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a b s t r a c t

The monkeypox virus poses a new pandemic threat while we are still recovering from COVID-19.
Despite the fact that monkeypox is not as lethal and contagious as COVID-19, new patient cases are
recorded every day. If preparations are not made, a global pandemic is likely. Deep learning (DL)
techniques are now showing promise in medical imaging for figuring out what diseases a person has.
The monkeypox virus-infected human skin and the region of the skin can be used to diagnose the
monkeypox early because an image has been used to learn more about the disease. But there is still
no reliable Monkeypox database that is available to the public that can be used to train and test
DL models. As a result, it is essential to collect images of monkeypox patients. The ‘‘MSID’’ dataset,
short form of ‘‘Monkeypox Skin Images Dataset ’’, which was developed for this research, is free to use
and can be downloaded from the Mendeley Data database by anyone who wants to use it. DL models
can be built and used with more confidence using the images in this dataset. These images come
from a variety of open-source and online sources and can be used for research purposes without any
restrictions. Furthermore, we proposed and evaluated a modified DenseNet-201 deep learning-based
CNN model named MonkeyNet. Using the original and augmented datasets, this study suggested a deep
convolutional neural network that was able to correctly identify monkeypox disease with an accuracy
of 93.19% and 98.91% respectively. This implementation also shows the Grad-CAM which indicates
the level of the model’s effectiveness and identifies the infected regions in each class image, which
will help the clinicians. The proposed model will also help doctors make accurate early diagnoses of
monkeypox disease and protect against the spread of the disease.
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1. Introduction

The very infrequent monkeypox disease is caused by a virus
called the monkeypox virus. It belongs to the same family as the
more well-known virus responsible for causing smallpox, and its
name is orthopoxvirus (Lewin, 2010). In 1958, sick monkeys that
had been sent from Singapore to a research center in Denmark
provided the initial clues that led to the isolation and identifi-
cation of the monkeypox virus (Kumar, Acharya, Gendelman, &
Byrareddy, 2022). The number of monkeypox cases is going up,
not just in Africa but also in other places where these illnesses
have not been seen before (Duds et al., 2022). After being exposed
to something, a person may not have symptoms for days or
weeks. Early monkeypox symptoms include those similar to the
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lu, such as fever, chills, headaches, aches, muscle pains, fatigue,
nd swollen lymph nodes (Fatima & Mandava, 2022). After a few
ays, a rash will typically begin to appear. The rash initially man-
fests itself as painful papules that are red and flat. These raised
reas eventually develop into blisters, which are then filled with
us. The blisters harden and flake off in two to four weeks. The
ymptoms of monkeypox do not always appear in every person
ho has the disease (Adalja & Inglesby, 2022). The virus that
auses monkeypox can be contracted by contacting an infected
nimal or person. There is a risk of transmission from person to
erson for monkeypox, despite the disease’s rarity. Transmission
rom one person to another takes place when a person comes into
ontact with the sores, scabs, respiratory droplets, or oral fluids
f an infected individual (Simpson et al., 2020). Expert healthcare
rofessionals may initially suspect similar rash infections, such as
easles or chickenpox, as the origin of their monkeypox because
f how uncommon the condition is. But most of the time, swollen
ymph nodes can tell the difference between monkeypox and
ther types of pox (Koenig, Beÿ, & Marty, 2022). The healthcare
rofessionals will obtain a sample of tissue from someone with
n active infection on one body in order to make a diagnosis of
onkeypox. The sample is then sent to a laboratory for analysis
sing polymerase chain reaction (PCR) (Reed et al., 2004). This
est has been known to be expensive and take a long time to
eturn results. At this time, there is no antiviral therapy that will
ure us enough to treat monkeypox (Reynolds, McCollum, Nguete,
hongo Lushima, & Petersen, 2017). Now the researchers need to
ind an effective way to identify monkeypox disease and do the
ata collection and research trial.
Recent developments in areas such as artificial intelligence

nd machine learning have made them one of the most helpful
ools for clinicians (Bohr & Memarzadeh, 2020). Deep Learning
s a subfield of artificial intelligence that assists in creating a
odel, automatically extracting the features without the need

or human participation, training the model, and producing the
esults (Myszczynska et al., 2020). Imaging techniques of all kinds
re already being put to use in the field of medicine, assisting
edical professionals in making diagnoses of a wide variety of
iseases, including brain cancer (Noreen et al., 2020) and other
espiratory conditions like pneumonia and tuberculosis (Haloi,
ajalakshmi, & Walia, 2018), as well as COVID (Desai, Pareek,
Lungren, 2020) and other conditions. The analysis of medi-

al images via deep learning has been extensively studied re-
ently (Shen, Wu, & Suk, 2017). There is a need in this field
ecause there are so many cases of monkeypox and not enough
esting kits. Due to the low number of expert clinicians, it is been
challenging task to provide one to every hospital. Furthermore,
he deep learning model may be able to address issues such as a
ack of RT-PCR kits, inaccurate test results, high costs, and long
ait times (Ozturk et al., 2020). Deep learning strategies have
lso been investigated to see if machine learning could provide
viable solution to the problem of developing an efficient triage
trategy for the diagnosis of monkeypox sickness. The authors
f this research deployed a deep learning model to improve the
ccuracy of the diagnosis of monkeypox.
Among some studies, several of the studies that were intro-

uced captured our interest more than others. For the purpose
f assisting with the diagnosis of Alzheimer’s disease, Folego,
eiler, Casseb, Pires, and Rocha (2020) made use of 3D convolu-

ional neural networks (CNN) for biomarker recognition in MRI.
y using an ultrasound and a deep residual network (ResNet), Kuo
t al. (2019) was able to accurately predict the start of chronic
idney disease. Apostolopoulos and Mpesiana (2020) developed
deep learning model that he termed ‘‘Darknet’’ by utilizing
24 positive image datasets from the Covid-19 database. The

odel had a 98.75% accuracy rate. Narin, Kaya, and Pamuk (2021)
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achieved a 96% accuracy for COVID-19 detection using the
ResNet50 ImageNet model. Rajpurkar et al. (2017) made CheXNet,
which is a 121-layer convolutional neural network that is better
at finding pneumonia than four working radiologists. There are
some papers on chickenpox disease detection using deep learn-
ing techniques. A low-complexity convolutional neural network
(CNN) was proposed by Sandeep, Vishal, Shamanth, and Chethan
(2022) to identify skin illnesses such as psoriasis, melanoma,
lupus, and chickenpox. They demonstrate that it is possible to
diagnose skin diseases using image analysis with a level of accu-
racy of 71% by making use of the experimental VGGNet. On the
other hand, the suggested method that they have come up with
achieves the best outcomes by being approximately 78% accurate.
A method that utilizes a smartphone and MobileNet to diagnose
skin problems was proposed by Velasco et al. (2019). They came
to the conclusion that people with chickenpox symptoms can
be identified with 94.4% accuracy. Roy et al. (2019) used differ-
ent segmentation strategies in their study to find skin diseases
like acne, yeast infections, cellulitis, chickenpox, and others. Ali,
Shams Nafisa et al. (2022) began by presenting a dataset referred
to as ‘‘MSLD’’, which included a total of 228 images of three
distinct kinds of skin lesions. They have increased the sample size
by utilizing ‘‘data augmentation’’, which is a technique used to
enhance the size of the sample, and they have established a 3-fold
cross-validation study. In the subsequent stage, multiple different
pre-trained deep learning models, such as VGG-16, ResNet50, and
InceptionV3, are used to identify monkeypox and other diseases.
Overall, ResNet50 is the most accurate model, with an accuracy
of 82.96%. RManjurul Ahsan et al. (2022) presented the ‘‘Monkey-
pox2022’’ dataset, which was recently developed. They applied
a modified deep learning model named VGG16 to the original
and augmented datasets and obtained 97% and 88% test accuracy,
respectively. However, in some papers,we demonstrated that the
machine learning and deep learning results were very promising
and accurate when it came to imaging datasets. Based on these
results, we think that using deep learning techniques to classify
monkeypox disease from an image-based dataset would give us
benchmark results.

In this research, the authors have attempted to look into the
performance of monkeypox identification from a newly devel-
oped dataset of images of monkeypox named Monkeypox Skin
Images Dataset. The primary goal of this research is to develop a
reliable framework for detecting patients with monkeypox using
skin images obtained through the use of deep learning-based
convolutional neural network models named MonkeyNet by de-
veloping a fully new image dataset. With its ability to learn on its
own, CNN has recently emerged as the most popular deep learn-
ing approach for medical imaging classification. In order to detect
patients with monkeypox using skin images, we used a relatively
recent technology called CNN, in which the learning process is
constructed using an arrangement of densely connected convo-
lutional networks (DenseNet) (Huang, Liu, Van Der Maaten, &
Weinberger, 2017). When it comes to deep learning models, one
of the most important reasons for applying DenseNet-201 is that
it helps to reduce the problem of vanishing gradients while also
improving feature reuse and reducing parameter consumption. In
order to optimize the flow of the architecture, the dense network
would be driven by the concept of linking each layer to every
other layer behind it. Instead of settling on a single final layer,
this approach allows CNN to settle on a set of layers in total.
Compared to other image processing technologies, DenseNet is
more complicated and can take in more visual information.

As stated below, the following are some of the contexts in
which this work makes a significant contribution to current re-
search:
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• Firstly, the authors have developed an entirely new image
dataset named ‘‘Monkeypox Skin Images Dataset’’ that con-
sists of four different image classes that are monkeypox,
chickenpox, measles, and normal images. All of the images
in the dataset came from different reliable online sources,
such as reliable health websites, newspapers, journals, etc.

• Secondly, applied a new foster deep CNN model named
MonkeyNet in combination with a data augmentation strat-
egy to categorize and recognize monkeypox cases. The re-
sults of the RT-PCR tests may be a big part of any problems
in very serious cases. The skin-based image classification
method will be a good alternative because it has very higher
accuracy for detecting monkeypox.

• Thirdly, the performance of our proposed deep CNN has
been looked at by a number of different metrics, including
test accuracy, precision, recall, AUC score, and F-1 score, as
part of a wide range of experiments according to different
hyperparameters and we selected the best value of the
hyperparameters like batch size and learning rate for our
presented original and augmented dataset.

• Fourthly, this research work filled in a conceptual gap by
using a bigger set of medical imaging datasets than other
research had used. This is because earlier research used
datasets that were much smaller in size. The authors have
tried to increase the size of the dataset.

• Finally, we have generated a Gradient-weighted Class Ac-
tivation Map (CAM) for each class image for our presented
dataset based on our proposed deep CNN model. In practice,
the CAM image helps clinicians make quick and effective
diagnoses and treatments by pointing the infected regions
of the patient’s skin.

This remaining paper has been organized in the following way:
The details of the experimental dataset are given in Section 2.
After that, the architecture of the proposed model, methods used
in this research, and the experimental setup used to evaluate the
model’s performance are summarized in Section 3. The descrip-
tions of all the evaluation metrics are illustrated in Section 4.
Next, the experiments that were done to find a solution to the
research gap are shown in Section 5 and the results of these ex-
periments, the discussion of these results, and the interpretation
of the data that was found are shown. Finally, in Section 6, a brief
summary of the whole process is given.

2. Dataset collection

It is absolutely necessary to diagnose individuals who exhibit
signs of monkeypox in this day and age, as the monkeypox
disease is quickly spreading throughout many countries. Many ar-
tificial intelligence (AI) systems that interpret images are thought
by many authorities in the medical sector to have the potential to
make it simpler for doctors to diagnose outbreaks. Actually, the
first time a pandemic situation spreads, it is very difficult to make
a dataset for anyone (Fong, Li, Dey, Crespo, & Herrera-Viedma,
2020). For these reasons, any researcher depends on some reliable
online-based resources. The journalists report various facts about
that disease, statistics, or images of the pandemic during the
pandemic in different journals. To solve the issues of the dataset,
any researcher can depend on different reliable online-based
health resources, as well as journals, newspapers, and any other
resources. Meanwhile, at the moment this article was written,
it was not possible to locate any publicly released Monkeypox
database that was reliable, which makes it difficult to take ad-
vantage of implementing an AI-based technique to effectively
diagnose and treat the Monkeypox disease. As a consequence of
this, a significant number of researchers and experts are unable to
759
contribute to the detection of the monkeypox disease by utilizing
cutting-edge AI approaches. In light of these constraints, the ap-
proach presented here involved the collection of patient pictures
containing monkeypox. Our preliminary data set only includes
a small number of samples, but this will not be a problem for
the preliminary study. When researchers were building AI-based
models in the early stages of COVID-19 disease (Khemasuwan &
Colt, 2021; Lella & Pja, 2021), the authors were inspired by the
large amount of published research that had only looked at small
datasets before. Still, the database will always be updated with
new information from many different organizations around the
world.

Because there is not yet a cooperative dataset that is re-
leased to the public by a licensed hospital, clinic, or other reliable
sources, the image data for monkeypox is put together from a
variety of sources, such as reliable health websites, newspapers,
online portals, and samples shared by the public resources (CDC,
2022; DermNet, 2022; IAC, 2022; NHS, 2022). In order to accom-
plish this, the Google search engine (Google, 2022) is utilized for
the purpose of gathering the images that make up our dataset.
Basically, the authors have collected two types of images: one
is monkeypox and the other type is non-monkeypox images.
Additionally, the non-monkeypox type includes three types of
images: chickenpox, measles, and normal images. All these im-
ages have been obtained by searching for images of monkeypox,
chickenpox, measles, and normal images from different reliable
resources through Google. We have collected images of different
parts of the body, like the face, hand, leg, fingers, etc. A total
of 770 image samples have been collected, where chickenpox,
measles, monkeypox, and normal classes contain 107, 91, 279,
and 293 image samples, respectively. The authors named the
dataset ‘‘MSID’’, which is the short form of ‘‘Monkeypox Skin Im-
ages Dataset’’. The augmentation method was used on the original
dataset because of the need for a large number of images. We
have uploaded the entire dataset to the ‘‘Mendeley Data’’ database
for the purpose of further research (Bala & Diponkor, 2022). The
dataset is easy to find and can be downloaded from the Mendeley
Data database for free. The image samples of the different classes
and the distribution of the images according to the classes is given
in Figs. 1 and 2.

3. Methodology

Firstly, the experimental process started with the use of the
cross-validation concept, which had to be adapted due to the
small scale of the collected dataset to further prove the efficacy
of our proposed dataset. In the next step, some machine learning
classifiers were used to classify the image classes. Next, some
pre-trained deep learning models (Wang, Fan, & Wang, 2021),
and finally the dataset was trained and tested through the pro-
posed deep learning-based CNN model. The proposed model is
based on the implementation of a modified pre-trained model
based on convolution neural networks (O’Shea & Nash, 2015)
for the purpose of generating the output. The working envi-
ronment is initialized by loading the monkeypox image dataset.
Once the dataset has been loaded, it proceeds to execute data
preprocessing procedures such as data normalization and data
augmentation (Li, Wu, Lim, Belongie, & Weinberger, 2021), af-
ter which we will use our proposed CNN model for training in
batches and allow it to run for a few epochs before moving on to
the next section. To find out how well the model works, we need
to test it with the testing dataset.

A number of major steps were taken in the proposed method-
ology, including:

• Data Preprocessing
• Model Development
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Fig. 1. Samples of the image dataset.

• Training and Testing the Model
• Hyperparameters Settings

Fig. 3 illustrates the proposed methodological framework for
he classification and prediction of monkeypox disease.

.1. Data preprocessing

The data preprocessing step includes feature scaling, data re-
izing, splitting, and augmentation. These are illustrated in the
ollowing:

Feature Scaling: The procedure initially started by exporting
he dataset so that we could work with it and modify the data so
hat it could be used by multiple classifiers to accurately forecast
onkeypox disease detection. Data preprocessing consists of a
umber of operations, such as extracting the labels from images,
urning the image into RGB format, resizing the image, and ex-
cuting feature scaling. First, using OpenCV methods (Bradski &
 a
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Kaehler, 2008), the skin images in the dataset are transformed to
RGB and then downsized to 224 × 224 pixels. The standard image
size is in the range [0,255], with 255 being the largest image size
allowed by the system.

For feature scaling, images and labels are first loaded into two
independent datasets, and then these datasets are turned into
NumPy arrays for use in the next step. In this case, it is necessary
to conduct maximum normalization on the images. Normaliza-
tion techniques, such as feature scaling, are used to standardize
input data into a fixed range by performing operations on the
independent variables of the data. It is useful in tying together
values between two numbers, particularly those between [0,1].
This is accomplished by dividing each image by the maximum
size (255) and translating the data into the range [0,1] (Pei & Lin,
1995). Using the one-hot encoding method, labels are given to
the data that goes with each image. It follows that the normalized
value is denoted by the symbol x′.

x′
=

x − min(x)
max(x) − min(x)

(1)

where x is the original intensity of the image.
Data splitting: As a result of the feature rescaling, all of

he images in the dataset are resized into the range (224,224),
here the image’s height and width are both 224 pixels. The
ataset must now be divided into two parts: a training portion
nd a testing portion. Specifically, in this study, we divided the
ataset into two parts: 80% for training and 20% for testing our
roposed model, respectively. From the training dataset, 20% of
he image samples are utilized for the model validation. Table 1
rovides further information regarding the manner in which the
wo datasets have been split according to the splitting ratio.

Data Augmentation: Data augmentation is a process that
s used to expand the size of a dataset by applying random
ransformations to the original data (Shorten & Khoshgoftaar,
019). ImageDataGenerator is a class in the Keras deep learning
ramework (Ketkar, 2017) that allows us to fit the model using
mage data. It is possible that we will have greater variability in
ur dataset as a result of this, and in addition to this, it will be
tilized to boost the total number of training samples in an effort
o prevent overfitting. In every epoch, all of the original images
ere transformed and augmented, and the resulting images were
sed for training in order to prevent overfitting. Because it was
rained on numerous variants of the same image, the model
as able to be more robust and accurate. It was determined
hat the number of images in each epoch was equivalent to
he number of images in the original images. When training
ata is used, the ImageDataGenerator model (Bhandari, 2020)
s used to enrich it with new information. We have applied
ainly positional and color augmentation techniques. With the
ositional augmentation, the color augmentation technique has
een utilized since every image was found online, where there is
wide range of lighting conditions. Fig. 4 depicts the augmented
Fig. 2. Distribution for original (left) and augmented (right) dataset.
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Fig. 3. Proposed methodological framework.
Table 1
Dataset splitting in details.
Image classes Original dataset Augmented dataset

Training Validation Testing Total Training Validation Testing Total

Chickenpox 69 17 21 107 1138 284 355 1777
Measles 58 15 18 91 960 241 301 1502
Monkeypox 178 45 56 279 1691 423 528 2642
Normal 187 47 59 293 1771 443 554 2768
Total 492 124 154 770 5560 1391 1738 8689
images that were created from a single sample. The applied image
augmentations parameters are tabulated in Table 2.

When dealing with class imbalances, this strategy was chosen
ver random oversampling, which was one method of dealing
ith the imbalances. When using random oversampling, it was
761
necessary to re-sample less frequent samples in order to adjust
their amount in contrast to dominating samples. The distribution
of classes, on the other hand, would alter dramatically, with the
smaller classes having significantly less variance and the bigger
classes having significantly more variety.
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Table 2
The parameters for data augmentation that we utilized in this research.
Parameters name for data augmentation Parameters value Action

Rotation range 45 The input data are created by rotating −45 to 45 degrees.
Horizontal flip True Randomly flip inputs horizontally.
Vertical flip True Randomly flip inputs vertically.
Zoom range [0.8, 1.25] Zoom in or out by 0.8 to 1.25 distance from the middle.
Shear range 45 Images are randomly sheared by 0 to 45 degrees.
Height shift range 0.3 Randomly shifted in height by 30%.
Width shift range 0.3 Randomly shifted in width by 30%.
Brightness range [0.1, 2] Randomly changing brightness by the range of 0.1 to 2.
Contrast jitter [0.5, 2] Randomly changing contrast by the range of 0.5 to 2.
Hue jitter 0.5 Randomly changing hues by the value of 0.5.
Saturation jitter [0.2, 3] Randomly changing brightness by the range of 0.2 to 3.
Fill mode Constant The gaps are filled in with the pixel value of black.
Fig. 4. Original monkeypox image (a) and its 11 types augmented images for
he augmented dataset. The augmented images includes (b) Random rotation, (c)
orizontally flipped, (d) Vertically flipped, (e) Randomly zooming, (f) Randomly
heared, (g) Randomly height shifted, (h) Randomly width shifted, (i) Brightness
itter, (j) Color jitter, (k) Hue jitter, and (l) Contrast jitter.

.2. Model development

The model development stage includes some machine learning
lassifiers, pre-trained deep learning models, and the proposed
NN model.

.2.1. Machine learning classifiers
Firstly, five machine learning classifiers have used for the

lassification of monkeypox disease. The classifiers are briefly
escribed in the following:
Logistic Regression: Logistic regression is a type of classifi-

ation algorithm that requires supervision. When the predictor
ariable is categorical, which makes it simpler to apply and an-
lyze, this method is the one that is utilized. The classes that
re going to be predicted are more than two, so Multinomial
ogistic Regression is needed. It is often called softmax regression,
ecause it uses a generalization of the sigmoid function, the soft-
ax function (Dreiseitl & Ohno-Machado, 2002). In Multinomial
ogistic Regression, a document d is assigned to the class c, which
s the one with the highest probability. These probabilities are
omputed via the softmax function:

(y = c|x) =
exp(wcx + bc)∑C
j=1 exp(wjx + bj)

(2)

where x is the input vector and w, b are the parameters.
762
Random Forest: Ultimately, the random forest is a collection
of decision trees. A tree is constructed using random subsets
of the dataset. A decision tree algorithm does not handle the
problem of overfitting as effectively as a decision tree. There are
many reasons for this, but the most common is that a single tree
begins to construct rules for the minority class, which results
in overfitting. Because each tree receives a vote in a random
forest process, the final outcome is more generalized than if this
problem were to arise. Entropy and Gini impurity are two of the
most commonly used measures to ensure that the split is of high
quality. Entropy will be used to determine how pure the split
is Liu, Wang, and Zhang (2012). It is contained in the following
formula:

E(S) =

m∑
i=1

−pi log2(pi) (3)

where pi is the probability of class ‘i’. The impurity of the split
is measured by Gini impurity, which is akin to entropy. If Gini
impurity equals 0, the split is considered ideal. Impurity in the
Gini formula, p, shows how likely it is that each of the classes
will split apart.

GiniIndex = 1 −

n∑
i=1

(pi)2 (4)

The Gini impurity method uses less computer power than
entropy does. Therefore, we use Gini impurity in our implemen-
tation of the random forest.

K-Nearest Neighbor: In addition to its application in classi-
fication and regression, the supervised learning model known
as K-NN is also utilized. The result of k-Nearest Neighbors is
dependent on the application in which it is utilized, whether for
classification or regression. K-NN begins with loading the data
and initializing the value of k, which is simply the number of
neighbors. Calculating the distance between the query data and
the current data, adding that distance, and indexing the example
into the ordered collection are the three steps that are carried out
in this process. After that, it selects the first k entries from the
sorted collection and strips the labels off of those k entries that
were chosen. If the procedure is being used to perform regression,
it will return the mean of those k labels; if it is being used to
perform classification, it will return the mode value of those k
labels. However, if k = 1...n, it will be allocated to a single or
multiple nearest neighbor and equation is expressed as (Zhang,
2016)-

DM =

(
n∑

i=1

|xi − yi|p
)1/p

(5)

where DM is the Minkowski distance among the points.
Support Vector Machine: As a supervised learning model, an

SVM, or support vector machine, can be used to categorize data
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nd solve regression issues. In order to categorize or split the
ata by a clear separation as broad as feasible, points in space
re employed to represent the data. It forms a line, or what we
ay call a hyperplane, to help us categorize the data. Using the
VM technique, we can determine which points in each class are
losest to the hyperplane, a concept known as support vectors.
he margin is the distance between the support vectors and the
yperplane through which the hyperplane can be seen. If an n-
imensional vector or list of n elements has a single data point in
ach of two classes, then the new data point must be assigned to
ne of the two classes. The (n−1) dimensional hyperplane can be
hecked to see if there are any independent (n − 1) dimensional
oints (Hearst, Dumais, Osuna, Platt, & Scholkopf, 1998).
Extreme Gradient Boosting: Boosting is a type of ensemble

learning, and the model itself is often made up of a number of
different decision trees. The correction of faults caused by an
existing model can be made by incorporating other models into
it. Models are added until there are no more ways in which they
can be improved. When trying to fit new models to an existing
one, gradient boosting employs the process known as gradient
descent in order to try to minimize the loss function (Chen et al.,
2015). The following equation is used to maximize the value of a
cost objective function which is denoted by Ω .

Ω(θ ) =

n∑
i=1

d(yi, ŷi) +

K∑
k=1

β(fk) (6)

where ŷi represents the value of prediction, n is the total cases in
the training sample, K is the total number of trees that need to
be constructed, and fk is a member of the group of trees known
as the ensemble trees.

3.2.2. Deep learning models
In the second round of our monkeypox disease classifica-

tion process, we deployed five different deep learning models.
Each model is trained on the trained dataset with its pretrained
weights and adds an extra three layers at the end of the model
that are one flatten layer, one dense layer, and an output layer
with four classes. We changed the input shape to 224 × 224
in each model. The following is a condensed description of the
various models:

VGG16: The VGG16 is a deep convolution neural network
proposed by Oxford University members. It is a very deep con-
volution neural network that helps with image classification and
image recognition. The model achieved 93% accuracy in Ima-
geNet, which is a collection of 14 million images that belong to
more than 1000 classes. It overcomes the problems of AlexNet
by replacing the size of kernel filters with multiples of 3*3 size.
The VGG16 architecture comprises thirteen convolution layers,
five maxpooling layers, and three dense layers. Those convolu-
tional layers have very small receptive areas (3 × 3). A max-
imum pooling layer follows some of those layers. These layers
are CNN model layers with different numbers of filters, sizes, and
stride values (Simonyan & Zisserman, 2014). The Fig. 5 shows the

utilized VGG16 model architecture.
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ResNet-50: ResNet is an abbreviation for ‘‘Residual Network’’,
and this network brings to the field residual learning. It has 50
layers and is usually used for various computer vision tasks such
as image classification, object localization, object detection, etc. It
is also possible to use it for other tasks besides computer vision
in order to provide an illusion of depth for those tasks. Generally,
in a deep convolutional neural network, many layers are stacked
together and are trained for a specific task at hand. The network
is taught many low-to high-level features by the end of its layers.
In residual learning, the network does not only try to learn some
features, but it also tries to learn some residuals as well. Residual
can be very simply understood as the subtraction of a feature
learned from the input of that given layer. ResNet is able to do so
using some shortcut connections that directly connect the input
of the nth layer to some (n + x)th layer (He, Zhang, Ren, & Sun,
2016). In this paper, the ResNet-50 model has been utilized with
some modifications in the last layers. The Fig. 6 shows the utilized
ResNet-50 model architecture.

MobileNetV1: MobileNet is a type of CNN created to be able
to run on mobile devices with low processor power capabilities.
They are built on a streamlined architecture that utilizes depth-
separable convolutions. This helps in building a lightweight deep
neural network that has low latency for mobile and embedded
devices. MobileNet is made so that it mostly uses pointwise
separable convolution instead of full convolution. MobileNetV1
consists of a regular 33 convolution layer followed by 13 blocks
of 3 × 3 depthwise convolution, batch normalization, and ReLU,
with 1 × 1 pointwise convolution, batch normalization, and ReLU.
here are no pooling layers in between those depthwise separable
onvolution blocks. The stride of 2 is used to reduce the spatial
imension of those inputs. The number of output channels is
lso doubled in the pointwise layers. All these layers have batch
ormalization. MobileNet uses ReLU as its activation function. The
rchitecture is completed with a global average pooling layer at
he very end. The final three layers implemented with a flatten
ayer, a dense layer and final classification layer used softmax as
ctivation function (Howard et al., 2017). The Fig. 7 shows the
tilized MobileNetV1 model architecture.
Inception V3: Inception V3 is the enhanced version of Incep-

ion V1, also known as GoogleNet, which is assembled using a
o-called Inception architecture. Inception V1 is not only deep in
he direct sense, but the depth is also apparent within the used
nception modules. Inception modules create sparsity by applying
× 1, 3 × 3, and 5 × 5 convolutions after dense components.
dditionally, 1 × 1 convolution is used as a non-linear dimension
eduction before 3 × 3 and 5 × 5 convolutions to maintain
parsity and prevent an increase in computational requirements.
he network mainly consists of stacked Inception modules. The
ccasional introduction of Max-Pooling down-samples the fea-
ures by halving the resolution. These modules make it possible
o focus on higher-level features at higher network levels, which
akes it possible to process features on a large scale. Lastly, label
moothing is added to try to prevent overfitting by keeping the
odel from becoming too confident in a certain class (Szegedy,
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Fig. 6. ResNet-50 model architecture.
Fig. 7. MobileNetV1 model architecture.
Fig. 8. Inception V3 model architecture.
anhoucke, Ioffe, Shlens, & Wojna, 2016). The Fig. 8 shows the
tilized Inception V3 model architecture.
Xception: ‘‘Xception’’ is a ‘‘deepthwise separable variant of

nception’’ where nxn spatially convolution channel-wise is re-
erred to as ‘‘depthwise convolution’’. The Xception neural net-
ork is a CNN architecture that has 71 layers of depth. The
ception architecture includes a total of 36 convolutional layers,
764
which serve as the foundation of the network’s feature extraction
process. Convolutional layers are grouped into 14 modules, for
a total of 36 layers. With the exception of the first and last
modules, all of the modules have linear residual connections
surrounding them. The Xception architecture is comprised of a
linear stack of depthwise separable convolution layers that have
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esidual connections. The Xception model achieved 94.5% accu-
acy in ImageNet, which is a collection of 14 million images that
elong to more than 1000 classes (Chollet, 2017). The Fig. 9 shows
he utilized Xception model architecture.

.2.3. Proposed model architectures
As a result of recent developments in deep learning meth-

ds, artificial intelligence has been transformed. The term ‘‘deep
tates’’ refers to the fact that the network layers in the model
re growing in size. A convolution layer, a maxpooling layer,
nd a dense layer are all components of the CNN structure.
onvolution layers gather features from input data through fil-
ers, and a max-pooling layer is used to lower the size of the
ayer, which improves computational efficiency. A dense layer
ssists in connecting the layers, which is referred to as a fully
onnected layer. A comprehensive CNN model is constructed by
ntegrating all of these layers together (O’Shea & Nash, 2015).
he hyperparameters of the CNN model are tweaked to perform
pecific tasks, such as object identification or object classification.
It is necessary to provide the input shape in order to develop

ur model since the models must know what kind of input
hey will be receiving. We have used a pretrained DenseNet-201
odel as the foundation for our network in order to create our
ntire model and we named our proposed model as ‘‘MonkeyNet’’.
he following are the essential levels of the proposed model, as
epicted in Fig. 10 and detailed further below:
Input Layer: Through this layer, the model transmits the in-

ormation that was received at the input layer to the hidden layer
nd then onward to the output layer (Albawi, Mohammed, & Al-
awi, 2017). In this study, the image shape for the input layer is
224, 224, 3), with the height and width of the image being 224
nd 224, respectively, and three channels in the image.
Convolutional Layer: A convolution is defined as a mathe-

atical process that describes a rule for combining two sets of
nformation into a single new set of information. The convolu-
ion layer is the fundamental building component of a convo-

utional network, and it is responsible for the majority of the t
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computation-intensive work. The convolution layer has some pa-
rameters and hyperparameters that are built up of filters, and it is
through these filters that this layer pulls features and learns them.
The main goal of this process is to use a method for extracting
features to find out what the features in the images are like,
which will then be stored as part of an arbitrary feature vector. In
a nutshell, this is referred to as a feature extractor layer. The input
images are compared with segments in order to determine the
differences, and these segments are referred to as features. From
the input images, this layer extracts one or more features and
uses the image matrix to construct one or more matrices and dot
products with the image matrix. In addition, the whole process
comes up with a result called the convolution layer, which is the
result of the entire process (Albawi et al., 2017).

For the input image (X) and kernel K , the 2D convolutional
operator is defined as:

(X ∗ K )(i, j) =

∑
m

∑
n

K (m, n)X(i − m, j − n) (7)

here ∗ represents mathematical representation of convolution
peration, the k matrix moves over the input data matrix with
tride parameter.
Base Model: In the field of neural networks for image classifi-

ation and object recognition, DenseNet is one of the most recent
iscoveries in the field. With the exception of a few important dif-
erences, DenseNet is quite similar to ResNet. A common difficulty
hat occurs in deep CNNs is that a significant amount of infor-
ation about the input tends to be lost by the time the network

eaches its viewpoint (the vanishing gradient problem). DenseNet
as improved the complexity of convolutional neural networks,
hich is a good thing. By connecting layers via concatenation
ithin blocks of layers, DenseNet is specifically designed to im-
rove the feed-forward characteristics of the network by increas-
ng the amount of information that flows through CNN layers. A
enseNet is a type of CNN network that is specifically designed

o maximize the amount of information that flows through CNN
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Fig. 10. The proposed CNN model architecture.
ayers. With max-pooling, the initial layer captures a large por-
ion of the moving window while maintaining a low parameter
ount. The output of the dilated convolutional layer is routed into
wo dense blocks that are successively placed and joined by a
ransition layer. Convolution 1 × 1 followed by average-pooling
re the building blocks of the transition layer. In order to get the
xpected class distribution, the output of the last dense block
s sent through a single convolutional layer with max-pooling
 2
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and then a fully connected softmax layer (Huang et al., 2017).
The Dense Block, which is used to make the DenseNet model, is
shown in the Fig. 10(b).

The DenseNet-201 model was used in this work as a base
model, which was chosen from among the different DenseNet
(DenseNet-121, DenseNet-169, and DenseNet-201) architecture.
The Densenet-201 is employed 5 + (6 + 12 + 48 + 32) ×(2) =

01 layers. Details of the DenseNet-201 is following:
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• 5—convolution and pooling layers
• 3—transition layers (6,12,48)
• 1—Classification layer (32) and
• 2—denseblock (1 × 1 and 3 × 3 conv).

Consider the case of a network with L layers, every single one
f which produces a non-linear transformation Hl. The outcome
f the lth layer of the network is denoted by the symbol xL, while
he input image is denoted by the symbol x0. Conventional feed-
orward networks, as we all know, connect the output of the Lth
ayer to the output of the (L + 1)th layer. Furthermore, the skip
onnections can be stated as follows:

l = Hl(xl−1) + xl−1 (8)

hen compared to a regular CNN, DenseNets requires less
arameters, as a result of which duplicate feature maps are
liminated, allowing for feature reutilization. As a result, the
eature-maps of all previous levels, x0, . . . , xl−1, are passed to the
th layer as input:

l = Hl([x0, x1, . . . , xl−1]) (9)

here the concatenated of the feature-maps is represented by
x0, x1, . . . , xl−1]. In order to make process easy, the numerous
nputs of Hl are integrated into a single tensor. An Hl function
s defined as a composite function that performs three sequen-
ial operations: batch normalization (BN), a rectified linear unit
ReLU), and a convolution (Conv). The operation Hl generates a
otal of k feature maps, hence the lth layer has a total of k feature
aps. After that, we have the input feature-maps.

l = k0 + k ∗ (l − 1) (10)

here x0 denotes how many channels are available on the input
ayer.

The design of DenseNet solves the vanishing gradient problem,
trengthens feature propagation, encourages data reuse, reduces
he number of parameters used, and hence presents an extremely
owerful learning model (Hegde et al., 2021).
Activation Layer: The Rectified Linear Unit layer, often known

s the ReLU layer, is a layer with an activation function that is
sed in CNN models to increase nonlinearity. The ReLU activa-
ion function was used in the convolution layers to enhance the
uality of the results. Many types of neural networks now use
eLU as their default activation function, which is a significant
dvancement. Models that are initiated with ReLU may be trained
uickly and efficiently, and they also perform better. If the result
f the operation is greater than 0, the convolution layer passes
t as input; otherwise, it returns 0. The ReLU layer is free of any
arameters or hyperparameters of any kind (Agarap, 2018). The
quation of the ReLU function is represented as:

eLU(x) = max(0, x) (11)

here x represents the value that is input into the neuron.
Batch Normalization Layer: Batch Normalization was devel-

ped to address the problem of internal covariate shift, which
ccurs when the parameters of layers change as the parameters of
rior layers change during training. The normalization by batch-
ng between layers enables us to employ higher learning rates
nd, as a result, accelerates the training process significantly (Al-
awi et al., 2017).
Dropout Layer: Dropout is a regularization method that re-

uces model complexity and helps solve the overfitting problem.
uring neural network training, it randomly eliminates units by
etting a layer’s activations to 0 (Srivastava, Hinton, Krizhevsky,
utskever, & Salakhutdinov, 2014). Fig. 11 depicts an example
f a typical dropout situation. In the default configuration, the
ikelihood that a neuron will remain on or off is set to 0.5. In the
767
Fig. 11. Dropout example.

roposed design, we used one dropout layer with a drop rate of
0%, which means that 30% of random neurons were turned off in
rder to prevent our proposed model from becoming overfitted.
Dense Layer: The dense layer function is responsible for de-

ermining the relationship between all of the characteristics that
ave been provided to it without the use of any more input
arameters than convoluted layers (Albawi et al., 2017).
Output Layer: This layer is responsible for achieving the final

redicted class. Because of this, the sigmoid function is at the
eart of the probabilistic approach, and it works best when dis-
inguishing between two classes. The softmax function is applied
o the multiclass classification, and softmax ensures that the
otal of the probabilities of the outcomes is one. As a result
f this consideration, the softmax activation function has been
hosen for the proposed model. After being transformed into a
robability array of all four classes by using softmax, the input
ata is compared to the actual output to determine whether or
ot the likelihood of occurrence is higher (Albawi et al., 2017).
he following is the definition of the softmax function:

(z)j =
ezj∑K
i=1 ezk

fori = 0, 1, . . . , K (12)

This function accepts a K -dimensional input vector z and re-
turns a K -dimensional vector containing values within the range
of 0 to 1 that sum up to 1.

3.3. Training and testing the model

Using the adam optimizer (Kingma & Ba, 2014) and categorical
crossentropy loss function (Ho & Wookey, 2019), we are able to
compile the model, and after that, the model is trained. When
we were training our model, we used the training dataset, and
when we were validating it, we used the validation dataset. The
accuracy metric is used to assess the model’s overall performance.
Finally, the model is put through its paces on the test data.

3.4. Models hyperparameters

The proposed models used included a large number of pa-
rameters, which meant there were a large number of possible
alterations in the architecture. When optimizing the model, hy-
perparameters are tweaked to achieve the best results. They also
assist in determining the hyperparameter value that is closest
to the one that provides the best performance. As a result, we
used several commonly used hyperparameter values and looked
into other ways to produce a more accurate model evaluation
and prediction. Table 3 summarizes the hyperparameter values
that were employed throughout the proposed deep CNN model.
According to the suggested model architecture, there are a total
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Table 3
Models Hyperparameters.
Hyperparameters Values

Optimizer Adam
Loss fFunction Categorical cross-entropy
Epochs 100
Batch size 8, 16, 32
Learning rRate 0.03, 0.003, 0.0003

of 18,351,640 trainable parameters to be estimated, with 233,280
non-trainable parameters.

The following explains the reasoning behind the values of the
yperparameters selected:

• Optimizer: Adam (Kingma & Ba, 2014) is currently the most
widely utilized optimization algorithm for training deep
neural networks. This is due to the fact that it is simple to
use, has high computational efficiency, and is particularly
effective when dealing with enormous amounts of data and
parameters. One way to think about Adam is combining RM-
Sprop (Zou, Shen, Jie, Zhang, & Liu, 2019) with the stochastic
gradient descent algorithm and adding momentum. In this
study, we have used Adam optimizer with the β values
of 0.9 and 0.999, ϵ of 0.1 and weight decay of 0.01. In
this strategy, the weights are updated by employing the
following procedure:

mt = β1 ∗ mt−1 + (1 − β1) ∗ ∇wt (13)

vt = β2 ∗ vt−1 + (1 − β2) ∗ (∇wt )
2 (14)

m̂t =
mt

1 − β t
1

(15)

v̂t =
vt

1 − β t
2

(16)

wt+1 = wt −
η√

v̂t + ϵ
∗ m̂t (17)

• Loss Function: The loss function known as categorical cross-
entropy is utilized for the purpose of single-label classifica-
tion. This occurs when there is only a single category that
can be applied to any individual data sample (Ho & Wookey,
2019). This worked perfectly here as one example could only
belong to one of the two class categories.

Loss = −

output
size∑
i=1

yi · log ŷi (18)

where ŷi and yi is the ith scalar and corresponding target
value respectively, and ‘‘output size’’ refers to the number
of scalar values that are produced by the model.

• Epochs: Upon multiple initial trials with values of 20, 50,
and 100, 100 epochs was sufficient to get to the most
optimum results.

• Batch Size: Upon multiple initial trials with values of 8, 16,
and 32, a batch size of 8 and 32 produced the most optimal
results in corresponding dataset.

• Learning Rate: A learning rate annealer was utilized here. A
decreasing learning rate during training enabled the global
minimum of a loss function to be reached efficiently (Balles,
Romero, & Hennig, 2016). Learning rate started at 0.003 and
decreased by factor of 0.7 if the validation accuracy was not
improved after 10 epochs (patience).
 d
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The entirety of the research was carried out on a compiler
named Jupyter Notebook. This notebook includes a number of
different packages, and it is powered by an ‘‘Intel

®
CoreTM i7-

10510U (1.8 GHz, up to 4.9 GHz, 8 MB cache, 4 cores) and NVIDIA
GeForce MX330 (2 GB), 16 GB DDR4 RAM’’, as well as a Windows
10 based 64-bit operating system. For training and testing data,
we made use of the Google Colabratory platform. As a result of
this, we evaluated the performance of our proposed model, which
was built on the predictions generated by our trained model on
the test dataset.

4. Evaluation metrics

Evaluation metrics calculated in the model included the num-
ber of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN). These numbers were later used
to calculate our four main quantitative measurements for the
classification performance on the proposed methods in terms
of precision, recall, F1 score, and accuracy metrics. All these
quantitative measurements have been chosen due to their effec-
tiveness for the classification task, as well as their frequency in
closely related research. The degree to which the model accu-
rately categorizes the images contained within the test dataset
set is referred to as its accuracy. The term ‘‘precision’’ refers to
the ability to accurately estimate the true positive outcomes for
both categories. The recall is a prediction of cases that are true
positives in both groups, and it represents those cases. The F-1
score is a metric that reflects the connection between precision
and recall. The F-1 score goes from 0 to 1, with 0 being the worst
model and 1 being the best. The performance of the models in
response to a wide range of situations is shown by the area under
the curve (AUC) (Hossin & Sulaiman, 2015). The mathematical
expressions for these metrics are as follows:

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

ccuracy =
TP + TN

TP + TN + FP + FN
(21)

− 1 score =
2 ∗ Recall ∗ Precision
Recall + Precision

(22)

UC =

∑
ri(xp) − xp((xp + 1)/2)

xp + xn
(23)

. Results and discussion

Firstly, the cross-validation technique has been adapted due
o the small scale of the collected dataset to prove its efficacy.
he entire data set is divided into k sub-folders of the same
ize as part of the k-fold cross-validation strategy. After that, the
earning function is trained utilizing (k−1) sub-folders of training
ata, and the remaining fold is utilized to test the model. Each
ndividual subset of the data is put to use for either training or
alidation. After using all of the data subsets in the sequence,
cumulative average validation score is calculated. We have

pplied the 5-fold cross-validation technique, where four folds
80% of the data) have been used for training and the remaining
wo folds (20% of the data) have been used for the evaluation of
he test accuracy of the model. According to these experimental
asks, our proposed model performed with a precision, recall, F-
score, and accuracy of 90.38%, 89.84%, 89.85%, and 89.84% on

he original dataset and 97.60%, 97.61%, 97.60%, and 97.61% on
he augmented dataset, respectively, as well as lower standard

eviation values for each metric on both datasets. Based on the
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Table 4
5-fold cross-validation results for original dataset.
Number of
fold

Evaluation metrics

Precision (%) Recall (%) F-1 score (%) Test
accuracy (%)

Fold 1 90.71 90.21 90.22 90.21
Fold 2 92.02 91.91 91.92 91.91
Fold 3 93.24 93.16 93.10 93.16
Fold 4 88.68 87.18 87.28 87.18
Fold 5 87.27 86.75 86.74 86.75

Mean 90.38 89.84 89.85 89.84

Standard
deviation

0.0217 0.0253 0.0250 0.0253

Table 5
5-fold cross-validation results for augmented dataset.
Number of
fold

Evaluation metrics

Precision (%) Recall (%) F-1 score (%) Test
accuracy (%)

Fold 1 89.94 89.98 89.94 89.98
Fold 2 98.75 98.74 98.74 98.74
Fold 3 98.41 98.41 98.41 98.41
Fold 4 100 100 100 100
Fold 5 99.91 99.91 99.91 99.91

Mean 97.60 97.61 97.60 97.61

Standard
deviation

0.0386 0.0384 0.0385 0.0384

results of our experiments using the cross-validation method, we
could state that both the dataset we presented and the deep CNN
model are good for detecting and classifying monkeypox disease.
The experimental results using the cross-validation technique for
both datasets are tabulated in Tables 4 and 5.

Secondly, we performed the classification of monkeypox dis-
ase by utilizing some machine learning classifiers. For this ex-
eriment, we have used the pre-trained deep learning model as
feature extractor. After the feature extraction, machine learning
lassifiers have been used for the classification of different image
lasses. The classification results for the machine learning classi-
iers are given in the following Table 6. From Table 6, we see that
he Linear Regression classifier provides the all the highest metric
alues among all other ML classifiers when the MobileNetV1
odel architecture has been used as a feature extractor. In rows
nd columns, bold face values show the maximum value of the
etrics for the classifiers and feature extractors.
Thirdly, for the deep learning approach, the model that has

een trained is saved using the Hierarchical Data Format version
, denoted by the extension ‘‘.h5’’ in the file name. These models
re now available to be used in any area of application for the
urpose of classifying monkeypox. With its adaptability and ca-
acity for handling any number of data points, this saved model
an be used to check for monkeypox on the patent’s skin images.
Now we will discuss the evaluation procedure carried out on

he deep learning models and the proposed model to analyze its
fficiency. This section explains the results obtained on various
teps that were performed for classifying and predicting the
everity score from skin images of the patients and performance
nalysis of the models on training and validation datasets. The
ccuracy and loss for both classification and scoring for the train-
ng and validation sets are plotted. The Scikit python library is
tilized for this purpose.
The models were trained with a sample of 492 and 5560

amples from the training dataset, 124 and 1391 samples used
or the model validation, and then the model was tested with
769
Table 6
Machine learning classifier based classification results.
Feature extractor Metrics (%) LR RF SVM K-NN XGBoost

VGG16 Precision 87.19 74.65 85.52 74.49 82.77
Recall 87.23 74.47 85.53 73.62 82.13
F-1 score 87.20 74.24 85.51 72.60 82.28
Test accuracy 87.23 74.47 85.53 73.62 82.13

ResNet50 Precision 64.34 66.21 68.82 61.43 73.56
Recall 62.55 65.53 68.09 61.28 72.76
F-1 score 62.89 65.55 68.16 60.89 72.97
Test accuracy 62.55 65.53 68.09 61.28 72.77

MobileNetV1 Precision 90.74 78.87 88.95 70.56 80.68
Recall 90.64 78.29 88.94 64.68 80.43
F-1 score 90.65 77.92 88.88 62.70 80.34
Test accuracy 90.64 78.30 88.94 64.68 80.43

Inception V3 Precision 83.18 73.55 84.70 69.12 80.14
Recall 82.98 73.62 84.26 66.81 80.00
F-1 score 82.99 73.45 84.31 65.98 79.94
Test accuracy 85.83 73.62 84.26 66.81 80.00

Xception Precision 86.14 76.41 83.94 72.65 81.62
Recall 85.96 76.17 83.83 71.06 81.70
F-1 score 85.99 76.07 83.87 70.85 81.59
Test accuracy 85.96 76.17 83.83 71.06 81.70

154 and 1738 images, which were split into a proportion of 80:20
for the original and augmented datasets, respectively. The model
has been trained with the preprocessed images from the dataset
with an epoch count of 100 and the model has been saved as a
separate file which is utilized to classify the images obtained from
the patent’s skin images. Every epoch is validated for accuracy
and loss using the validation set, and then the validated accuracy
and loss are tallied up. This process is repeated until all epochs
have been processed. This procedure has been applied to the
original and augmented datasets respectively. The accuracy and
loss curve for the train and validation dataset for the original
and augmented dataset have been shown with the plotted graph
in Figs. 12 and 13. The graph in Figs. 12 and 13 represents the
accuracy, validation accuracy, loss, and validation loss plotted
against every epoch while training the proposed model. The
validation accuracy achieved at the end of the training model
is 91.91% and 98.91%. The accuracy of the model has started to
increase after the second epoch and continues exponentially and
reaches a maximum accuracy of around 91.91% and 98.91% by
the end of the epochs for the original and augmented datasets,
respectively, and the validation accuracy is slightly lower than
the training accuracy in every epoch. And the loss goes down in
a way that is proportional to the number of epochs, reaching its
lowest point at the end of training. This demonstrates that the
model has received adequate training and that the classification
of monkeypox disease can be performed well.

The results for precision and recall, as well as the F-1 score,
were determined to be the evaluation criteria for the model. The
term ‘‘precision’’ refers to the ability to accurately anticipate the
real positive cases across all classes. The recall is a prediction of
real positive cases across all classes, and it represents those cases.
The F-1 score not only illustrates how well the model works but
also demonstrates the relationship that exists between precision
and recall. The test data of the original and augmented datasets
have been tested, and their accuracy has been measured to be
91.91% and 98.91%, respectively. The precision, recall, F-1 score,
and AUC are 91.88%, 91.91%, 91.86%, and 0.9850 respectively
for the original dataset and 98.92%, 98.91%, 98.91%, and 0.9997
respectively for the augmented dataset. The batch size of 32 and
learning rate of 0.003 has been used to obtain these metric values.
All the experimental results for the deep learning models and the
proposed model have been tabulated in the Table 7. From Table 7,
we can see that the overall accuracy of our proposed model is
higher than that of all the other deep learning models. The bolded
values represent the highest values in each metric.
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s

Fig. 12. Proposed model accuracy (left) and loss (right) curve for original dataset.
Fig. 13. Proposed model accuracy (left) and loss (right) curve for augmented dataset.
Table 7
Classification results for different deep learning models.
Model Metrics (%) Original dataset Augmented dataset

VGG16 Precision 88.07 94.48
Recall 88.09 94.43
F-1 score 88.03 94.44
Test accuracy 88.09 94.43
AUC 0.9667 0.9931

ResNet50 Precision 91.41 95.89
Recall 91.06 95.86
F-1 score 90.94 95.87
Test accuracy 91.06 95.86
AUC 0.9829 0.9962

MobileNetV1 Precision 89.95 96.48
Recall 89.36 96.44
F-1 score 89.36 96.44
Test accuracy 89.36 96.44
AUC 0.9839 0.9979

Inception V3 Precision 89.47 97.71
Recall 89.36 97.70
F-1 score 89.33 97.70
Test accuracy 89.36 97.70
AUC 0.9819 0.9989

Xception Precision 88.59 96.53
Recall 88.51 96.49
F-1 score 88.47 96.50
Test accuracy 88.51 96.49
AUC 0.9740 0.9989

Proposed model Precision 91.88 98.92
Recall 91.91 98.91
F1 score 91.86 98.91
Test accuracy 91.91 98.91
AUC 0.9850 0.9997

Confusion matrices were also generated and this was done
o in order to better understand the results. After the model
770
has been evaluated, the genuinely positive and negative impacts
are displayed on a confusion matrix. This provides us with a
clear understanding of the flawed model as well as the number
of genuine negatives or false positives it produced. Concluding
that the majority of the predictions generated by the model are
accurate is facilitated by the utilization of the confusion matrix.
Fig. 14 provides a representation of the confusion matrix for the
original and augmented dataset. However, because many of the
images are very similar to one another, it is possible to spot
multiple inaccuracies.

We have also plotted the ROC curve for the model perfor-
mance of both datasets, as shown in Fig. 15. Plots in two dimen-
sions, which are known as ROC curves, are frequently utilized
in the process of analyzing and evaluating the performance of
classifiers. ROC graphs clearly depict a classifier’s precision or
specificity for all feasible classification thresholds. This enables
the evaluation and selection of classification models based on
unique user needs, which are typically tied to changeable mistake
costs and efficiency assumptions. The area under the curve (AUC)
is a reflection of the amount of differentiation, whereas the ROC
is a probability curve. It provides an indication of how well the
classifier can differentiate across various groups. From Fig. 15,
we see that our proposed model performs outstandingly on the
original and augmented datasets.

We also trained and tested the datasets on a variety of learning
rates and batch sizes for the analysis of our proposed model.
For this experiment, we have assigned the learning rates of 0.03,
0.003, and 0.0003 and the batch sizes are 8, 16, and 32. After
training the proposed model with these parameters, all the ob-
tained results are tabulated in Tables 8 and 9. When we take a
look at the Table 8, we can see that a learning rate of 0.003, which
was utilized, produces the best results and has the maximum
accuracy. As can be seen in Fig. 13, this method maintains the
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Fig. 14. Confusion matrix on original (left) and augmented (right) dataset.
Fig. 15. ROC curve on original (left) and augmented (right) dataset.
ighest level of training accuracy over all of the epochs, which
ltimately leads to the highest level of training and validation
ccuracy overall. A learning rate of 0.003 results in a speedier
odel convergence and a lower final loss, as indicated in the

able. This is something that we can see for ourselves. In Table 8,
e find that a learning rate of 0.003 greatly surpasses the other
wo learning rates when examined on the testing set. This finding
urther validates our findings and provides further support for
heir accuracy. After doing the studies on the learning rate, we
ill evaluate each batch size by employing a learning rate of
.003 for each of them. The F-1 score, precision, recall, accuracy,
nd area under the curve (AUC) will be compared across all batch
izes as we do the evaluation. When we take a look at the Table 9,
e can see that batch sizes of 8 perform well with the limited
ata with an accuracy of 93.19%, while batch sizes of 16 and
2 perform correspondingly well but lower than the batch size
f 8. On the other hand, batch sizes of 32 perform well for the
ugmented dataset with an accuracy of 98.91%, while batch sizes
f 8 and 16 perform around similarly well but lower than the
atch size of 32. Looking at the table, we can conclude that the
atch size of 8 performs well for the small-scale original dataset,
hile batch size of 32 perform well for the augmented dataset,
espectively.

Finally, we have accomplished another task where a com-
arison has been done between the original DenseNet-201 and
ur proposed MonekyNet model to verify the robustness of our
uggested model. In this task, we replaced the final classifier with
nly one fully connected layer with several fully connected layers
lus batch normalization layers and dropout layers from our
roposed model and then trained and tested them on the original
nd augmented datasets. Our proposed MonkeyNet model pro-
ides the highest accuracy in each evaluation metric compared
771
Table 8
Classification results for different learning rates.
Learning rate Metrics (%) Original dataset Augmented dataset

0.03 Precision 90.55 98.01
Recall 90.49 97.99
F-1 score 90.46 97.99
Test accuracy 90.49 97.99
AUC 0.9750 0.9986

0.003 Precision 91.88 98.92
Recall 91.91 98.91
F-1 score 91.86 98.91
Test accuracy 91.91 98.91
AUC 0.9850 0.9997

0.0003 Precision 88.91 96.36
Recall 88.51 96.32
F-1 score 88.05 96.33
Test accuracy 88.51 96.32
AUC 0.9789 0.9967

to the original DenseNet model. The comparative results for the
two models are given in Table 10.

In addition, Gradient-weighted Class Activation Mapping, or
Grad-CAM for short, is a technique that is often used to depict
the ‘‘thinking’’ process that a model goes through, which in turn
enables users to have a better understanding of the model’s
predictions. This creates a heatmap representation that shows
areas of ‘‘focus’’ by analyzing the gradient information going into
the last convolutional layer of a given network. Because the model
must look there to differentiate between the image classes, the
Grad-CAM image may ‘‘focus’’ on the most significant elements of
each image class. In our particular scenario, the Grad-CAM ought
to concentrate with priority on the contaminated areas of the
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Fig. 16. Grad-CAM of monkeypox (left) and chickenpox (right) image samples.
Table 9
Classification results for different batch sizes.
Batch size Metrics (%) Original dataset Augmented dataset

8 Precision 93.19 97.47
Recall 93.97 97.47
F-1 score 93.15 97.47
Test accuracy 93.19 97.47
AUC 0.9918 0.9974

16 Precision 92.99 98.80
Recall 92.77 98.79
F-1 score 92.73 98.79
Test accuracy 92.77 98.79
AUC 0.9882 0.9990

32 Precision 91.88 98.92
Recall 91.91 98.91
F-1 score 91.86 98.91
Test accuracy 91.91 98.91
AUC 0.9850 0.9997

various disease classes because that is where the primary signs
of sickness can be discovered. For the purpose of the Grad-CAM
analysis, we have displayed five CAM outcomes for each class.
When we take a look at Figs. 16 and 17, we can plainly see
that the suggested model is producing accurate predictions and
correctly identifying the contaminated region of the skin images.
The professionals will find these Grad-CAM images very helpful
when they are trying to figure out which parts of the patient’s
skin are contaminated.
772
Table 10
Comparison of results between the proposed and original DenseNet-201
model.
Model Metrics (%) Original dataset Augmented dataset

DenseNet-201 Precision 91.73 97.88
Recall 91.53 97.87
F-1 score 91.54 97.87
Test accuracy 91.53 97.87
AUC 0.9791 0.9991

Proposed model Precision 93.19 98.92
Recall 93.19 98.91
F-1 score 93.15 98.91
Test accuracy 93.19 98.91
AUC 0.9918 0.9997

There has already been one more case study of research that
has already made use of the monkeypox classification tasks. The
investigations made use of skin images with varying levels of ac-
curacy. The implemented DenseNet-201 framework uses a much
larger dataset than many of the strategies that are used now,
which use a relatively small set of data. A variety of input images
and techniques have been validated using various state-of-the-art
methods and techniques, which have resulted in several different
images and methodologies. As shown in Table 11, the size of
the sample and classification strategies that have been used by
the previous researchers differed. There have been a few differ-
ent models that have been trained and tested over time, and
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Fig. 17. Grad-CAM of measles (left) and normal (right) image samples.
Table 11
Comparison with the previous works.
Authors Model Number

of class
Number of
samples

Accuracy
(%)

(Ali et al.,
2022)

ResNet50 3 228 82.96%

(RManjurul
Ahsan et al.,
2022)

Modified
VGG16

2 90 97%

2 1754 88%
Proposed Deep

CNN
4 770 93.19%

4 8689 98.91%

most of them have been able to correctly classify monkeypox
cases.

One of the advantages of using DenseNet-201 is that it can
ecognize monkeypox occurrences with an efficiency of 93.19%
nd 98.91% and a reduced computational cost, making it more
ccurate than the existing traditional PCR test procedure.
The experimental framework can also be used in conjunction

ith other approaches for the monkeypox clinical diagnosis. Due
o the fact that they are immediately available and have high
fficiency, skin images are more effective for patients in severe
ituations. The model seems to be capable of recognizing mon-
eypox in a matter of seconds. As a result, a deep learning model
773
based on skin visual images is highly suggested due to the fact
that it is a more reliable learning process. The use of skin images
to train deep learning methods has the potential to not only
improve the classification of images but also assist clinicians in
the fight against an emerging, prevalent diagnosis by permitting
them to predict the outcome of a diagnosis.

Furthermore, the following are some of the most significant
advantages of this research:

• According to the researchers, skin image-based classification
outperforms other types of images in terms of monkeypox
disease classification performance. Also, when it comes to
classification accuracy, the DenseNet-201-based deep CNN
model does better than many other research methods.

• The experimental framework does not necessitate the use of
a hand-crafted extraction procedure.

• This research showed that a classification method could be
used to help doctors and others in the healthcare system fig-
ure out if a patient has monkeypox and spot abnormalities
on the skin right away.

6. Conclusion

Monkeypox has global ramifications that will affect our lives
and mankind will continue to experience the effects for years, but
we will try to fix the problem in different ways, and current cir-
cumstances necessitate fresh solutions. In this research paper, an
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ffective deep learning-based way to find and classify the mon-
eypox disease pandemic early on has been looked into. In our
ase, a first-ever database was developed named ‘‘MSID’’ for the
etection and classification of monkeypox disease. Then advanced
rtificial intelligence has been applied that can support the med-
cal diagnosis of monkeypox disease effectively and save lives.
he augmentation technique has been applied to the original
ataset for the large number of images. In this paper, a modified
enseNet-201-based deep CNN model named ‘‘MonkeyNet’’ has
een presented to classify monkeypox from skin images, which
s multiclass. To show the classification efficiency of the trained
odel, evaluation metrics such as precision, recall, F-1 score,
ccuracy percentages, AUC, and confusion matrices have been
resented, and it is possible to show that the predictions made
ith the images of the test set are sufficiently outstanding. The
roposed model has correctly classified the image classes with
n accuracy of 93.19% and 98.91% in the multiclass classification
f the original and augmented datasets, respectively. In the real
orld, the model could work well with image-based technology
nd find and classify the monkeypox disease well.
The findings of this study will improve the knowledge of the

edical diagnosis of monkeypox disease. The advanced AI-based
etection method would improve the knowledge of the field. In
uture work, this work will have stepped into a study that will be
mproved in the future. This experiment could be done on a large
umber of clinical data and skin images. The current work is able
o implement the model in a mobile application that is reliable
nd will truly support the diagnosis of medical personnel.
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