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The plant B3 gene superfamily contains a large number of transcription factors playing a vital role in both vegetative growth and
reproductive development in plants. Although several B3 genes have been well studied, molecular functions of the B3 genes in
olive are largely unknown. In our study, a total of 200 B3 genes were identified in olive genome based on RNA-seq and
comparative genomic analyses and further classified into five groups (i.e., REM, RAV, LAV, HSI, and ARF) based on
phylogenetic analysis. Results of gene structure and motif composition analyses revealed diversified functions among these five
groups of B3 genes. Results of genomic duplication and syntenic analyses indicated the gene expansion in the B3 genes. Results
of gene expression based on both transcriptomics and relative expression revealed the tissue-biased expression patterns in B3
genes. The results of the comparative expression analysis of B3 genes between two olive cultivars with high and low oil
contents identified several potential REM genes which may be involved in oil biosynthesis in olive. Based on the
comprehensive characterization of the molecular structures and functions of B3 genes in olive genome, our study provided
novel insights into the potential roles of B3 transcription factors in oil biosynthesis in olive and lays the groundwork for the
functional explorations into this research field.

1. Introduction

As one of the plant-specific superfamilies, the B3 transcrip-
tion factors (TFs) play critical regulatory functions in plant
development, containing at least one B3 DNA-binding
domain [1]. The B3 domain performing sequence-specific
DNA-binding activities was first identified in corn VP1 [2]
and Arabidopsis ABI3 [3]. To date, the B3 genes are widely
identified in crop and model plants, such as Arabidopsis
thaliana, Glycine max, Oryza sativa, and Zea mays [4], and
classified into five families, i.e., LAV, HSI, RAV, ARF, and
REM [5, 6] based on the varied domain compositions [6].
For example, the REM family members contain two B3
domains, whereas the LAV family members have only one
B3 domain. Besides the B3 domain, several other typical
domains are also identified in the B3 superfamily, e.g., the

APETALA2 (AP2) domain in the HSI family and both the
ARF domain and auxin/indole-3-acetic acid (Aux/IAA)
domain in the ARF family as well as the zinc finger Cys-
and Trp-containing domain (zf-CW) detected in the RAV
family. The molecular mechanism underlying the regulatory
functions of these domains in plant development remains
unclear.

In plants, the B3 genes play fundamental roles in multi-
ple biological processes such as regulating plant develop-
ment and defending against stress responses [1, 7–10]. For
example, the B3 genes ABI3, FUSCA3 (FUS3), and Leafy
Cotyledon 2 (LEC2) in A. thaliana LAV family are involved
in the regulation of seed development and storage protein
accumulation [11–13]. These TFs recognize and regulate
seed-specific genes by binding to the Sph/RY motif (CATG
CA) in the promoter [14–16]. Furthermore, the HSI family
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members are known to restrain seed maturation genes
ectopically expressed in the sugar signal pathway during
seedling development [17]. Recently, a study showed that
HSI2 interacted with MSI1 (i.e., one of the components of
polycomb repressive complex 2) to regulate seed maturation
by repressing AGL15, which was involved in seed develop-
ment [18]. Moreover, the RAV family members play impor-
tant roles in floral organ development and stress response
[19–23]. In Arabidopsis, two members of the RAV family
(i.e., TEM1 and TEM2) repress the FLOWERING LOCUS
T (FT) to delay the flowering stage [19]. To date, plenty of
molecular and genetic evidence derived from Arabidopsis
and other plants suggests that the ARF family members are
involved in various auxin-mediated physiological processes,
such as apical dominance, lateral root formation, vascular
differentiation, embryo patterning, and shoot elongation
[24–29]. For instance, mutant arf2 in the ARF family caused
delayed phenotypic development, such as flower develop-
ment and silique development [30]. Although a large
number of members are identified in the REM family
among plants, few genes have been functionally character-
ized [31–34]. The first REM gene BoREM1 isolated from
the reproductive meristems in cauliflower was involved
in the establishment of the floral meristem [35], while
the Arabidopsis AtREM1 (i.e., a BoREM1 ortholog) expressed
in the reproductive meristem was involved in floral organ
development [31].

Olive (Olea europaea L.) is a popular agricultural and
industrial crop widely cultivated in the Mediterranean
region. As one of the major edible oils in the world, the olive
oil contains high contents of fatty acids and important sec-
ondary metabolites. In the immature olive fruits, the pheno-
lic compound of secoiridoid, i.e., oleuropein (OE), is known
for its potential applications as an antimicrobial agent in the
treatment of some common olive tree diseases [36]. Remark-
ably, olive oil has been revealed a positive effect on human
health, e.g., reducing the incidence of Alzheimer’s disease
[37]. Apart from the fruits, olive leaves are also rich in OE,
which is an antioxidant with strong anticancer properties
[38–40]. Furthermore, the phenolic extract of olive leaves
could be used in various industrial applications, including
food additives and nutraceuticals [41]. It is well-known that
the B3 TFs play important roles in both vegetative and
reproductive developments in plants. Previous studies have
shown that some B3 genes played a crucial role in the oil
biosynthesis [42–44]. For example, in Arabidopsis, LEC2
gene can increase the expression of fatty acid elongase 1
(FAE1), thus inducing the accumulation of triacylglycerols
[42]. The mutant BnFUSCA3 in Brassica napus, a gene from
LAV subfamily, showed increased levels of linoleic acid, sug-
gesting the important role of FUSCA3 in the oil biosynthesis
[43]. However, the molecular functions of B3 TFs in olive
development and oil biosynthesis remain unknown.

In this study, we identified a total of 200 B3 genes in
olive genome based on the transcriptomic analysis and fur-
ther characterized their gene structure, motif composition,
and chromosomal locations. The genomic duplication and
evolutionary events in the B3 genes were explored among
olive, Arabidopsis, and rice to investigate their syntenic and

gene expansion patterns. Furthermore, the expression pat-
terns of the B3 genes in different tissues (i.e., young and
old leaves, pedicels, stems, and fruits) were revealed by the
RNA-seq analysis. The RNA-seq and the quantitative real-
time polymerase chain reaction (qRT-PCR) analysis of two
olive cultivars with significant differences in oil content
(i.e., high and low) were performed to investigate the poten-
tial factors involved in the regulation of olive oil biosynthe-
sis. Our study provided novel evidence to facilitate the
further functional explorations of B3 genes in the oil biosyn-
thesis in olive.

2. Method and Materials

2.1. Identification of B3 Genes in Olive Genome. Total pro-
tein sequences of the olive genome were downloaded from
the National Genomics Data Center (NGDC; accession
number PRJCA003222). The hidden Markov model
(HMM) of the B3 DNA-binding domain (PF02362) was
downloaded from the Pfam database (http://pfam.xfam
.org/family/PF02362/) with the candidate genes (i.e., OeB3)
with a threshold of e − value < 0:01 detected using the
HMMER program (http://hmmer.org/). The conserved
domains of all candidate genes were confirmed using the
CD-Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi) and InterProScan software (http://www.ebi.ac.uk/
interpro/). The theoretical isoelectric points and the molecular
weights of olive B3 (OeB3) genes were predicted using the
ExPASY server (https://web.expasy.org/compute_pi/).

2.2. Phylogenetic and Gene Structure Analyses of Olive B3
Genes. Multiple sequence alignments of B3 proteins from
olive, Arabidopsis, and rice were performed by MAFFT with
default parameters [45] and then used as a query of IQ-
TREE for phylogenetic analysis with the best model JTT
+R4 [46]. Classification of OeB3 genes was performed based
on AtB3 and OsB3 genes as previously reported [6]. The
sequences of AtB3 and OsB3 genes were downloaded from
Phytozome 12.1.6 (https://phytozome.jgi.doe.gov/pz/portal
.html/). The gene structure was retrieved from the olive
genome at the NGDC (accession PRJCA003222) and visual-
ized by TBtools [47]. The conserved motifs were predicted
by the online tool MEME (https://meme-suite.org/meme/
tools/meme/) with the number of motifs set to 20.

2.3. Chromosomal Locations and Syntenic Analysis of the
Olive B3 Genes. The chromosomal locations of OeB3 genes
were determined based on the previous study of the olive
genome [48] and were visualized using TBtools [47]. The
tandem and segmental duplications of OeB3 genes were
identified by the Multiple Collinearity Scan toolkit
(MCScanX) [49]. The diagrams of syntenic analysis were
plotted using TBtools [47]. The collinearity and syntenic
blocks among olive, Arabidopsis, and rice were characterized
by MCScanX [49]. The alignments of duplicated gene pairs
were performed by Para2AT [50], with the nonsynon-
ymous/synonymous substitution (Ka/Ks) ratios calculated
by KaKs_Calculator 2.0 [51].
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2.4. Prediction of cis-Elements of OeB3 Genes. To predict the
cis-acting regulatory elements of OeB3 genes, the 2 kb
sequence in the promoter region upstream of the start
codon of each OeB3 gene was extracted, and the potential
cis-acting regulatory elements of OeB3 genes were pre-
dicted by PlantCARE online tools [52]. The number of
plant hormone-related elements was visualized using the
“pheatmap” R package (https://cran.r-project.org/web/
packages/pheatmap/index.html/).

2.5. Expression Patterns of OeB3 Genes in Different Tissues
Involved in Oil Development. To explore the transcriptional
regulation of OeB3 genes in different tissues of olive, includ-
ing new and old leaves, pedicel, stem, and fruit, the DNA
sequences of the OeB3 genes of these tissues were collected
from the National Center for Biotechnology Information
(NCBI; https://www.ncbi.nlm.nih.gov/sra/) database, with
the fragments per kilobase per million mapped fragment
(FPKM) values of OeB3 genes transformed for normaliza-
tion and visualized in a circular heatmap using the “circlize”
R package [53]. Transcriptomic data of new and old leaves
and fruits of olive were retrieved from the NCBI database
(BioProject accession PRJNA596876) and those of stems
and pedicels downloaded from the NCBI database (acces-
sion PRJNA350601). To investigate the functions of OeB3
genes in oil biosynthesis, the FPKM values of the OeB3 genes
based on the RNA-seq analysis in two olive cultivars “JZ” and
“KLD” with high and low oil contents, respectively, were
extracted from the NCBI database (accession PRJNA816306)
and normalized to generate a circular heatmap using the “cir-
clize” R package [53]. A total of 16OeB3 genes were randomly
selected in four B3 gene families for relative expression analy-
sis to validate the relative transcript levels revealed by the
RNA-seq analysis in these two olive cultivars, with the expres-
sion levels calculated using the 2−ΔΔCt method and gene AF28
used as the internal reference. The fruit samples were obtained
from the Liangshan Zhongze New Technology Development
Co., Ltd. (Xichang, China). The primers used for gene expres-
sion of the OeB3 genes in the relative expression analysis are
provided in Table S1.

3. Results

3.1. Identification and Characteristics of OeB3 Genes. A total
of 200 B3 candidate genes were detected in olive genome
based on the HMMER and BLAST with the length of the
olive B3 proteins ranging from 99 to 1099 amino acids (aver-
age of 396 amino acids) and the molecular weights ranging
from 11.83 to 121.85 kDa. The isoelectric point (pI) analysis
showed that all these olive B3 proteins were hydrophobic
with the maximum pI value of 10.18. A total of 404 con-
served B3 proteins and homologous B3 protein sequences
from Arabidopsis, rice, and olive were used to construct the
maximum likelihood trees to explore their phylogenetic rela-
tionships (Figure 1). The results showed that the 200 OeB3
proteins were clustered into five clades (i.e., families),
including REM, ARF, RAV, HSI, and LAV. The REM clade
was the largest family containing a total of 123 OeB3 pro-
teins, while the ARF family was composed of 49 OeB3 pro-

teins, whereas the RAV, HSI, and LAV families consisted
of 14, 9, and 5 OeB3 proteins, respectively (Table S2).

3.2. Gene Structure and Motif Analyses of OeB3s. To investi-
gate the gene structure and conserved motifs of OeB3 genes,
two separate phylogenetic trees were constructed based on
the REM family and other four families (RAV, HSI, LAV,
and ARF) with the maximum likelihood method, respec-
tively, due to the uneven distributions of the OeB3 genes in
these families. The results showed that among the 123
OeB3 genes revealed in five subgroups in the REM family,
most contained 3–5 coding sequences (CDS) and 10 genes
had only 1 CDS encoding a short protein (Figure 2). In sub-
group I, the genes contained 7–9 CDS with both motif 1 and
motif 20 conserved, except for the absence of motif 20 in
OeREM69. The REM genes in subgroup II contained 3–5
CDS with multiple copies of motif 1 among the proteins. It
was noted that motif 19 was only found in subgroup III with
a short protein. Subgroups IV and V were similar in motif
composition with the conserved motif sequence 18-6-17-1-
3-11. Subgroups IV and V contained 4–5 CDS and 2–3
CDS, respectively. As shown in Figure 3, most OeB3 genes
of the ARF family contained more than 10 CDS, and the
motifs were highly conserved with the motif sequences 4-
9-2-5-1-16-8-12-7 and 14-13. In the LAV family, two OeB3
genes were annotated with motifs 1 and 2, whereas the
remaining members of LAV family were conserved in motifs
1 and 5. The OeB3 genes of the HSI family were also con-
served with the motif sequence 2-5-1-16, whereas the RAV
family was conserved with the motif sequence 2-5-1. These
variations in the motif patterns in these B3 families implied
the diverse functions of the OeB3 genes.

3.3. Chromosomal Distribution and Tandem Duplications of
OeB3 Genes. The results of the chromosomal distribution
and tandem duplication analyses showed that the OeB3
genes were distributed widely on the chromosomes with
uneven patterns. Specifically, a total of 21 OeB3 genes were
mapped onto the Chr15, followed by 12 OeB3 genes on
Chr02, Chr11, and Chr17, respectively, while Chr05 and
Chr08 each contained a minimum of three OeB3 genes
(Figure 4). A total of 15 contigs were detected with the pres-
ence of OeB3 genes, with the maximum number of 3 genes
in both Contig001257 and Contig00200.

To further investigate the uneven distribution patterns of
OeB3 genes on chromosomes, we performed the collinearity
and tandem duplication analyses based on the olive genome.
The results showed that a total of 87 segmental duplication
events in the olive genome were identified, while the synte-
nic blocks of OeB3 genes were detected in the chromosomes
and eight contigs (Figure 5(a) and Table S3). In particular,
10 tandem duplication events were located in Chr07,
Chr15, Chr16, Chr19, and Chr23, with the maximum
number of tandem duplications (6) identified in Chr15
(Table S3). These results indicated that the segmental and
tandem duplications contributed largely to the expansion
of OeB3 genes. The Ka/Ks ratios of a total of 97 duplicated
gene pairs were calculated to assess the selection pressure
of OeB3 genes. The results showed that the Ka/Ks ratios of
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a total of 70 OeB3 gene pairs were less than 1, whereas the
Ka/Ks ratios of 23 gene pairs were greater than 1. The high
percentage of gene pairs with the Ka/Ks ratio < 1
demonstrated that the purifying selection had a strong
effect on OeB3 genes during the evolution of olive.

A comparative syntenic analysis was performed among
olive, Arabidopsis, and rice to further investigate the evolu-
tionary relationships of B3 genes among these three species
(Figure 5(b)). The results showed that a total of 68 corre-
sponding gene pairs of the OeB3 genes were identified in
Arabidopsis, which was six times higher than that in rice
with 11 gene pairs (Table S4). This large variation in the

number of homologous genes indicated that the divergence
of B3 genes between olive and Arabidopsis occurred after
the divergence of B3 genes between rice and the common
ancestor of dicotyledons. The maximum number of
syntenic blocks between olive and Arabidopsis was up to
64, whereas none of the syntenic blocks between olive and
rice contained more than 30 genes, indicating that OeB3
genes had the similar functions as those of the Arabidopsis
orthologs (Table S5).

3.4. Prediction of cis-Elements in the Promoter of OeB3 Genes
of Olive. The cis-acting regulatory elements in the promoter

ARF LAV

HSI

RAV

REM

Figure 1: Phylogenetic analysis of OeB3 genes from Arabidopsis, rice, and olive. The maximum likelihood tree is constructed based on a
total of 404 B3 protein sequences of Arabidopsis (115 highlighted in red), rice (89 presented in blue), and olive (200 displayed in green)
revealed in five B3 families, i.e., REM, RAV, LAV, HSI, and ARF.
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Figure 2: Structure and motif analyses of the OeB3 genes in the REM family in olive. (a) Phylogenetic analysis and classification of a total of
123 OeB3 genes revealed in subgroups I to V. (b) Gene structure analysis. Yellow and light green boxes represent UTR and CDS,
respectively. The black lines indicate the introns. (c) Motif analysis. A total of 20 motifs are displayed and plotted with different colors
and motif IDs.
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play important roles in the regulation of downstream gene
expression by the TFs. To investigate the biological functions
of OeB3 genes, a 2 kb upstream sequence from OeB3 genes
was extracted to predict the cis-acting regulatory elements
based on the PlantCARE database. The results showed that
a total of 113, 128, 96, 172, and 99 OeB3 genes with cis-ele-
ments were related to gibberellin (GA), methyl jasmonate
(MeJA), auxin (IAA), abscisic acid (ABA), and salicylic acid
(SA), respectively (Figure 6 and Table S6). For example,
OeREM63 contained a maximum number of 16 MeJA
response elements and 8 ABA response elements, suggesting

that OeREM63 was involved in the molecular response to
MeJA and ABA in olive (Figure 6(a)). In the ARF family, 11,
9, and 9 ABA response elements were detected in OeARF36,
OeARF12, and OeARF14, respectively, whereas no ABA
response elements were detected in OeARF8, OeARF19,
OeARF22, OeARF30, and OeARF39 (Figure 6(b)). It was
noted that none of the hormone-related elements were
detected in OeREM119.

3.5. Tissue-Specific Expression Patterns of OeB3 Genes. To
explore the tissue-specific expression profiles of OeB3 genes
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Figure 4: The chromosomal distribution of B3 genes based on the olive genome. The green bars represent different chromosomes and
contigs. (a) Chr01 to Chr14. (b) Chr15 to Chr23. (c) 17 contigs with OeB3 genes.

7BioMed Research International



in olive genome, the OeB3 genes with high expression levels
were identified in different tissues, including young leaf, old
leaf, stem, pedicel, and fruit, based on the transcriptomic
data previously published (Figure 7(a)). The results showed
that most OeB3 genes were highly expressed in stem and

pedicel, while some OeB3 genes displayed a tissue-specific
expression pattern. For example, in the REM family, a total
of six genes (i.e., OeREM12, OeREM16, OeREM66, OeREM67,
OeREM70, and OeREM73) were expressed at higher levels in
the stem than those in other tissues, whereas a group of 12
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Figure 5: Gene duplications in olive and syntenic blocks between olive and both Arabidopsis and rice. (a) Gene duplications in olive. The
red lines represent homologous genes of OeB3 genes (i.e., duplicated genes). The grey lines represent the homologous genes with the OeB3
genes as the background. Different chromosomes are represented by the blocks in different colors. (b) Syntenic analysis of olive, Arabidopsis,
and rice. The grey lines represent collinear blocks within all three species. Red lines represent the syntenic B3 gene pairs between olive and
either Arabidopsis or rice.
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genes (i.e., OeREM2, OeREM24, OeREM29, OeREM32,
OeREM38, OeREM50, OeREM69, OeREM72, OeREM78,
OeREM84, OeREM86, and OeREM100) showed the pedicel-
and stem-specific expression patterns. In the RAV family,
OeRAV8was detected with a high expression level in the stem,
whereas OeRAV6, OeRAV7, and OeRAV9 were highly

expressed in the fruit. Similarly, most OeB3 genes in both
HSI and ARF families were highly expressed in the pedicel
and stem, suggesting that these genes were involved in plant
development, though a few genes in the ARF family were
involved in fruit development, such as OeARF7, OeARF13,
and OeARF34. It was noted that several duplicated gene pairs
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Figure 7: Expression patterns of OeB3 genes in olive. (a) Heatmap of expression profiles of OeB3 genes in different tissues of olive, including
stem, pedicel, young leaf, old leaf, and fruit. (b) Expression profiles of OeB3 genes in two fruit cultivars of olive, i.e., JZ (low oil content) and
KLD (high oil content), during the early (E), middle (M), and late (L) stages of the mature fruits.
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showed evident divergence on the expression profiles
(Table S7). For example, OeRAV7 was expressed in young
leaf, pedicel, and stem, whereas its duplicate gene (i.e.,
OeRAV8) exhibited a high expression level in fruit. In
addition, two duplicated genes (OeRAV12 and OeRAV14)
showed a predominant pattern in old leaf and young leaf,
respectively (Table S7). Overall, these results suggested that
the OeB3 genes evolved diverse functions during their
evolution.

3.6. Spatial and Temporal Expression Patterns of OeB3 Genes
during the Olive Fruit Development. To illustrate the func-
tions of OeB3 genes in oil biosynthesis, the RNA-seq data
of two fruit cultivars of olive with significant difference in
oil content, i.e., “KLD” with high oil content and “JZ” with
low oil content, were explored to evaluate the expression
levels of OeB3 genes during the early (E), middle (M), and
late (L) developmental stages of mature fruits (Figure 7(b)).
The results showed that three members of the HSI family
(OeHSI2, OeHSI3, and OeHSI8) were highly expressed in
JZ-E and JZ-M and one member (OeHSI5) was expressed
specifically in both KLD-M and KLD-L, whereas three mem-
bers (OeHSI4, OeHSI6, and OeHSI9) exhibited a mixed
expression patterns in JZ and KLD. Most of the OeB3 genes
of the RAV family showed high expression levels in JZ-M
and JZ-L, whereas only one gene (OeRAV3) was highly
expressed in JZ-E (Figure 7(b)). Notably, most OeB3 genes
of the REM family showed higher expression levels in KLD
than those in JZ, suggesting that the genes in the REM family
played vital functions in facilitating the oil biosynthesis in
olive (Figure 7(b)). For example, a group of six genes (i.e.,
OeREM2, OeREM3, OeREM66, OeREM67, OeREM70, and
OeREM73) was highly expressed in KLD-E, KLD-M, and
KLD-L, whereas OeREM74, OeREM84, and OeREM100 were
expressed specifically in JZ-E. Interestingly, most OeB3
genes of the ARF family were expressed at high levels in
JZ, showing the reversed expression patterns in comparison
to those of the genes in the REM family (Figure 7(b)). For
example, OeARF1 and OeARF47 showed high expression
levels in JZ-E, JZ-M, and JZ-L, and the relative expressions
of OeARF1 and OeARF47 showed a similar trend in JZ-E
and JZ-L. These expression patterns revealed by the RNA-
seq analysis were largely verified by the relative expression
analysis. For example, the results of relative expression anal-
ysis showed that the high expression levels of four HSI mem-
bers (OeHSI2, OeHSI4, OeHSI6, and OeHSI9) were verified
by the relative expression analysis in JZ-E, while OeHSI2,
OeHSI4, and OeHSI9 were more significantly upregulated
(P < 0:05) in JZ-M than in KLD-M (Figure 8(a)). Further-
more, OeREM2, OeREM66, and OeREM67 were more signif-
icantly upregulated (P < 0:05) in KLD than in JZ at both M
and L stages of the mature fruits, whereas OeREM16
was highly expressed (P < 0:05) in KLD than in JZ at E
and L stages (Figure 8(c)). Moreover, OeARF1 was more
highly expressed in JZ than in KLD, in particular, with
significant difference (P < 0:01) at M stage of mature
fruits (Figure 8(d)). These diverse expression patterns of
OeB3 genes suggested that these genes played different
functions in oil biosynthesis in olive.

4. Discussion

As one of the largest and most widely distributed plant-
specific superfamilies, the B3 TFs are well-known to have
varied regulatory functions in diverse types of developmen-
tal processes in plants [6, 54]. Although the B3 genes have
been identified in several species of crop plants, the compre-
hensive molecular characterizations of the B3 genes at the
genomic level in olive are still lacking. In our study, a total
of 200 candidate B3 genes, accounting for 0.37% of the total
53,517 predicted genes in olive, were identified containing
the typical B3 protein domain based on a comprehensive
set of well-established gene prediction methods. The propor-
tion of OeB3 genes in the total predicted genes in olive was
lower than that of the AtB3 genes (0.43%) in Arabidopsis
but higher than those of the rice OsB3 genes (0.16%) and
sweet orange CsB3 genes (0.24%) [55]. The phylogenetic
analysis of B3 genes among olive, rice, and Arabidopsis indi-
cated that the OeB3 genes in olive were classified into five
families corresponding to the homologous B3 genes in Ara-
bidopsis and rice [6], including REM, ARF, RAV, HSI, and
LAV. These groups were also supported by the shared gene
structure and motif compositions among the genes in each
family. Our study showed that the REM family was the larg-
est group with a total of 123 B3 members identified in olive,
which was similar to those of B3 members in Arabidopsis
and rice. Notably, the members in the REM family showed
a large variation in their B3 domains. For example, our
results showed that the protein length was increased in the
first B3 domain of OeREM70 and OeREM73, whereas the
length of protein was increased in the second B3 domain
of OeREM84 (Figure S1). Furthermore, the AP2 domain
was absent in some RAV proteins [6, 56]. In our study, the
members in the RAV family were highly conserved in their
B3 domains, while four genes (i.e., OeRAV6, OeRAV8,
OeRAV12, and OeRAV14) lacked the typical AP2 domain
(Figure S2). This observation was consistent with that
reported in pineapple [57], suggesting the conserved
structure in the members of the RAV family.

The results of the gene duplication analysis in the olive
genome revealed that the gene duplication played an essen-
tial role in the evolution of OeB3 genes in olive, as suggested
by the large variation in the copy number of the OeB3 genes
in the five families. Among the total of 87 segmental dupli-
cation events and 10 tandem duplication events, a total of
33 duplication events were identified in the REM family
(Table S8), widely distributed in the chromosomes. The
results of chromosomal location analysis showed that the
OeB3 genes in the REM family were clustered tightly in
the chromosomes. These results were consistent with
those reported in Arabidopsis, rice, sweet orange, and
tobacco [15, 55]. Furthermore, the results of the Ka/Ks
ratio analysis of homologous genes showed that the Ka/
Ks ratios were less than 1 in a total of 70 gene pairs,
whereas the Ka/Ks ratios were greater than 1 in the
remaining 23 gene pairs, suggesting the positive selection
on the OeB3 genes during their evolution.

Studies showed that the genomic synteny between Ara-
bidopsis and rice could be used to predict the gene functions
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Figure 8: The quantitative real-time PCR (qRT-PCR) analysis of OeB3 genes at the early (E), middle (M), and late (L) stages of mature fruits
in two fruit cultivars (i.e., “KLD” with high oil content and “JZ” with low oil content). (a) Four OeB3 genes in the HSI family. (b) Four OeB3
genes in the RAV family. (c) Four OeB3 genes in the REM family. (d) Four OeB3 genes in the ARF family. Error bars represent the standard
deviation of three independent experiments. Symbols “∗” and “∗∗” represent the significant differences at P < 0:05 and P < 0:01, respectively.
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in nonmodel plants [58]. In our study, a total of 68 gene
pairs were identified as segmental duplication events
between olive and Arabidopsis, while there were a total of
11 gene pairs between olive and rice, suggesting that these
two groups of gene pairs were originated from different
ancestors (Table S4). The large number of syntenic blocks
between Arabidopsis and olive suggested that the B3 genes
were originated before the divergence of Arabidopsis and
olive. These results were consistent with those reported
previously [48].

The functions of OeB3 genes were further explored based
on their expression levels in different tissues, including
young leaf, old leaf, stem, pedicel, and fruit, at developmen-
tal stages based on transcriptomic analysis. Notably, no
members of the LAV family were expressed in these tissues,
probably due to the unique expression patterns of the mem-
bers in the LAV family. Further studies are needed to clarify
the expression patterns of OeB3 genes in the LAV family.
Our results showed that most OeB3 genes showed stem-
and pedicel-specific expression patterns, indicating that
these OeB3 genes played a crucial role in the vegetative
growth and development in olive (Figure 7). For example,
a total of 11 members of the REM family (i.e., OeREM2,
OeREM24, OeREM29, OeREM32, OeREM38, OeREM50,
OeREM69, OeREM72, OeREM78, OeREM84, and OeREM86)
and three members of the HSI family (OeHSI3, OeHSI5, and
OeHSI9) were expressed at high levels in stem and pedicel
compared with the other three tissues. Studies showed that
genes in the ARF family regulated the expression of auxin
response genes to influence the auxin production by binding
to TFTCTC auxin response elements (AuxRE) on the pro-
moter region, ultimately downregulating the expression of
senescence-associated genes (SAGs) and delaying leaf senes-
cence [59, 60]. In our study, a total of four ARF genes
(OeARF18, OeARF23, OeARF47, and OeARF48) were highly
expressed in old leaf, indicating that these genes were involved
in leaf senescence of olive. Furthermore, five genes in the HSI
family (OeHSI2,OeHSI4,OeHSI6,OeHSI8, andOeHSI11) and
four genes in the RAV family (OeRAV3,OeRAV10,OeRAV11,
and OeRAV12) were expressed in old leaf, whereas only a few
genes, such as OeRAV8, were highly expressed in fruit, sug-
gesting the tissue-specific expression pattern of these genes
during fruit development in olive.

The molecular functions of OeB3 genes involved in the
oil biosynthesis in olive were investigated based on two fruit
cultivars of olive, i.e., KLD and JZ with high and low oil con-
tents, respectively. The potential B3 genes regulating the oil
biosynthesis were identified based on the transcriptomic
data of these two cultivars at the early (E), middle (M),
and late (L) stages of mature fruits. Our results showed that
most OeB3 genes of the REM family were expressed at high
levels in KLD, whereas most OeB3 genes in the ARF family
were highly expressed in JZ (Figure 7). These results
suggested that the OeB3 genes in REM and ARF families reg-
ulated the oil biosynthesis with different molecular mecha-
nisms. Furthermore, some OeB3 genes were only expressed
at a specific stage, suggesting their essential roles in oil bio-
synthesis. For instance, one of the four members of the
RAV family (i.e., OeRAV3) showed high expression levels

in JZ-E and JZ-M, whereas the remaining three members
of the RAV family (OeRAV8, OeRAV9, and OeRAV12) were
expressed at both JZ-M and JZ-L. Furthermore, the OeB3
genes in the HSI family showed varied expression patterns,
indicating the diverse functions of the HSI family in oil bio-
synthesis. Moreover, the expression patterns revealed by the
transcriptomic analysis were verified by the relative expres-
sion analysis. Previous studies show that phytohormones
participated in oil biosynthesis, especially ABA and GA
[61, 62]. Using the information of cis-elements related to
ABA and GA, we could further determine several potential
B3 genes which may be involved in oil biosynthesis. For
example, OeREM67, which contained 3 ABA elements and
2 GA elements, showed expression level two times higher
in KLD than that in JZ, suggesting that this gene may be
involved in oil biosynthesis via ABA and/or GA pathways.
The gene OeREM38, containing 2 GA elements, was only
expressed in JZ, indicating that it may be regulated by GA
pathway. Overall, these results suggested that these OeB3
genes played a crucial role in oil biosynthesis in olive.
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Calvıń, J. Salinas, and J..́ M. Martıńez-Zapater, “AtREM1, a
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