
Musculoskeletal MR Image Segmentation with Artificial 
Intelligence

Elif Keles, MDa, Ismail Irmakci, PhDa, Ulas Bagci, PhDa,b,c,*

aMachine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Feinberg 
School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA;

bDepartment of Biomedical Engineering, Northwestern University, Feinberg School of Medicine, 
Chicago, IL, USA;

cDepartment of ECE, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA

Keywords

MSK radiology; Artificial intelligence; Deep learning; MRI preprocessing; Cartilage 
segmentation; Thigh MRI segmentation

INTRODUCTION

Musculoskeletal (MSK) radiology is a subspecialty that focuses on evaluating bones, 

joints, and the surrounding tissues. MSK radiology assesses the normal anatomy, trauma, 

degenerative changes, cartilage abnormalities, meniscal tears, acute and chronic skeletal 

pain, infections and inflammation, neoplasms and metastases, osteoporosis and bone 

mineral measurement, arthritis, bone age assessment, and pediatric imaging [1,2]. Minimally 

invasive imaging-guided techniques including angiography, biopsy, ablation, and endoscopy 

are often used to address diagnosis and assessment of these diseases [3].

X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound are 

the mainly used imaging modalities in MSK radiology. Although CT is a preferred modality 

in trauma and emergent bone imaging, MRI is the method of choice when better soft-tissue 

contrast is required. MR image acquisition takes longer than CT acquisition but it provides 

excellent soft-tissue contrast, allowing in depth exploration of the soft-tissues (eg, muscle). 

MSK MRI can create thinner and higher quality images of complex body regions such as the 

knee or thigh [2].

The complicated interaction of biomechanics necessitates acquiring analytical abilities in 

MSK radiology [4]. Delivering definitive diagnosis in MSK imaging frequently requires 

knowledge and synthesis of the fundamental mechanics of the injuries with the imaging 

studies. The skeletal system’s bones, joints, and muscles act together, forming complex 

interdependent collective tissues whose activities depend on the skeletal system’s proximal 
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and surrounding components [3]. As a result, when a system component is affected by a 

disease or abnormal condition, a domino of interrelated injuries is frequently caused by the 

subsequent malfunctioning of that particular component in the circuit. Radiologists already 

have the training required to apply these principles when interpreting the imaging, which 

increases their ability to make the correct diagnosis [3]. This motivates the development of 

computational tools such as artificial intelligence (AI) for MSK imaging and its applications. 

Similar strategies will be needed when computational tools are used in MSK imaging and its 

applications. Although the high-level reasonings are not completely available in AI tools yet, 

there is still a significant need for AI tools in MSK imaging and applications to automate 

measurements of tissues, organs, and pathologic conditions (or abnormalities).

Medical artificial intelligence

AI, specifically deep learning, becomes a key helper in radiology applications. Recent 

innovations in deep learning have generated software that enables automated and precise 

detection and quantification of disease in medical images [5]. Among many, the most 

commonly used deep learning implementations in MSK are detection of fractures, meniscal 

tears, cartilage lesions, osteoarthritis, degenerative and metastatic spinal lesions, body 

composition analysis, and identification of metabolic health problems [6]. In addition, AI 

can speed up the collecting of MRI data by converting low-quality data into high-quality 

images [7]. In this article, two of such applications are explored in detail: quantification 
of tissues (ie, thigh MRI tissue analysis in health and/or diseases) and quantification of 
abnormal conditions (ie, cartilage assessment from knee MRI).

Unique challenges for developing artificial intelligence in musculoskeletal

Contrary to other organs and systems, MSK diseases bring multiple obstacles that have 

affected the development of AI solutions [3]. For example, MSK images with complex 

relations between the joints, bones, and muscles pose a significant challenge for AI 

researchers to develop algorithms [3,8]. Hence, AI solutions for MSK imaging and its 

applications have unique challenges to be addressed [3]. First, MR images need to be 

preprocessed heavily before any AI operations due to high variations in the MRI field, 

noise, and acquisition differences in MRIs. Even for the same patients on the same day 

for 2 different scans with the same protocol, the same tissue may have different tissue 

intensities, putting a significant challenge in any computational modeling. Second, instead 

of a single object (tissue or abnormality/pathologic condition) analysis similar to most 

other medical AI applications, in MSK applications, there is a need to analyze multiple 

tissues and/or objects due to the complex relations between MSK system components 

(joints, bones, muscles, and so forth). Fig. 1 illustrates a general workflow of the AI 

integrated MSK imaging applications, where particular emphasis is given to preprocessing 

step. AI component is considered as a general framework in which, depending on the 

application type, one may conduct image-level or pixel level classifications (ie, diagnosis 

and quantification, respectively). In Section “Preprocessing–data cleaning/curation,” we 

explain how to “clean” MR images before AI tools. In Section “Artificial intelligence 

applications in musculoskeletal radiology,” we exemplify 2 important MSK AI applications 

and in Section “Discussion and concluding remarks,” we introduce the limitations of the 

current AI methods and discuss future trends.
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PREPROCESSING–DATA CLEANING/CURATION

Medical imaging investigations have revealed a wide range of artifacts that have negatively 

affected the diagnostic data collected from the scans. To improve image quality, each 

imaging modality uses a range of techniques called “preprocessing.” In MRI, these are 

collected under 3 headings: (1) noise, (2) artifacts such as bias field (inhomogeneity), 

and (3) nonstandardness in medical images (order matters as inhomogeneity correction 

algorithm enhances noises). Anatomy and pathologic condition variations are already 

imposing significant constraints in AI models. Having additional variations due to scanners 

and acquisition differences, noise, and other artifacts increase the complexity of AI models 

unnecessarily, resulting in suboptimal findings. Therefore, preparing “clean data” for AI 

algorithms is critical [9,10]. In this section, we show preprocessing results (before and after 

cleaning) on three-dimensional (3D) MR cartilage knee [11] and 3D MR thigh images [12]. 

We apply both denoising [13] and inhomogeneity correction techniques [14] as well as 

intensity standardization [15] to “clean” the MR images before delineation of the tissues.

Inhomogeneity correction

Inhomogeneity, or bias field, is a major artifact in MRI. Bias field changes true value 

(intensity) of pixels and the same tissue region starts to have different quantitative 

values, often slowly changing across the different parts of the image and hard to capture 

visually when the changes are small. Bias field affects the diagnosis and quantification by 

radiologists and degrades the AI algorithms’ performance significantly due to such changes 

in intensities, often causing over-segmentations or undersegmentations. We correct the field 

inhomogeneity induced by the RF coil with a widely recognized postprocessing method 

called “generalized-scale,” [16,17] which takes less than 10 seconds in our preliminary 

studies [18,19]. Although, nowadays, different scanner vendors have their preprocessing 

software for removing bias field during image reconstruction, there is still a need for 

a preprocessing step because the MR images still include inhomogeneities even after 

reconstruction-based corrections.

Denoising

Noise is ubiquitous in MRI. Considering that minor anomalies in MSK disorders or 

injuries can easily be exacerbated by noise, it is critical to remove or minimize them for 

autoanalysis. Moderate-to-high amounts of noise is typically expected in MRI scans due 

to varying scanner type, scanning time, patient size, and other factors including bias field 

correction methods. Based on our [20] previous experience in smoothing medical images 

while preserving critical details, we perform an edge-preserving denoising procedure to 

minimize the noise in scans.

Intensity standardization

To address acquisition-to-acquisition signal intensity variations, we apply the “intensity 

standardization” algorithm [21] that has been widely adopted by different vendors and the 

research community (performed in less than a second). The outcome is a “clean MRI” where 

variability across images (within and across centers) is minimized. Intensity standardization 
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is simply based on representing the foreground and background of the images with the same 

intensity intervals.

Figs. 2 and 3 show the same subject’s MR images of the thigh and knee before and 

after cleaning operation (inhomogeneity correction and denoising), respectively. We first 

remove inherent bias with the generalized scale method [16,17] followed by the nonuniform 

nonpara-metric intensity normalization technique [14] to ensure there is no artifact left in 

the MR images. Then, for keeping tissue structures and image sharpness, we apply an 

edge-preserving diffusive filter [13].

ARTIFICIAL INTELLIGENCE APPLICATIONS IN MUSCULOSKELETAL 

RADIOLOGY

AI, specifically deep learning, algorithms are well suited to the task of detecting disease 

or injury, which may be the most crucial part of an imaging examination. For this task, 

it is needed to use 1 of 2 approaches. Classification of images begins with training a 

deep learning algorithm to recognize features in a collection of images and then using that 

information to provide a single diagnosis. A disadvantage of this approach is the lack of a 

localizer to assist in human interpretation or verification. Computational methods such as 

“heatmaps” have been created to illustrate the portions of an image that are most important 

to the classifier while reaching its conclusion. In medical imaging, the effectiveness of 

these techniques for pinpointing the location of disease has been varied. An object-detection 

training model evaluates the entire image and coordinates the areas where the model predicts 

a disease or condition can be recognized. Radiologists can benefit from using these models 

because they can help them determine the location of an illness of interest. They also benefit 

from internal explainability (interpretability) in their decision to forecast the presence or 

absence of a disease or condition. A significant limitation of this model is the demand for 

images with annotations at the structure level, which necessitates the human insertion of 

frames on the particular disease, which is a long-lasting job [1,3,4].

AI models can assist basic activities that an MSK radiologist is responsible for interpreting 

imaging results. These tasks can be divided into 3 categories, which are as follows: 

(1) detection and characterization of disease (image level labeling) as described above, 

(2) segmentation (voxel level labeling), and 3) better quality of images (acquisition/

reconstruction) [1,3]. In this article, 2 MSK applications are explored under the 

segmentation subfield: quantification of tissues (thigh MRI tissue analysis in health and 

diseases) and quantification of abnormal conditions (cartilage assessment from knee MRI).

Musculoskeletal application #1: tissue quantification via segmentation

Herein, we demonstrate how we address the challenging segmentation problem of tissues in 

thigh MRI. Separation of fat, muscle, and other tissues in MR images is challenging due 

to the overlap of intensity values in different tissues (similar appearances). Conventional 

methods for the tissue delineations and quantifications mostly depend on manual or 

semiautomated algorithms with limited accuracy, efficiency, and reproducibility. In this 

Keles et al. Page 4

Adv Clin Radiol. Author manuscript; available in PMC 2023 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regard, the existing autosegmentation methods fall short especially when dealing with 

challenging tissues such as intermuscular adipose tissue (IMAT).

We recently proposed a novel deep learning algorithm, called SegCaps [10], for general 

biomedical image segmentation problems. Specifically, we showed its efficacy in multiple 

different challenging problems in medical images and obtained state-of-the-art results 

in the literature. Herein, we summarize how we can apply this algorithm to the thigh 

muscle and adipose (fat) tissue segmentation from MRI scans. Our capsule-based algorithm 

works as follows. Compared with the commonly used convolutional neural network (CNN) 

algorithms, capsule uses communications of neurons with vectors instead of scalars. Briefly, 

a capsule consists of several neurons, and different from CNNs, spatial organization 

of the objects in the images are better captured with capsules thanks to their vector 

representations and lack of pooling operations. Technically, we showed that the capsules 

can be used effectively for object segmentation with high accuracy and heightened efficiency 

compared with the state-of-the-art segmentation method [10]. The proposed convolutional–

deconvolutional capsule network, called SegCaps, showed strong results for the task of 

object segmentation with substantial decrease in parameter space. For segmentation of 

thigh tissues, we first established deconvolutional capsules and created a novel deep 

convolutional–deconvolutional capsule architecture, deeper than the original 3 layer capsule 

network (Fig. 4) [10]. Between different layers of the SegCaps, there is a routing algorithm 

called locally constrained dynamic routing, allowing a less number of parameters to be used 

and more robust training of neural networks while still providing better accuracy for the 

delineation (segmentation) process.

Segmentation algorithms are often evaluated with (at least) 2 quantitative metrics: dice 

coefficient (ie, DSC) to measure how similar a segmented object is to its ground truths in 

terms of percentage of overlapped regions (ie, manually segmented object by radiologists) 

and a shape similarity metric showing how the boundary of a segmented object differs from 

its ground truth correspondence (Hausdorff Distance-HD is often used). A DSC value of 

100% and HD value of 0 show perfect delineation (higher DSC and lower HD indicate a 

superior segmentation algorithm). Other metrics such as sensitivity and specificity can also 

be used for showing the success of a segmentation algorithm. We validated the efficacy 

of SegCaps on 150 MRI scans at 3 different contrasts (water-suppressed, fat-suppressed, 

water-fat) for thigh muscle and adipose (fat) tissue segmentation, and reported the best 

DSC and HD values in the literature compared with several other state-of-the-art deep 

segmentation algorithms [10].

It is also worth mentioning that before our SegCaps study, in another study, we suggested 

another technical innovation for segmenting muscle and fat tissue in the thigh area of whole-

body MRI imaging using the fuzzy connectivity idea (pre-deep learning image processing 

method). This study represented the highly accurate delineation results in terms of Dice 

score applications for fat (DSC = 98.16%) and muscle (DSC = 96.78%) [23].

Additionally, we demonstrated that the semisupervised deep learning system (based on 

conventional U-Net variant system [9]) could be highly effective for training on both 

labeled and unlabeled data and outperformed existing state-of-the-art methods. Although 
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supervised deep learning requires labeled data, our motivation was based on the lack of 

labeled data. Hence, we used a semisupervised approach [8]. In a total of 150 scans from 

50 subjects, we obtained dice scores of 97.52%, 94.61%, 80.14%, 95.93%, and 96.83% for 

muscle, fat, IMAT, bone, and bone marrow segmentation, respectively [9]. Our approach 

was the first study to demonstrate that the thigh tissue segmentation problem can be solved 

using a combination of semisupervised deep learning and multicontrast MRI data [9], and 

comparable to the fully supervised deep segmentation methods even though the labels were 

not complete.

In summary, current techniques in MSK radiology are focused on deep learning 

algorithms and specifically U-Net and its variants. However, U-Net algorithms are known 

for challenges in their robustness and generalization. In other words, different image 

appearances (scanners, time, gender, patient group, age difference, or other factors) can 

easily cause these algorithms to fail. Newer algorithms are focused on addressing such 

challenges by developing more robust and generalized algorithms. Moreover, current 

algorithms often use fully supervised algorithms, where ground truth labeling of the tissues 

(and pathologic conditions) in MSK radiology scans are available for training deep learning 

algorithms. However, emerging deep learning algorithms are aiming at using imaging data 

with minimal supervision because it is quite laborious and expensive to get labeling.

Fig. 5 demonstrates thigh segmentation qualitative examples with the proposed algorithm 

(SegCaps). Further, the first row shows uncleaned images where noise and inhomogeneity is 

observed, whereas the middle row indicates a smoother and cleaner version of the raw data.

Musculoskeletal application #2: cartilage quantification via segmentation

Many efforts have been put into segmenting knee cartilage because it is thicker than the 

cartilage in other joints and can be scanned using standard MR sequences [3]. The literature 

in knee cartilage quantification is denser than the thigh MRI tissue assessment. Liu and 

his colleagues have developed an automated, deep learning-based approach for detecting 

cartilage. An area under the curve (AUC) of 0.917% and a sensitivity of 88% was achieved 

using the same datasets as experienced radiologists, with 660 images for training and 1320 

images for testing [24]. CNN-based deep neural network (DenseNet) designed by Pedoia 

and colleagues [25] used T2-voxel-based relaxometry data to detect cartilage abnormalities 

and diagnose osteoarthritis with an AUC of 0.83. There are two CNNs in this cartilage-

detection CNN model: one for detection and one for recognition. First, a segmentation 

of the image was performed, and then a follow-up segmentation was performed to find 

any anomalies in the cartilage [6]. Liu and colleagues published a method for segmenting 

knee (bone and cartilage) based on Badrinarayanan and colleagues SegNet’s model [23,26]. 

Researchers have used SegNet to accomplish accurate knee cartilage segmentation to reduce 

computing costs to a minimum. Another 60 training and 40 testing examples from the SK10 

Challenge’s 250-test case dataset were also used (sk10.org) [27]. For femoral and tibial 

cartilage segmentation, their SegNet model outperformed other state-of-the-art approaches 

and was the best performer in the femur segmentation categorization overall [6].

Other studies compared CNN-based automated segmentation applications for knee menisci 

(DSC = 83–86%) [26,28] adipose tissue (DSC = 96%), and the proximal femur (DSC 
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= 94%) [29]. It is envisaged that the accuracy of lesion identification and classification 

would improve when the precision of tissue segmentation improves due to deep learning 

technologies [6]. Segmenting the proximal femur was done using images of volumetric 

structural MR scans taken from the bones of 86 subjects. The autosegmentation DSC was 

0.94 [29].

Meniscus, quadriceps, patellar tendon, and infrapatellar fat pad were all segmented using 

CNN (VGG16) and a mean DSC of 80% to 90% in their MRI study of the knee [30]. 

The challenge also tested the clinical efficacy of automatic segmentation methods on 

osteoarthritis initiative (OAI) Datasets. The study comprised 88 patients with Kellgren-

Lawrence osteoarthritis grades 1 to 4 who had 176 3D MRIs twice a year. Six teams 

provided entries with no differences in any issue segmentation metrics (P = .99) [11].

By joining the segmentation challenge and using the same MRI data as summarized above, 

we first implemented a 2D multiview encoder-decoder that adaptively fused sagittal, axial, 

and coronal views to enforce high-level 3D semantic consistency on Knee MRI [31]. Fig. 6 

shows our deep network architecture for segmenting knee cartilage. Details of the proposed 

U-Net variant segmentation algorithm are as follows: our network is U-Net type encoder/

decoder architecture with corresponding contracting and expanding paths consisting of 

dense blocks. There are 10 dense blocks in the network. A growth rate of 12 is used for 

the dense blocks. There are 6, 8, 11, 15, 19, 19, 14, 10, 7, and 5 convolutions in respective 

dense blocks. A filter size of 3 × 3 is used for the dense block convolution operations 

including the final output convolution. First convolution operation uses a 7 × 7 convolution 

filter size. Dense block convolution operation is followed by ReLU activation and Batch 
Normalization. There are skip connections between corresponding dense blocks between 

contracting and expanding paths to enrich the feature richness for the expanding path. Our 

training learning rate is 0.0001 while we trained for 150 epochs. We used Adam Optimizer 

with beta1 = 0.9, beta2 = 0.999 and cross entropy loss has been used. We used 2 × 2 pooling 

for contracting paths with a stride size of 2 × 2 while bilinear interpolation is used for up 

sampling. For the implementation of the network, we used the TensorFlow library. Fig. 7 

shows a sample knee cartilage segmentation result, and our dice scores of femoral, tibial, 

patellar cartilage, and meniscus, respectively are 87%, 85%, 81%, and 83% (See Fig. 7) 

[11].

DISCUSSION AND CONCLUDING REMARKS

We acknowledge the current challenges in MRI segmentation in MSK radiology 

applications, particularly in the knee and thigh for quantification purposes. We introduce 

the preprocessing step as a key player in AI algorithm development in MSK applications, 

especially when MRI is involved. We demonstrate qualitative and quantitative results for 

tissue segmentation (fat, muscle, bone) from thigh MRI and cartilage segmentation from 

knee MRI with the U-Net variant as well as capsule-based (SegCaps) segmentation methods, 

the state-of-the-art algorithms for obtaining the best accuracy and efficiency. Based on 

the current promising results and trends of AI in MSK applications, we conclude that 

deep learning has an increased role in radiology AI applications, and specifically in MSK 

applications, and there is a need for developing better algorithms to mimic unique challenges 
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of MSK imaging such as the complicated interaction of biomechanics of the soft tissues, 

joints, and bones.

In this article, we briefly demonstrate two important MSK applications but there are other 

MSK applications worth mentioning that would benefit from AI assistance: task assistance, 

measuring the length of the bone in the extremities, assessment of muscle volumes, 

accelerating MRI acquisition, enabling modality-to-modality conversion, improving the 

quality of images, and others. Deep learning segmentation models (CNNs) have been 

extensively used on MR imaging of the knee to directly estimate the severity of cartilage 

disease or abnormalities and the composition of the human body [2]. Using CNNs, 

Chaudhari and colleagues developed a superresolution method (Deep-Resolve) for thick 

slice MRI data that improved its usability. In DeepResolve, images of the knee are sliced 

into 0.7 mm-thick slices. This model was trained on 124 patients from the Osteoarthritis 

Initiative’s training dataset. DeepResolve was shown to produce high-quality knee MR 

images that met or exceeded the diagnostic standards of two radiologists and a quantitative 

assessment [32].

In a multi-view knee MRI dataset of 1370 MRIs, the classification performance of multiple 

CNN designs were evaluated, and one of the methods was developed by our group in 

this comparison. Using ResNet-18, AUC was 0.8787 and sensitivity was 0.7855. Using 

GoogleNET, AUC was 0.8579 and sensitivity was 0.8596. The study’s promising results 

demonstrate that multiview deep learning-based classification of MSK abnormalities may be 

used in routine clinical assessment [33].

One limitation of the current AI algorithms for MSK applications is that when using a 

trained algorithm, it is only possible to evaluate a single diagnosis at a time. Another 

drawback of the current AI system is that despite the sophistication of many deep learning 

applications, no deep learning model has yet been described capable of doing complete 

multisequence joint MRI interpretation (or even single view radiograph interpretation). 

There is a strong need for considering multimodal imaging and multiobject interpretations 

because this is a particular need for the daily practice of MSK radiology. Although 

deep learning can perform at the level of an expert in all 4 categories of activities, 

imaging investigations are still in the process of being fully understood [6]. Researchers, 

radiology professionals, and industry leaders are all interested in deep learning, and these 

developments are expected to impact daily MSK radiology practice soon. After deep 

learning has been integrated into the clinical workflow, it will be essential to achieve 

diagnostic accuracy [34]. As our reliance on deep learning expands, radiologists will be 

expected to have a thorough knowledge of the mechanisms and difficulties associated with 

AI in the scope of patient assessments [35].
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KEY POINTS

• Deep learning has become one of the major approaches in artificial 

intelligence (AI).

• AI implementations in musculoskeletal (MSK) radiology have many unique 

challenges due to the complication interaction of biomechanics.

• AI introduces new stages in MSK radiology, facilitating detection, 

segmentation, quantification, and preprocessing of radiology scans.

• Deep learning is promising in magnetic resonance imaging analysis in MSK 

applications, overcoming the obstacles of segmentation and quantification 

without human labor.
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FIG. 1. 
General workflow for MSK AI applications in a clinical setting.
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FIG. 2. 
Preprocessing results for an axial thigh MRI [22] before and after preprocessing inherent 

noise and bias-field (marked with orange arrows), with water-only, water-fat, and fat-only 

contrasts.
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FIG. 3. 
Axial (A), coronal (B), and sagittal (C) knee MRI. Raw demonstrates the images before 

preprocessing. Clean demonstrates the images after preprocessing. Tissue coloring for 

segmentation is referred to as the “labeled” image.
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FIG. 4. 
The segmentation capsule network in thigh segmentation.
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FIG. 5. 
The figure demonstrates thigh MRI segmentation (last row), cleaned MRI (middle row), and 

raw images (first row).
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FIG. 6. 
U-Net variant (with attention) architecture for knee cartilage segmentation.
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FIG. 7. 
Sample segmentations of the knee in patients with Kellgren-Lawrence osteoarthritis grade 

2 to 4 (first, second, and third image, respectively). The following tissues were segmented 

and colored: femoral cartilage, tibial cartilage (green), patellar cartilage (red), and meniscus 

(purple).
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