZFX, escaped in LCLs and solid tissues in the same individual. Other

genes manifested more composite behaviour, with escape restricted to either LCLs or solid tis-

sues in an individual, supporting tissue-specificity of escape. Altogether, these patterns high-

light the complexity of escape, and anticipate its roles as phenotype modulator. The intra-

individual analysis would benefit from a larger sample size, and additional tissue types avail-

able from each individual, allowing more comprehensive and precise inferring of the across-

tissue escape variability within a subject. Furthermore, the variable nature of RNAseq total

read depth introduces differences in allelic read depth across samples, which may contribute

to the observed differences, and will impact the total number of genes within a donor with suf-

ficient read depth to analyze escape. Despite the use of established methods, we acknowledge

that phasing switch errors can occur over the chromosomal length, a problem that can be

solved by the availability of parental genotypes (e.g. [21]).

The X chromosome plays key roles in innate and adaptive immunity [12,31,40,45]. We

found that escape differed between immune cell types, with higher incidence in lymphocytes

than monocytes. Among 53 genes with data available in all immune cell types, about 8%

(PRKX, DIAPH2, JPX, ZFX) escaped XCI in all cells, in line with their constitutive escape

behavior across tissues. For ZFX, this aligns with data showing its involvement in networks for

X-linked dosage regulation [46]. 17% of genes (TCEANC, TAB3,MIR222HG, ARMCX4,

AC234775.3, NTX, SLC25A43, INTS6L, GAB3) exhibited escape restricted to a single immune

cell type which was always of lymphoid lineage. We also found significant variation between

lymphoid cells. These data indicate immune cell type-specific propensity to escape. Myeloid

and lymphoid lineages are subject to distinct regulation during development. Integrated func-

tional and in-silico approaches will be needed to fully address the possibility that cell type-spe-

cific factors establish distinct escape dosages across cells within an individual [11]. These data

would have multiple biological significance. Firstly, different cell types and possibly single

cells, would provide a different contribution to the overall escape dosages in a tissue, establish-

ing an X-linked transcriptional mosaicism throughout the female’s immune system. Secondly,

changes in cell type composition or proportion, which may characterize pathological states

[47,48], may alter the escape which in turn modifies disease risk. Immune cell type-specific

escapees could potentially serve as markers of disease-relevant cells, with applications for diag-

nostic purposes and design of immunotherapy approaches [49–51]. The extent to which this

phenomenon modulates inter-female variability in risk and expressivity of immunological

traits will require future larger studies. Despite the availability of multiple immune cell types,

these were drawn from only two genetically identical co-twins thus limiting further analysis of

between-individual variation in this context.

The extent to which genetics and environment influence escape in humans is unclear. Con-

cordance in methylation-based XCI status between MZ twins supported a dominant model of

cis-acting influences [17]. MZ twins share >99% of DNA, age, and multiple environmental

traits such as in-utero growth and early life. Variable escape may affect MZ twins differently,

leading to different trait expressivity. We found significantly more similar EscScore between

MZ than DZ co-twins. Congruently, we found overall higher rates of discordant XCI between

DZ than MZ co-twins. These data demonstrate a solid contribution owing to genotype, but

also that DNA does not fully explain such concordance patterns. Thus, escape has both
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heritable and environmental components, in line with current knowledge on complex traits.

An interplay between QTLs [52,53], differential epigenetic control of parental alleles [1], and

gene-environment effects may ultimately modulate the allelic expression and propensity to

escape. These effects might have cell type- and tissue-specific components, and underlie intra-

and inter-female variation. The inter-female variability align with population differences in

dose compensation [26,54], supporting involvement of genetic factors. Cis-acting variation

may also model Xi vs Xa haplotype expression across tissues, leading to intra-individual varia-

tion [11]. Identification and functional characterization of such genetic and environmental

factors can aid understanding what drives inter-female variation in trait expressivity, disease

risk, and sex differences.

The present study contributes a detailed characterization of escape in humans using a large

multi-tissue transcriptomic twin dataset and demonstrates extensive variability in escape

between individuals and tissues. Given the paradigmatic roles of the X chromosome in epige-

netics and clinical genetics, a full understanding of XCI escape has implications on epigenetic

research and therapeutics. Therapeutics may include genetic counselling and design of treat-

ments for X-linked conditions. Despite nearly 60 years after Mary Lyon’s landmark intuition

on escape, a lot is yet to be learned. Future large-scale studies that combine biomedical records

and functional assays will be critical to disentangle the breadth of variability of escape from

XCI in humans and characterize its phenotypic impact.

Materials and methods

Ethics statement

This project was approved by the research ethics committee at St Thomas’ Hospital (London,

UK). Volunteers received detailed information sheet regarding all aspects of the research, gave

informed consent and signed an approved consent form prior to biopsy and to participate in

the study. See Materials and Methods (section on Sample collection) for further details.

Sample collection

The study included 856 female twins from the TwinsUK registry [27,55] who participated in

the MuTHER study [52]. Study participants included both monozygotic (MZ) and dizygotic

(DZ) twins, aged 38–85 years old (median age = 60). All subjects are of European ancestry.

Peripheral blood samples were collected and lymphoblastoid cell lines (LCLs) generated via

Epstein-Barr virus (EBV) mediated transformation of B-lymphocytes. Punch biopsies of sub-

cutaneous adipose tissue were taken from a photo-protected area adjacent and inferior to the

umbilicus. Skin samples were obtained by dissection from punch biopsies. Adipose and skin

samples were weighed and frozen in liquid nitrogen.

DNA sequencing data and variant calling

Details on 30X whole genome sequencing (WGS) sample and library preparation, clustering

and sequencing have been reported elsewhere [56]. The DNA sequencing reads were stored

offsite pre-mapped to the X chromosome with Illumina’s ISIS Analysis Software v.2.5.26.13

[57]. For the purpose of this project, all individuals were female, reads premapped to chrX,Y

and unmapped reads were extracted from the original ISIS alignment and realigned to the

GRCh38 X chromosome reference sequence using BWA-MEM in SpeedSeq v0.1.2 [58]. Base

quality score recalibration (BQSR) was performed in GATK v4.1.6 [59]. Following this, DNA

variant calling was performed using the gold-standard workflow in GATK v4.1.6 [59]. This

included implementation of HaplotypeCaller to call germline variants, GenomicsDBImport to
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create a unified gVCF repository, and GenotypeGVCFs for joint genotyping to produce a

multi-sample variant call set. Variants with a VQSLOD (variant quality score odd-ratio) corre-

sponding to a truth sensitivity of<99.9% and with a HWE (Hardy-Weinberg equilibrium) P-
value<1e-6 were removed. Data quality checks were further performed with VCFtools[60] to

check levels of transition/transversion ratio. Dataset comprised 621 female samples. For indi-

viduals with available RNA-seq but unavailable genotypes, chrX DNAseq data were retrieved

from the UK10K project [61].

RNA sequencing data

The Illumina TruSeq sample preparation protocol was used to generate cDNA libraries for

sequencing. Libraries were sequenced on a Illumina HiSeq2000 machine and 49 bp paired-end

reads were generated [55]. Samples that failed library preparation (according to manufactur-

er’s guidelines) or had less than 10 million reads were discarded. As all individuals were

female, for this manuscript RNA-seq reads were aligned to a Y-masked [62] GRCh38 reference

genome using STAR v.2.7.3 [63]. Properly paired and uniquely mapped reads with a MAPQ of

255 were retained for further analyses.

Purified immune cell RNA-sequencing data

Monocytes, B, T-CD4+, T-CD8+ and NK cells were purified using fluorescence activated cell

sorting (FACS) from two monozygotic twins exhibiting skewed XCI patterns in LCLs. Gating

strategy for cell sorting is described in Fig E in S1 Appendix. Total RNA was isolated and

cDNA libraries for sequencing were generated using the Sureselect sample preparation proto-

col. Samples were then sequenced with the Illumina HiSeq machine and 126 bp paired-end

reads were generated. Adapters and polyA nucleotide sequences were trimmed using trim_ga-

lore v.0.6.3 and PrinSeq tools v.0.20 [64]. RNA-seq reads were aligned to Y-masked [62]

GRCh38 reference genome using STAR v.2.7.3 [63]. Properly paired and uniquely mapped

reads were retained for further analyses.

Correction of RNA-sequencing mapping biases

To eliminate mapping biases in RNA-seq, the WASP pipeline for mappability filtering [65] in

STARv2.7.3 [63] was used. In each read overlapping a heterozygous SNP, the allele is flipped

to the SNP’s other allele and the read is remapped. Reads that did not remap to the same geno-

mic location are flagged as owing to mapping bias and were discarded.

Haplotype phasing and measurement of gene-level haplotype expression

WGS genomes were read-back phased using recent SHAPEIT2 implementation [66] that takes

advantage of the phase information present in DNA-seq reads. Subsequently, phASER

v.0.9.9.4 [67,68] was used for RNAseq-based read-backed phasing and to generate gene-level

haplotype expression data. Only reads uniquely mapped and with a base quality�10 were

used for phasing. Using haplotype expression data, the gene’s ASE in each sample can be calcu-

lated as follow:

ASEg;s ¼
ACg;s
TCg;s

Gene0s Allele� Specif ic Expression ASEð Þ ½1�

Where, for a biallelic gene:

A = haplotype A;

B = haplotype B;
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ACg,s = RNAseq allelic count at haplotype A of gene g in sample s;

BCg,s = RNAseq allelic count at haplotype B of gene g in sample s;

TCg,s = Total RNAseq allelic read depth at gene g in sample s;

TCg,s = ACg,s + BCg,s.

The gene ASE values range from 0 to 1, with 0 and 1 indicating monoallelic expression and

0.5 indicating completely balanced haplotypic expression. From [1], it follows:

ACg;s
TCg;s

þ
BCg;s
TCg;s

¼ 1 ½2�

To quantify gene silencing and gene escape, the effect size of allelic imbalance in expression

for each gene in each sample was calculated as allelic fold change (aFC), that is the ratio

between the allele with lower RNAseq count and the allele with the higher RNAseq count, as

similarly used in a previous study [69]:

aFCg;s ¼
MinðACg;s;BCg;sÞ
MaxðACg;s;BCg;sÞ

aFC of gene g in sample s ½3�

aFC values range from 0 to 1, with 0 indicating monoallelic expression (full gene silencing)

and 1 completely balanced haplotypic expression (full escape). For the purpose of our study, a

gene’s aFC can be interpreted as Xi/Xa expression ratio. The Xi is assumed to be the allele with

the lower RNA-seq count, while the Xa the allele with higher RNA-seq count.

Quantification of XCI skewing levels

In each sample, the XIST allele-specific expression (XISTASE) was used as proxy for XCI skew-

ing levels. XIST is uniquely expressed from the Xi, and thus the relative expression of parental

alleles within XIST transcript is representative of XCI skewing in a bulk sample

[7,28,29,70,71]. Within each sample, the XISTASE values (calculated as described above) range

from 0 to 1, with 0 or 1 indicating completely skewed XCI (100:0 XCI ratio), and 0.5 indicating

balanced inactivation ratio. To be consistent with previous literature [23,28,72], we classified

samples with XISTASE�0.2 or XISTASE�0.8 to have skewed XCI, and samples with 0.2< XIS-
TASE < 0.8 to have random XCI. To have an absolute measure of the magnitude of XCI skew-

ing levels in each sample, the degree of XCI skewing (DS) was calculated from the XISTASE

calls. DS is defined as the absolute deviation of XISTASE from 0.5, and it has been similarly

been used to assess XCI patterns and XCI status of X-genes [26,73,74]. In each sample, DS was

calculated as follows:

DSs ¼ j0:5 � XISTASEj Degree of XCI� skew in sample s ½4�

DS is a proxy for the magnitude of the sample’s XCI-skew. DS values range from 0 to 0.5; 0

indicates random XCI and 0.5 completely skewed XCI. Samples with DS�0.3 were classified

to have skewed XCI; samples with DS<0.3 to have random XCI patterns. Due to low number

of skewed whole-blood samples with available data in other tissues, we excluded our whole-

blood estimates from analyses of XCI escape. We found no significant association between

XIST gene expression levels and DS (Fig A in S1 Appendix).

Quantification of XCI escape

Bulk samples with random XCI patterns confound mono- and bi-allelic X-linked expression

as both X-alleles would be, on overall, expressed. Conversely, in skewed samples (S8 Table)

silenced genes will exhibit monoallelic expression while escape genes biallelic expression
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[8,11,26] (Note A in S1 Appendix). Only genes with RNAseq allelic read depth�8 reads were

used. Furthermore, to increase the confidence that genotypes were truly heterozygous, we con-

sidered only genes whose both haplotypes were detected in the RNA-seq data at least once. We

reasoned that variations in DS might influence allelic variation in X-linked aFC leading to

biases in escape measurements across samples. To account for this, we implemented a linear

model of the sample’s DS as explanatory variable and the genes’ aFCs (as defined above) as

response variable using our entire skewed cohort of 166 LCLs, 26 whole-blood, 57 adipose and

64 skin samples. We computed residuals (referred to as ’EscScores’) from the linear model cor-

responding to the difference between observed (aFC) and predicted response variable. We

then rescaled the residuals to be within the [0,1] range via min-max normalization, as follows:

EscScore0 ¼
EscScore � MinðEscScoreÞ

MaxðEscScoreÞ � MinðEscScoreÞ
Min� Max rescaling ½5�

where EscScore0 is the rescaled EscScore (now within the 0–1 range) used for analyses. We ver-

ified that as opposed to the raw gene’s aFC values which correlate with the degree of XCI-skew

(ρ = -0.18; P<2e-16), there was no evidence of correlation between the newly derived EscScore

(s) and the degree of XCI-skew in our dataset (ρ = 0). This indicates that our procedure of

using residuals and normalization generates EscScore(s) robust to variation in XCI-skew

across samples removing the dependence between aFC and XCI-skew. To further assess this

latter in detail, we grouped our dataset into 3 bins of degree of XCI-skew, and then randomly

sampled 200 X-linked genes to check their distribution of average aFC and average EscScore

values at the different degrees of XCI-skew. We repeated the random sampling step 3 times

(each drawing 200 X-genes) and confirmed that as opposed to aFC, the EscScore is robust to

various degree of XCI-skew (Fig B in S1 Appendix).

EscScore 0 and 1 indicate complete monoallelic (silencing) and complete biallelic expres-

sion (full escape), respectively. Due to low number of skewed whole-blood samples with avail-

able data in other tissues, we excluded our whole-blood estimates from analyses of XCI escape.

We detected average EscScore of 0.32, 0.36, and 0.37 across LCLs, adipose and skin samples,

respectively, whose median is 0.36. We compared different EscScore cutoffs to the Balaton’s

list [30] and found that 0.36 resulted to better reproducibility of existing gene calls (see also

Result paragraph 1; Table C in S1 Appendix). We classified genes exhibiting a median (across

�3 tissue samples) EscScore�0.36 as escapees in that tissue, while all others as silenced. We

show the distribution of median EscScore values of genes with different previously annotated

XCI status [30] in Fig 1A. Further, we checked how the EscScore values distributed for genes

previously annotated as XCI-silenced: (i) in LCLs, 97% of EscScore values are<0.36; (ii) in

adipose, 84% of EscScore values are<0.36; (iii) in skin, 82% of EscScore(s) are <0.36. Alto-

gether these patterns support the suitability of both metric and cutoff used (see also Table C in

S1 Appendix).

For analysis of inter-individual variability of escape, genes classified as escapee in at least 1

tissue (median EscScore across skewed tissue samples�0.36) and with available EscScore data

in�10 tissue samples were used. Consistent EscScore in a tissue across individuals was defined

when in�80% of individuals the gene’s EscScore lay between ±1 standard deviation from the

gene’s average EscScore in that tissue (S1 Fig). Otherwise, the gene was deemed variable across

individuals (S2 Fig).

Protein-protein interaction (PPI) network and gene ontology analyses

Genes with EscScore data available in all three tissues and escaping XCI in at least one tissue

were analysed for protein-protein interaction (PPI) with a new genome-wide protein
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interactome database as reference (www.interactome-atlas.org) [32]. PPI network was

imported to STRING v.11 [75], and proteins with at least one direct interaction with our genes

and a PPI score (edge confidence)�0.4 were selected. PPI network was imported to Cytoscape

v.3.8.2 [76] for visualization and gene ontology analyses of Biological Processes and REAC-

TOME Pathways using ClueGO v.2.5.8 [77]. A term was considered as significantly enriched

at Bonferroni-corrected P-value�0.01.

Supporting information

S1 Appendix. Table A. Summary statistics (mean, median, standard deviation) of EscScore

values of genes with different annotated XCI status according to the Balaton’s list. A) LCLs; B)

adipose; C) skin. Each statistics is computed across�3 tissue samples. Table B. Statistical com-

parison between the EscScore(s) of different gene categories previously annotated. Escapees

refer to genes annotated as fully or mostly escaping XCI. For each interrogated gene, the

median EscScore value across� 3 tissue samples was used for comparison. Tables report the

p-value of the Wilcoxon test between two gene categories A) LCLs; B) adipose; C) Skin.

Table C. Benchmarking different EscScore cutoffs against the Balaton’s list of XCI status. The

EscScore cutoff of 0.36 resulted into both overall higher reproducibility of gene calls and lower

discordance with previously annotated XCI status data. Table D. Fraction of X-linked genes

exhibiting escape (EscScore�0.36 in a tissue in a donor) in 1, 2 or all 3 studied tissues in each

of the 6 female donors exhibiting skewed XCI in all three studied tissues (LCLs, adipose, skin).

Fig A. Scatterplot of degree of skewing (y-axis) and XIST gene expression levels (TMM-nor-

malized; x-axis) in LCLs, adipose and skin tissues. There is no evidence of significant associa-

tion between the two variables in all three tissues (P>0.1). Fig B. Assessing the dependence

between genes’ aFC and XCI-skew, and between EscScore and XCI-skew in our dataset. Our

data were grouped into 3 (nearly same size) bins of average degree of XCI-skew (XCIskew

Bin1 < XCIskew Bin2 < XCIskew Bin3). Random sampling of 200 X-genes was then per-

formed three times (A,B,C). At each sampling, the average aFC and average EscScore values

per gene (across samples) were calculated within each XCI-skew bin. The EscScore is robust to

various degree of XCI-skew (see also Methods). Fig C. Relationship between the gene’s tissue-

specific EscScore and gene position on chrX (GRCh38). Each dot represents a gene. Red and

green dots are escapee and silenced genes, respectively. Fig D. Distribution of median Esc-

Score values in each of the three studied tissues (LCLs, adipose, skin). Median values were cal-

culated per gene across�3 skewed tissue samples. Fig E. Gating strategy for immune cell

sorting. Gating strategy used to sort monocytes (CD14+), B (CD14-, CD3-, CD56-, CD20+),

NK (CD14-, CD3-, CD20-, CD56+), T-CD4+ (CD14, CD3+, CD8-, CD4+) and T-CD8+ cells

(CD14-, CD3+, CD4-, CD8+) from freshly isolated PBMCs from 2 monozygotic twins exhibit-

ing skewed XCI in LCLs.

(PDF)

S1 Table. X-linked genes (N = 157) exhibiting escape in at least one of the three studied tis-

sues (LCLs, adipose, skin) in our dataset. The table lists the gene’s EscScore in each tissue,

computed as the median EscScore across�3 samples. Column 2 indicates whether the escape

status of the gene was either known (previously reported) or is a novel call.

(TXT)

S2 Table. X-linked genes (N = 213) with EscScore available in all three studied tissues

(LCLs, adipose, skin). The table lists the gene’s EscScore in each tissue, computed as the

median EscScore across�3 samples.

(TXT)
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dot is an individual.

(PDF)
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