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Determining the degree to which humans relied on coastal resources in the
past is key for understanding long-term social and economic development,
as well as for assessing human health and anthropogenic impacts on the
environment. Prehistoric hunter–gatherers are often assumed to have heav-
ily exploited aquatic resources, especially those living in regions of high
marine productivity. For the Mediterranean, this view has been challenged,
partly by the application of stable isotope analysis of skeletal remains which
has shown more varied coastal hunter–gatherer diets than in other regions,
perhaps due to its lower productivity. By undertaking a more specific analy-
sis of amino acids from bone collagen of 11 individuals from one of the
oldest and best-known Mesolithic cemeteries in the Mediterranean, at El
Collado, Valencia, we show that high levels of aquatic protein
consumption were achieved. By measuring both carbon and nitrogen in
amino acids, we conclude that some of the El Collado humans relied heavily
on local lagoonal fish and possibly shellfish, rather than open marine
species. By contrast to previous suggestions, this study demonstrates
that the north-western coast of the Mediterranean basin could support
maritime-oriented economies during the Early Holocene.
1. Introduction
Once considered marginal to prehistoric human societies, coastal environments
have become increasingly central in archaeological theories [1,2], with studies
demonstrating their role in early human dispersal around the continents
[3,4], in fuelling population growth, complex forms of social organization
[5–7], the emergence and spread of early food production systems [8–10].
Nevertheless, the degree to which coastal Mediterranean hunter–gatherers
relied on aquatic resources remains contentious. It is often thought that exploi-
tation of marine taxa broadened and intensified in the Holocene through
the development of specialized fishing and shellfish gathering and new technol-
ogies [11,12] thereby encouraging sedentism and surplus production. The
counterargument is that coastal environments were heavily exploited well
before the Holocene, but that much of the evidence has been lost due to
rising sea levels [3]. The extent to which regional variation in marine pro-
ductivity and thus the relative availability of coastal resources influenced the
development of hunter–gatherer subsistence economies is also unclear. It is
often assumed that the Mediterranean basin, due to its relatively low primary
productivity, low tidal amplitude and diminished intertidal zone [13], led to
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a different dietary adaptation compared to the maritime-
focused hunter–gatherer–fisher economies that developed
along the Atlantic and Baltic coasts. Certainly, the frequency
of coastal shell middens is lower. Yet, the remains of marine
mammals, fish and molluscs are frequently found on Medi-
terranean Mesolithic coastal sites, sometimes dominating
the assemblages (e.g. [14,15]), suggesting, at the very least,
they were a key strategic supplement to terrestrial-based
subsistence [16–19].

Taphonomy biases adversely affecting the preservation
and recovery of marine fish bone and plant remains prevents
a more precise assessment of the relative contribution of
marine and terrestrial foods. For this reason, stable carbon
(δ13Ccoll) and nitrogen isotopes (δ15Ncoll) of human bone
collagen have provided a useful tool for directly investigating
spatial and temporal dietary variation among coastal hunter–
gatherers. Indeed, such analysis supports a much greater
reliance on marine resources by Late Mesolithic Atlantic and
Baltic hunter–gatherers compared to those from the Mediter-
ranean. For example, in Atlantic contexts from Britain,
France and Portugal, analysis of Late Mesolithic skeletal
remains show a sustained and heavy reliance on marine
foods, particularly fish, estimated to contribute at least half
their total dietary protein and up to 90% [20]. By contrast,
analyses of Upper Palaeolithic andMesolithic skeletal remains
from the Mediterranean reveal diets where the majority
of protein is derived from the terrestrial hunted game
[15,17,18,21–30], even at sites where fish remains dominate
the faunal assemblage [15,19,28,29,31]. From these data it is
argued that the availability of marine foods from the Mediter-
ranean may have been, in general, too low to sustain human
populations, leading to the development of a broader, mixed
marine-terrestrial strategy and perhaps greater terrestrial
mobility [29].

Nevertheless, the accuracy and confidence for quantifying
the marine contribution to diet using stable isotopes of
bone collagen have been questioned. Concerns have centred
around the ability to detect low but significant marine con-
sumption (e.g. <20% by dry weight [32]). As collagen is
synthesized from different dietary macronutrients [33]
(i.e. protein, carbohydrate and lipids), it is proposed that
a mixed diet derived from different types of marine and
terrestrial foods is not always easily decipherable from
bulk collagen stable isotope values. Also, without knowledge
of the isotope values of baseline primary producers,
which may vary spatially, it is difficult to make accurate com-
parisons between regions. This is particularly relevant to the
Mediterranean region where the range of collagen δ15N
values (δ15Ncoll) of marine fish from archaeological sites is
typically lower than those from Atlantic sites [22,34] and
often overlaps with those of terrestrial mammals [35].
Carbon and nitrogen compound-specific isotope analysis
(CSIA) of individual collagen amino acids (CSIA-AA) is
being increasingly applied to circumvent these issues, as
amino acids can be traced to dietary sources with more cer-
tainty and independently assess baseline δ15N values and
trophic position (e.g. [36–39]). This approach has been used
to investigate intra-site dietary differences inmarine consump-
tion with more accuracy and precision than bulk isotope
analysis [40].

Here, we apply CSIA-AA to one of the largest and most
important Mesolithic human bone assemblages from the
Mediterranean coast; the site of El Collado (Oliva, Valencia,
Spain) [41,42]. Previous bulk collagen isotope analyses of
nine individuals from this site, showed variability in the
extent of marine consumption; some individuals had entirely
terrestrial diets whereas it was suggested that others obtained
approximately 25% of total dietary protein from marine
sources [29]. This assessment was based on the linear interp-
olation between endpoints estimated from terrestrial and
marine fauna. Subsequent to this important finding, it was
shown that although δ13Ccoll values clearly discriminate
between marine and terrestrial Mediterranean fauna,
δ15Ncoll are more difficult to interpret since the marine and
terrestrial endpoints for the Mediterranean are more similar
[34]. The objective of this study was therefore to extend the
sampling of human remains from El Collado and to establish
whether the CSIA can more accurately quantify the
marine contribution by considering the δ15N and δ13C of
individual amino acids obtained from bone collagen. As
one of only very few Late Mesolithic burial grounds in the
Western Mediterranean, furthermore detailed dietary analy-
sis has the potential to provide an almost unique insight
into food consumption practices during a key period in
Mediterranean prehistory and one that dates immediately
prior to the arrival of farmers, with further implications for
agricultural adoption.

(a) The El Collado site
El Collado is located in Oliva about 7 km from the modern
Mediterranean coastline in the Gulf of Valencia, Spain
(figure 1). It is an open-air site on a hillside, sheltered by a
limestone cliff, about 10 m above sea level. During the Meso-
lithic, the lowland around the site consisted of coastal
freshwater swamps and marshes, and brackish lagoon bio-
topes [43], following a rise in sea level from about 8300 BP
reaching a maximum at 6130 BP. Excavations in the late
1980s revealed a total of 14 graves (COLL 1–14), 13 of which
were primary burials attributed to the Mesolithic period. A
secondary burial (COLL 9) contained only a skull and an iso-
lated skull was also recovered close to burial 12 (COLL 12).
AMS dates of 10 of the individuals showed that the site
was occupied, possibly in phases, from ca 9500 cal BP to
8500 cal BP making it one of the oldest known cemeteries on
the Iberian Peninsula [42]. Furthermore, the cemetery is clearly
connected to a habitation site consisting of a substantial mixed
marine-terrestrial shell midden, with lithic tools and other
faunal remains, including a fish assemblage dominated by
the gilthead sea bream (Sparus aurata) [17].
2. Material and methods
(a) Sampling
In this study, 11 individuals from the 1987–1988 excavations were
analysed with permission provided by the Museu de Prehistòria
de València (Valencia, Spain). The original osteological report
[44] was reassessed during the sampling procedure, and the sex
and age-at-death of the 11 individuals were refined including
updated ostoarchaeological methods [45–47] (electronic sup-
plementary material, table S1). The sampling process was
performed carefully by selecting, whenever possible, fragments
of long bone diaphysis from the lower limbs. In conjunction
with the analysis of human remains, seven faunal remains from
El Collado (four terrestrial herbivores and three marine fish)
were analysed (electronic supplementary material, table S1). To



(a) (b)

Figure 1. (a) Map of the Iberian Peninsula showing the location of the sites of El Collado (red) and Cueva de Nerja; and (b) the location of the El Collado site in the
Southern Sector of the Valencian Gulf, Spain, with the representation of the position of the Flandrian coastline 6130 ± 100 BP (dashed line), showing a sea level
2 m higher and about 3 km inwards from the current position of the coastline, based on [17].
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increase the faunal reference further, collagen extraction was
attempted from 13 marine fish bones from Mesolithic (n = 7) and
Early Neolithic (n = 6) layers at the sites of Cueva de Nerja
(Malaga, Spain), chosen for its proximity in time and space to El
Collado.

(b) Collagen extraction
Collagen was extracted and prepared for the stable isotope
analysis at the BioArCh laboratories in the Department of
Archaeology, University of York (UK), using previously pub-
lished approaches [48]. Briefly, the bone samples were cleaned
using a sandblaster (80 060 Master Problast 3) to remove poten-
tial post-depositional contamination. Shards of bones (approx.
200 to 300 mg) were demineralized using 0.6 M HCl at 4°C for
several days, then rinsed with ultrapure H2O (milli-Q) and gela-
tinized with 0.001 M HCl at 80°C for 48 h. The supernatant
containing the collagen was filtered using polyethylene Ezee
filters (Elkay Laboratories, 9 ml, pore size 60–90 µm) and then
30 kDa Amicon Ultra-4 centrifugal filter units (Millipore, MA,
USA). Samples were then frozen for 24–48 h at −20°C, lyophi-
lized, and weighed into tin capsules (0.5 mg per duplicate) for
stable isotope analysis.

(c) Bulk EA-IRMS
The measurement of the stable carbon and nitrogen isotope ratios
was performed in duplicate in the BioArCh laboratories, Depart-
ment of Archaeology at the University of York, using a Sercon
EA-GSL elemental analyser coupled to a Sercon 20–22 continu-
ous flow isotope ratio mass spectrometer (Sercon, Crewe, UK).
This measures the ratios of 13C:12C and 15N:14N relative to a stan-
dard (V-PDB for carbon and AIR for nitrogen) and expresses the
stable isotope values in delta notation (δ) in parts per mil (‰).
The accuracy of the measurements was determined according
to Kragten [49] by combining uncertainties in the values of stan-
dard reference materials and sample replicates within each
analytical run. These were international standards IAEA 600 (caf-
feine: δ13Craw = − 27.59 ± 0.08‰, δ13Ctrue = − 27.77 ± 0.043‰,
δ15Nraw = 1.02 ± 0.08‰, δ15Ntrue = 1 ± 0.2‰), IA CANE (sugar
cane: δ13Craw = − 11.64 ± 0.13‰, δ13Ctrue =− 11.64 ± 0.03‰),
IAEA N2 (ammonium sulfate: δ15Nraw = 20.17 ± 0.06‰,
δ15Ntrue = 20.3 ± 0.2‰) and an internal standard (fish gelatine:
δ13Craw =−15.43 ± 0.14‰, δ13Ctrue =−15.32 ± 0.03‰, δ15Nraw =
15.01 ± 0.09‰, δ15Ntrue = 15.2 ± 0.12‰).

In addition, a bovine bone control was extracted and ana-
lysed within the same batch, producing the following average
values (δ13C =− 22.97 ± 0.10‰, δ15N = 5.85 ± 0.17‰). This was
within the overall mean value from 50 separate extracts of this
bone sample, which produced values of δ13C =− 22.93 ± 0.20‰
and δ15N = 6.15 ± 0.29‰.
(d) Compound-specific stable isotope measurements
of amino acids

The isotopic composition of amino acids was analysed in 11
human collagen samples and five faunal collagen samples (two
bovids, two cervids and one fish) from El Collado, and five
fish collagen samples from Cueva de Nerja. Collagen extracts
were hydrolysed (6 M HCl, 200 µl, 110°C, 24 h) after addition
of 50 µl of an internal norleucine standard (Sigma-Aldrich) of
known isotopic composition. The hydrolysates were centrifuged
(11 000g, 1 min) using Pall Nanosep filtres (0.45 µm) to remove
the remaining insoluble material. The hydrolysates were gently
dried at room temperature under N2, redissolved in 0.1 M HCl
(100 µl), and stored at −20°C until required for analysis.

Amino acids were then derivatized to form N-acetyl-i-propyl
(NAIP) esters [50]. Briefly, isopropanol and acetyl chloride (1 ml;
4 : 1 v/v) were added to the dried samples, and the tubes were
sealed and heated at 100°C (1 h). After 1 hour, sample mixtures
were cooled (at −20°C), and the solution was dried under a
gentle stream of N2. Dichloromethane (DCM) was added (2 ×
0.5 ml) and blown down under a gentle stream of N2 to
remove excess reagents. Next, a mixture of acetic anhydride, tri-
ethylamine and acetone (1 ml; 1 : 2:5, v/v/v) was added to the
tubes and heated at 60°C (10 min). The mixture was cooled
and evaporated to dryness under a gentle stream of N2. NAIP
esters were then dissolved in ethyl acetate (EtAc; 2 ml). A satu-
rated NaCl solution (1 ml) was added to separate polar and/or
inorganic components, and the organic phase was transferred
into a new culture tube. The phase separation was repeated
with additional EtAc (1 ml). Trace amounts of water were
removed with molecular sieves (sodium aluminium silicate,
0.3 nm: Merck KGaA, Darmstadt, Germany). The EtAc contain-
ing the NAIP esters was blown down under a gentle stream of
N2, and then DCM (1 ml) was added and dried to remove
excess water. Samples were redissolved in known quantities
of EtAc and stored at −20°C until required for analysis by
GC-C-IRMS. The same derivatization procedure was used for
preparing mixtures of international reference standards (Indiana,
USA and SHOKO Science, Japan) and standards purchased from
Sigma-Aldrich (Sigma-Aldrich Company, UK).
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The GC-C-IRMS measurements of the amino acids were con-
ducted using a Delta V Plus IRMS (Thermo Fisher Scientific,
Bremen, Germany) linked to a Trace Ultra gas chromatograph
(Thermo Fisher Scientific, Bremen, Germany) with a GC IsoLink
II interface fitted with a Cu/Ni combustion reactor maintained
at 1000°C. Ultrahigh-purity-grade helium with a flow rate of
1.4 ml min−1 was used as the carrier gas, and parallel acquisition
of flame ionization data were achieved by diverting a small part
of the flow to an integrated flame ionization detector (Thermo
Fisher Scientific). Ethyl acetate was used to dilute the samples,
and 1 µl of each sample and 2 µl of each standard were injected
at 240°C with a 3.5 s pre-injection dwell time onto a custom DB-
35 fused silica column (60 m × 0.32 mm× 0.50 µm; Agilent J&W
Scientific Technologies, Folsom, CA, USA). All samples were
injected in triplicate. The oven temperature program used for
samples and standards was as follows: 40°C (hold 5 min) and
then increasing by 15°C min−1 up to 120°C, then by 3°C min−1

up to 180°C, then by 1.5°C min−1 up to 210°C, then by
5°C min−1 up to 280°C (hold 8 min). A Nafion membrane
removed water, and a cryogenic trap was used to remove CO2

from the oxidized and reduced sample when operated in nitro-
gen mode. In carbon mode, eluted products were combusted to
CO2 and ionized in a mass spectrometer by electron impact.
Ion intensities of mass/charge ratio (m/z) 44, 45 and 46 were
monitored to automatically compute the 13C:12C ratio of each
peak in the samples. In nitrogen mode, ion intensities of m/z
28, 29 and 30 were monitored to automatically compute the
15N:14N ratio of each peak in the samples. Computations were
made with Isodat (v. 3.0; Thermo Fisher Scientific) and were
based on comparisons with a repeatedly measured high-purity
standard reference gas (CO2 or N2). The results from the analysis
are reported in parts per mil (‰) relative to international
standards using the δ notation.

(e) δ15N measurements of amino acids
The δ15N values reported in the present are the mean of triplicate
δ15N measurements. An amino acid international standard mix-
ture of known isotopic composition was run after every three
sample injections to monitor instrument performance and drift.
The amino acid standard mixture used for δ15N determinations
comprised eight international standards (Indiana and SHOKO
Science) and L-norleucine (Sigma-Aldrich). δ15N true values of
L-norleucine were determined in-house by EA-IRMS. Inter-
national standard average raw values and s.d. across the runs
were as follows: Ala, 44.46 ± 1.66‰ (true: + 43.25 ± 0.07‰); Gly,
3.44 ± 1.49‰ (true: + 1.76 ± 0.06‰); Val, −4.30 ± 0.98‰ (true:
−5.21 ± 0.05‰); Leu, 7.83 ± 1.29‰ (true: 6.22‰); Nle, + 15.68 ±
0.78‰ (true: + 14.55 ± 0.23‰); Asp, 35.03 ± 0.16‰ (true:
35.2‰); Glu, −3.76 ± 0.43‰ (true: −4.52 ± 0.06‰); Hyp, −8.73
± 0.44‰ (true: −9.17‰); Phe, 1.82 ± 0.32‰ (true: 1.70 ± 0.06‰).
Sample δ15N raw values were corrected by the calibration
curve and the L-norleucine internal standard true value.

( f ) δ13C measurements of amino acids
The δ13C values reported are a mean of triplicate δ13C measure-
ments. Amino acids in the samples were first corrected for the
isotopic difference between L-norleucine in the standard mixture
and L-norleucine in the sample. δ13C amino acid measurements
were then corrected by specific correction factors to account for
the derivatizing carbon and the kinetic isotope effect [51]. A stan-
dard amino acid mixture was run after every three sample
injections, and the average correction factors from the standard
mixture were used for the correction of the samples (Sigma-
Aldrich, UK). True δ13C values of standards were measured by
EA-IRMS. The standard δ13C average correction factor values
and SD across the runs were as follows: Ala, −30.15 ± 1.28‰
(true: −19.31 ± 0.02‰); Gly, −35.02 ± 1.65‰ (true: −33.31 ±
0.02‰); Val, −25.35 ± 1.83‰ (true: −10.89 ± 0.02‰); Leu,
−24.67 ± 1.64‰ (true: −13.78 ± 0.06‰); Ile, −31.57 ± 1.73‰
(true: 24.89 ± 0.07‰); Nle, −31.81 ± 1.85‰ (true: −27.59 ±
0.02‰); Thr, −31.40 ± 1.67‰ (true: −10.46 ± 0.01‰); Ser,
−33.54 ± 1.50‰ (true: −12.54 ± 0.09‰); Pro, −23.72 ± 1.66‰
(true: −12.33 ± 0.02‰); Asp, −30.60 ± 1.71‰ (true: −27.52 ±
0.12‰); Met, −33.98 ± 2.12‰ (true: −29.88 ± 0.14‰); Glu,
−30.17 ± 1.67‰ (true: −28.57 ± 0.09‰); Hyp, −29.79 ± 1.56‰
(true: ); Phe, −20.21 ± 1.43‰ (true: −11.52 ± 0.05‰); Lys,
−28.80 ± 1.88‰ (true: −13.7 ± 0.11‰); Tyr, −32.19 ± 1.30‰
(true: −24.85 ± 0.02‰). Correction factors induce a new source
of error; therefore, the error propagated for each amino acid
was calculated according [51].

(g) CSIA-AA quality control criteria
We calculated the theoretical collagen δ13C and δ15N values
based on their amino acid values. The amino acids measured
by GC-C-IRMS represent 90.4% and 80.69% of total carbon and
nitrogen, respectively in mammalian collagen. We calculated
the estimated bulk collagen δ13C and δ15N values by mass bal-
ance equations considering the relative contribution of each
amino acid to collagen and compared the obtained values with
those measured via EA-IRMS as previously detailed [40]. Gener-
ally, we excluded samples where the estimated observed offset
was greater than 2σ of the mean value which included all the
δ13C values measured on the terrestrial fauna and two of the
humans (Coll 5 and Coll 8). We observed a consistent Δ13Cest-

obs offset for the archaeological fish remains from Cueva de
Nerja (3.9 ± 0.7‰) which might relate to substantial amounts of
lipid co-extracted in these extracts that are reducing the bulk col-
lagen δ13C value (80). We have therefore included these data in
figure 3 where they plot in the range of other marine fish
samples. The mean Δ15Nest-obs of all the samples used in this
study was 0.22‰ (±0.81‰). We also monitored the relationship
between proline and hydroxyproline stable isotope values which
should be highly correlated due to similarities in the way these
amino acids are biosynthesized [52]. The Pearson’s product-
moment correlation between the δ13C and δ15N values of proline
and hydroxyproline from this study were R = 0.988 for δ15N
(t = 28.563, d.f. = 19, p-value < 2.2 × 10−16) and R = 0.961 of C
(t = 15.254, d.f. = 19, p-value = 4.094 × 10−12).

(h) Bayesian mixing model
FRUITS (v. 3.0 beta) was used to generate the Bayesian mixing
model (available at http://sourceforge.net/projects/fruits/). The
model was adapted from Model 2 reported by Soncin et al. [40],
a concentration-dependent model that uses δ15N values of
source (Phe) and trophic (Glx) amino acids to estimate protein
contribution. The δ15N values of Phe and Glx of the human indi-
viduals from El Collado (i.e. targets) were analysed against the two
fractions ‘Phe’ and ‘WholeN’ of animal products and marine and
freshwater fish, respectively. Human δ15N values of phenylalanine
are directly linked, with negligible isotopic fractionation, to the
δ15N values of phenylalanine of the protein sources, fraction
‘Phe’, which corresponds to the source δ15N values of phenyl-
alanine. While δ15N values of glutamic acid are the results of
the transamination reactions of the nitrogen metabolic pool; frac-
tion ‘Whole N’, which corresponds to the source bulk δ15N
values [53]. The offsets from diet to consumer were obtained
from multiple feeding experiments studies reported by Soncin
et al. [40] and these are: Δ15NPhe-Phe = + 0.1 ± 0.2 ‰ and Δ15NGlx-

wholeN = + 9.7 ± 2.5 ‰. As sources, we used terrestrial herbivores
from El Collado representing ‘animal products’ and marine fish
from El Collado and Cueva de Nerja (electronic supplementary
material, table S1) and freshwater fish from Naito et al. [39] repre-
senting ‘fish’. The concentrations of the two fractions ‘Phe’ and
‘WholeN’ were derived from the USDA National Nutrient

http://sourceforge.net/projects/fruits/
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Database for Standard Reference (available at https://fdc.nal.
usda.gov/) and expressed as dry weight (%). The items used
from the USDA database are the same reported by Soncin et al.
[40]. The associated uncertainties of all the reported measurements
are standard errors of the mean. Model estimates are reported in
electronic supplementary material, table S3.
blishing.org/journal/rspb
Proc.R.Soc.B
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3. Results and discussion
The criteria for assessing the suitability of collagen followed
those reported in [40]. In total, collagen of sufficient quality
for bulk elemental analysis-isotope ratio mass spectrometry
(EA-IRMS), and determination of both δ13C and δ15N of at
least 13 amino acids by gas chromatography combustion-
IRMS (GC-C-IRMS), was obtained from all 11 human individ-
uals, all 4 terrestrial fauna, but only 6 out of 16 of the marine
fish bones (electronic supplementary material, table S1).
When compared to bulk stable isotope data [29] the differences
are typically ±1‰, although herewe provide additional stable
isotope data on four additional individuals (COLL 8, 10, 11
and 14) whereas three individuals (COLL 1, 2 and 9) were
not available for further analysis. This dataset was compared
with previously published bulk and single compound stable
isotope data from freshwater fish recovered from the Epipa-
laeolithic rockshelter of Pont d’Ambon located in Western
France dating from between (13 000 to 9500 cal BP [39]).

(a) Bulk collagen results
The bulk stable isotope ratios obtained for the faunal skeletal
material from El Collado and Cueva de Nerja (electronic sup-
plementary material, table S1, figure 2a) confirms previous
studies [35] that show a lack of clear distinction in δ15Ncoll

between marine and terrestrial fauna; although the mean
values for the terrestrial species are lower than the marine,
the ranges partially overlap (figure 2a). The δ13Ccoll clearly
discriminates marine from terrestrial and freshwater organ-
isms but not terrestrial from freshwater fauna. One of the
Bos primigenius samples had a δ13Ccoll value of −15.71‰, fall-
ing outside the range for the consumption of terrestrial C3

plants suggesting consumption of wild C4 plants or marine
macroalgae, as has been previously suggested for wild
fauna foraging along coastal regions [56,57]. Overall, the
variability in the bulk isotope values of both marine and ter-
restrial fauna introduces more uncertainty when determining
the contribution of these sources to human diets as is appar-
ent in figure 2a, which also includes freshwater fish from the
Pont d’Ambon. The bulk collagen values of the humans from
El Collado measured in this study range from −19.2‰ to
−17.4‰ for δ13Ccoll and, 8.86‰ to 13.44‰ for δ15Ncoll (elec-
tronic supplementary material, table S1) and are in-line with
previous measurements of this assemblage [29].

(b) Estimation of trophic position using compound-
specific isotope analysis of amino acids (CSIA-AA)

Compound-specific isotope analysis of amino acids is finding
increased application in ecology to estimate a consumer
trophic position [38,58]. The benefit of this approach is that it
allows simultaneous estimation of the baseline δ15N value
by considering the values of source amino acids, as well as
those fractionated through trophic transfer (i.e. trophic
amino acids). The approach has been applied to archaeological
human remains, for example, to investigate the degree of
aquatic food consumption in hunter–gatherers in central
France and coastal Japan [39,58]. While the precise estimation
of trophic position and dietary quantification using this
approach is complicated by variability in the values of the
source and trophic amino acids in primary produces at the
base of the food web (β value) [38,58]) and the trophic enrich-
ment factor (TEF), further exacerbated for human with diets
consisting of mixed terrestrial and marine foods [40], such
comparisons nonetheless provide a useful indicator. A com-
parison of the δ15N values of glutamic acid (Glu; a trophic
amino acid derived from both glutamic acid and glutamine
residues in bone collagen) and Phe (a source amino acid) is
presented in figure 2 with the bulk collagen data (δ13Ccoll

and δ15Ncoll). The Glu-Phe Δ15N values for the terrestrial her-
bivores (figure 2b) range from 0–3‰ and are in line with other
measurements made on southern European prehistoric and
historic terrestrial animals [39,40]. Interestingly six out of the
11 human individuals have Δ15NGlu-Phe values placing them
at one trophic position above these terrestrial animals
(figure 2b). Instead, these values are within the range of con-
temporaneous marine fish measured in this study and
marine and freshwater fish measured elsewhere [39,40].

Considering the new data presented here, it is evident that
aquatic products were much more prominent in the diet than
originally postulated using bulk isotope analysis [29]. This is
explained by only a moderate correlation (Pearson’s; R = 0.62;
0.30 to 0.82 (95% confidence), p-value = 0.0008) between bulk
δ15Ncoll and Δ15NGlu-Phe (figure 2c), if all the human and
faunal samples are considered. The Δ15NGlu-Phe values result
in much greater discrimination between aquatic and terrestrial
fauna compared to δ15Ncoll, as noted by Soncin et al. [40].
Therefore, even high trophic level Mediterranean fish have
δ15Ncoll that cannot be easily discriminated from terrestrial
fauna due to their relatively low δ15N values of source
amino acids (e.g. Phe) (figure 2b). This observation also
seems to be true of freshwater fish from the Epipalaeolithic
site of Pont d’Ambon in Southwestern France [39] but could
indeed vary spatially and temporally due to differences in
nitrogen assimilation by primary producers. However,
Garcia-Guixé et al. 2006 [29]) also drew on the bulk collagen
δ13C values to make their interpretation. By plotting Δ15NGlu-

Phe against δ13Ccoll (figure 2d), the marine fauna is clearly
enriched in δ13C compared to the humans despite the overlap
in the range of Δ15NGlx-Phe values. One reason for this is that El
Collado fish assemblages were dominated by gilthead bream,
Sparus aurata [17]) a euryhaline marine teleost [59] that is likely
to have resided in nearby brackish lagoons or estuaries adja-
cent to the site. Unfortunately, no sea bream was available
for analysis from El Collado and the single individual
measured from Cueva de Nerja may have resided in more
saline, open sea environments given the site’s location.

To investigate further, we examined the δ13C of amino
acids from the El Collado humans and faunal samples.
Unfortunately, only 8 of the human samples and the marine
fish samples passed the stringent quality control criteria
(see Materials and Methods) implemented by Soncin et al.
[40]. It has been shown that the δ13CAA values of essential
amino acids such as valine, phenylalanine and leucine can
adequately distinguish marine, freshwater and terrestrial con-
sumers [60,61]. In figure 3, we have plotted the δ13C of valine
against phenylalanine and compared them with global refer-
ences for C3, terrestrial and marine consumers reported by

https://fdc.nal.usda.gov/
https://fdc.nal.usda.gov/
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Shulting [52]. These comparative data are drawn from Europe
and East Asia as none are available for the Mediterranean
region. Firstly, the marine fish from the Mediterranean ana-
lysed here plot broadly within the range of marine protein
consumers from elsewhere, which include marine species
and coastal hunter–gatherers from Japan and Greenland
(electronic supplementary material, table S2). Secondly, the
analysis of humans from El Collado δ13CAA broadly corre-
sponds with the δ15NAA identifying Coll 4 as a high trophic
level ‘aquatic’ consumer and Coll 13 as the lowest trophic
level ‘terrestrial’ consumer. However, with the δ13CAA analy-
sis, we were able to confirm that freshwater or brackish fish
was an important dietary source at El Collado for most of
the individuals, as evident in figure 3.
(c) Multivariate analysis
Consideration of a greater range of amino acid stable isotope
measurements can provide further insights into the human
diet at El Collado than that obtained using only the proxies
considered above. To do this, we conducted principal com-
ponents analysis (PCA) [62] on a wider range of amino
acids to distinguish the different taxonomic groups and indi-
viduals and second by using a Bayesian mixing model to
quantify individual human diets based on prior assumptions
of amino acid metabolism [40]. Given that the δ13C measure-
ments were not available for terrestrial fauna and are
probably an inappropriate dietary endpoint, as discussed
above, they are omitted from this analysis.

The PCA analysis conducted on all the available amino
acid δ15Nmeasurements (12 in total; electronic supplementary
electronic data; figure 4) shows that the specimens cluster
according to their taxonomic groupings (humans, marine
fauna, terrestrial herbivores). Both PCA 1 (61.3% of the vari-
ation) and PCA 2 (21.3% of the variation) effectively
distinguish these different groups. The humans plot inter-
mediary between marine and terrestrial baselines on
component one, implying that at least some of the amino
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acid nitrogen was obtained from a marine-brackish source. As
may be expected for higher trophic level marine organisms,
most amino acids are enriched in 15N in the Mediterranean
fish samples. Conversely, as noted in §3b, phenylalanine is
enriched in 15N in the terrestrial herbivores compared to the
marine fish and provides an effective means of discrimination
in this context (figure 4c). Threonine is also relatively enriched
in the herbivores compared to humans andmarine fish. Threo-
nine is atypical in that with increasing trophic level its δ15N
values will decrease due to preferential enzymatic catabolism
of 15N-Thr to alpha-ketobutyrate and ammonia leading to 15N
depletion relative to the dietary source, with the magnitude of
the effect influenced by the amount of dietary protein and/or
gluconeogenesis [63]. The El Collado human δ15Nthr values for
themost extrememarine consumers arewithin the range of the
fish (electronic supplementary material, table S1) but the
degree to which this is due to protein intake and dietary
quality is difficult to assess.

Interestingly, PC2 distinguishes humans from both terrestrial
and marine fauna (figure 3) and is correlated with the two bio-
synthetically related glucogenic amino acids, serine and glycine,
and to a lesser degree lysine, proline and hydroxyproline. The
relative enrichment in δ15Ngly from the human samples com-
pared to the marine and terrestrial faunal samples are shown
in figure 3c. One explanation is that for humans, the nitrogen
atom in glycine (and serine) was preferentially obtained through
extensive transamination and therefore derived to a greater
extent from the metabolic nitrogen pool [64]. Whereas a greater
proportion of glycine is directly routed from dietary sources in
the terrestrial and marine fauna. The metabolic and dietary con-
ditions to explain this effect are unclear and potentially
multifactorial [63], one of which is the amount of protein in
the diet. As can be seen in figure 4a, the correlation between
different human individuals and component 2 is variable
which might be related to the degree of routing versus synthesis
of glycine or related to the δ15N values of nitrogen in the
metabolic pool. The relative enrichment in glycine in humans
partly explains their higher than predicted δ15Ncoll values
when the Glu-Phe proxy is considered (figure 2c), as glycine is
the most dominant amino acid in bone collagen.
(d) Quantifying protein consumption using a mixing
model

To quantitatively contextualize and evaluate dietary variabil-
ity at El Collado, we developed a mixing model adapted from
Soncin et al. [40]. This model (figure 5) considers nitrogen-
stable isotope values from one source amino acid, phenyl-
alanine and one trophic amino acid, glutamic acid (derived
from glutamic acid and glutamine residues). The data are
obtained directly from terrestrial fauna and aquatic organ-
isms, the latter comprising marine fish from El Collado and
Cueva de Nerja, and freshwater fish previously published
from Pont d’Ambon [39]. The advantage of this model is
that it excludes any variability in the δ13C between marine
and freshwater fish. This is particularly relevant here consid-
ering we know from the δ13CAA measurements that
freshwater or brackish fish were likely to have been an impor-
tant source of dietary protein. Using this model (figure 5), we
estimate that the aquatic protein contribution to total dietary
protein could have been as high as 80% for some of the indi-
viduals at El Collado (electronic supplementary material,
table S3). The estimates provided by the mixing model
show relatively high uncertainty compared to previous
studies [40] since the model only relies on only δ15N values
of just two amino acids. Nevertheless, the compound-specific
approach used here provides greater accuracy, as a result of
the limited number of assumptions made, and overall
brings dietary variability across the assemblage into much
sharper relief compared to previous studies that considered
only the bulk stable isotope values (figure 2a) [29].
(e) Dietary variability at El Collado
Using either multivariate analysis of the amino acids nitrogen
values or by observing the different proxies, there seems to be
high variability in consumption of marine and terrestrial
protein across the El Collado burial ground, from diets clearly
dominated by aquatic foods to those where it was conceiva-
bly absent. The collagen signal represents the averaging of
diet over many years prior to death although weighted to
periods of rapid bone growth during adolescence [65]. The
results, therefore, reflect enduring practices related to access
to foodstuffs or dietary preferences. Most significantly, the
dietary reconstruction using CSIA on El Collado calls for
the re-evaluation of the importance of aquatic resources to
pre-agricultural diets in the Western Mediterranean Basin.
Faunal and bulk collagen stable isotope analysis picture the
role of marine resources as occasional and sporadic food sup-
plements to subsistence systems dominated by terrestrial
mammals and plants [15–18,21,23,25]. Our study challenges
this conventional view by showing that at least in shelf
waters of the north-western Mediterranean, brackish coastal
environments could have supported subsistence systems
strongly dependent on fishing and shellfish exploitation,
notably in times of increased resource pressure on land and
rapid human population growth of the Late Pleistocene and
Early Holocene [66,67].

It is tempting to link this variability to the different tasks
performed by individuals within the community during their
lifetime and is less consistent with the hypothesis that foods
were shared equally across the group, as sometimes envi-
saged in models of egalitarian societies which have been
often drawing on contemporary or historical accounts
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of hunter–gatherers [53,68]. While such assumptions are
highly questionable anyway [69], we also need to consider
that El Collado burial ground represents individuals buried
over a long period of time, perhaps up to a millennium and
at the very least seven centuries [41], providing scope for
considerable change in food procurement strategies. There
are no clear patterns between diet and burial phase
(figure 5; electronic supplementary material, table S1);
there is considerable dietary variation both within the
earliest group of burials (Coll 4, 3 and 7) and the later
ones, perhaps pointing to dynamic food procurement strat-
egies even over relatively short periods. The degree of
residential mobility among the group is also unclear but
perhaps the cemetery served more than one community
primarily located in different areas of the landscape (e.g.
coastal lagoon, littoral, forest). Similarly, there are not enough
data to suggest sex-based dietary differences, with only two
females and perhaps an additional maternal signal partially
represented through the diet of the 9-month-old infant
(Coll 10), who was probably breastfeeding at the time of
death [70,71].
4. Conclusion
The overall aim of this study was to clarify the relative contri-
bution of aquatic resources to the diets of the Mesolithic coastal
population at El Collado. Using a CSIA approach applied to
collagen amino acids we have highlighted lagoonal aquatic
resources, such as demersal fish, were a major source of dietary
protein to 4 out of the 11 individuals investigated, and this
component was likely to have been non-negligible in all but
two individuals. These new findings reflect a strong coastal-
oriented economy which included individuals who were
routinely involved in the capture and processing of fish and
presumably shellfish, and who may have possessed the knowl-
edge and the technology to occasionally pursue fishing in open
marine environments in other locations. We argue against the
notion that aquatic foods served only as a fall-back or seasonal
resource, although this may have been the case in some
instances. For some individuals, the contribution of marine
resources to diet approaches the level observed among Meso-
lithic hunter–gatherers of the Atlantic coast, implying that
any differences in productivity or inter-tidal harvestable
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biomass did not have a major impact on diet, although specific
fishing and harvesting practices might have varied between
regions. This study rekindles a longstanding debate regarding
the origin and changing nature of coastal subsistence strategies
in the Mediterranean. Our data show that the region was, at
least, capable of supporting ‘marine’ adapted coastal groups
in the Mesolithic period with similar diets to those described
for the European Atlantic façade [72–74].

The study also highlights the advantage of deploying
compound-specific isotope analysis in Mediterranean
contexts, especially when the bulk collagen δ15N fails to
adequately discriminate between aquatic and terrestrial con-
sumers. By using other proxies from single amino acids, we
were able to circumvent this problem, identify additional
dietary sources and more effectively quantify the degree of
aquatic intake. Missing sources, such as terrestrial plants
and shellfish, prevent accurate quantification, but by relying
on source amino acids that only minimally fractionate from
through the food chain, this issue is partially mitigated. The
data presented here will also be of importance when consid-
ering amino acid isotope measurements of humans from the
earliest agricultural societies in the Western Mediterranean,
to assess the degree of dietary change associated with the
introduction of domesticated plants and animals.
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