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ABSTRACT

An increasing number of studies emphasize the
role of non-coding variants in the development of
hereditary diseases. However, the interpretation of
such variants in clinical genetic testing still re-
mains a critical challenge due to poor knowledge
of their pathogenicity mechanisms. It was previ-
ously shown that variants in 5′-untranslated regions
(5′UTRs) can lead to hereditary diseases due to dis-
ruption of upstream open reading frames (uORFs).
Here, we performed a manual annotation of upstream
translation initiation sites (TISs) in human disease-
associated genes from the OMIM database and re-
vealed ∼4.7 thousand of TISs related to uORFs. We
compared our TISs with the previous studies and
provided a list of ‘high confidence’ uORFs. Using
a luciferase assay, we experimentally validated the
translation of uORFs in the ETFDH, PAX9, MAST1,
HTT, TTN,GLI2 and COL2A1 genes, as well as exis-
tence of N-terminal CDS extension in the ZIC2 gene.
Besides, we created a tool to annotate the effects of
genetic variants located in uORFs. We revealed the
variants from the HGMD and ClinVar databases that
disrupt uORFs and thereby could lead to Mendelian

disorders. We also showed that the distribution of
uORFs-affecting variants differs between pathogenic
and population variants. Finally, drawing on manu-
ally curated data, we developed a machine-learning
algorithm that allows us to predict the TISs in other
human genes.

INTRODUCTION

Despite the expanding use of the Next-Generation Se-
quencing (NGS) technology for molecular diagnostics of
Mendelian disorders, ∼50–75% of the patients do not re-
ceive a genetic diagnosis after DNA testing (1). One of the
reasons for this is that the interpretation of disease-causing
variants generally focuses on the coding part of the genes.
The detection and prioritization of non-coding variants still
remains a critical challenge due to poor knowledge of their
possible pathogenicity mechanisms.

Upstream open reading frames (uORFs) are ORFs lo-
cated in the 5′ untranslated regions (5′UTRs) of protein-
coding genes. uORFs can influence the translation of
the gene coding sequences (CDS) by numerous mecha-
nisms, including translation reinitiation, leaky-scanning,
and ribosome-stalling (2,3). Several previous studies re-
vealed nucleotide variants in 5′UTRs that affect uORFs and
lead to hereditary diseases and malignancies. These variants
may create a new ATG codon, resulting in a new uORF
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(4–7), or may disrupt the existing uORFs (8–11). More-
over, Whiffin et al. have previously shown that both of these
types of 5′UTR variants are under strong negative selec-
tion (12). Thus, we suggest that there should be many more
pathogenic variants in the 5′UTRs, and current routine di-
agnostic algorithms miss them.

Previous studies have described a large number of uORFs
in human genes. Using a RibORF algorithm to analyze ri-
bosome profiling (Ribo-seq) data of two human cell lines,
Ji et al. found ∼8000 translated uORFs in ∼35% of mRNA
of coding genes (13). Later McGillivray et al. created a com-
prehensive catalog of predicted human uORFs (14). Us-
ing their own machine learning algorithm, the authors an-
alyzed Ribo-seq and mass-spectrometry data from the pre-
vious studies (15–18) and identified ∼189 000 likely active
uORFs in 11 171 human genes. In another study, Scholz
et al. provided 1933 uORFs in 1703 genes based on 35 data
sets from nine human ribosome profiling series (19). Such a
variety of data makes it difficult to use them to interpret nu-
cleotide variants identified by clinical genetic testing. A very
recent Phase I study of standardized computational anno-
tation of translated open reading frames (20) confirms the
need for a high-quality uORFs catalog.

In recent years, a large amount of Ribo-seq data has
been accumulated. User-friendly web browsers were cre-
ated to allow researchers to manually explore publicly avail-
able data. GWIPS-viz (21) and Trips-Viz (22) browsers pro-
vide data about more than 40 ribosomal profiling studies
in >20 human cell lines. Along with datasets representing
footprints of elongating ribosomes, GWIPS-viz provides
datasets with enrichment footprints deriving from initiating
ribosomes that can facilitate the identification of the trans-
lation initiation sites (TISs).

In the present study, we performed a manual annota-
tion of uORFs in the 5’UTR of human genes included
in the OMIM (Online Mendelian Inheritance in Man)
database. For this, we used data presented in the GWIPS-
viz and Trips-Viz browsers, as well as the analysis of pre-
dicted ORFs and Kozak sequence strength in tandem with
mRNA-seq data and investigation of transcription start
sites (23). We identified ∼5.2 thousand additional upstream
TISs related to both ATG and non-ATG start codons. An-
notated TISs belong to different types of ORFs: uORFs
that overlap and do not overlap with the downstream gene
CDSs (∼4.7 thousand) and alternative TISs leading to ex-
tension or truncation of the reference coding sequence. We
compared our TISs with the previous studies and exper-
imentally tested ten cases using luciferase assay. Besides,
we implemented a tool to annotate the effects of genetic
variants located in uORFs. We used this tool to evaluate
the effects of known pathogenic variants from the Human
Genome Mutation Database (HGMD) (24) and ClinVar
(25) as well as variants present in the Genome Aggrega-
tion Database (gnomAD) genomes (26). For previously de-
scribed pathogenic variant c.-75A >G in the ETFDH gene
we performed luciferase experiments and showed that this
variant reduces the translation of the main gene CDS due
to the disruption of uORF stop codon.

Moreover, we used our manually curated dataset to cre-
ate a generalized model. We attempted to build on recent
successes in biological sequence modeling tasks (27–29)

made mainly possible thanks to various incarnations of the
transformer architecture (30). We discovered that the neu-
ral network’s usage suffered from overfitting and, in gen-
eral, showed a limited performance. On the other hand, a
simpler model, based on the gradient-boosted decision trees
of XGBoost, outperformed neural network-based architec-
tures. Hence, we trained an XGBoost model on a manually
curated dataset and applied it for TISs’ prediction within
5′UTRs of human protein-coding genes not included in
manual annotation, as well as in human lncRNA genes.

MATERIALS AND METHODS

Data and tools for manual upstream translation initiation site
curation

We manually annotated upstream translation initiation sites
(TISs) for genes associated with Mendelian disorders from
the OMIM database (last date of access July 2021) (31). The
data curation process relied on the publicly available Ribo-
seq and RNA-seq data from the GWIPS-viz (21) and Trips-
Viz (22) browsers (last date of access September 2022).
Transcription start sites (TSSs) were identified using FAN-
TOM5 CAGE data (23).

The prediction of the Kozak-sequence score was car-
ried out with the AltTranslationInitiation tool (https:
//github.com/ewallace/AltTranslationInitiation) using nu-
cleotide frequencies from Grzegorski et al. (32). We pre-
dicted the Kozak score for transcripts from Ensembl Genes
103 (GRCh38.p13) database. For each transcript, we ex-
tracted sequences of 5′UTR along with the 100 bp down-
stream and 500 upstream and performed Kozak score pre-
dictions for ATG and near-cognate codons (TTG, GTG,
CTG, AAG, AGG, ACG, ATA, ATT, ATC). Our Kozak
ssore prediction tool was modified to ignore the strength
of the start codon itself. Thus, our Kozak score reflects only
the surrounding context of the analyzed start codon but not
its own translation initiation potential.

We obtained the lists of likely active human uORFs from
the studies by McGillivray et al. (14), Ji et al. (13) and Scholz
et al. (19). Besides, we used mouse uORF list from the Wang
et al. study (33). We generated BED files with these uORFs
using in-house software and re-mapped all of them to the
Human hg38 genome by NCBI Genome Remapping Ser-
vice.

Manually curated additional translation initiation sites
(TISs) were converted to open reading frames using an
in-house tool and relying on the human gene annotation
from HGMD subset of NCBI RefSeq genes (109.20211119
(2021-11-23)). Next, we manually re-checked that the uORF
alignment was correct, and that HGMD mRNA isoform
matched to RNA-seq and CAGE data. In some ambigu-
ous cases, the most appropriate mRNA isoforms for ORF
generation were manually selected. After that, our tool was
run again on the updated list of mRNA isoforms. The fi-
nal ORF list is presented in Supplementary Data S1 (ATG-
started ORFs) and S2 (non-ATG-started ORFs). In addi-
tion, an updated online version of this list in the BED for-
mat is available at https://doi.org/10.5281/zenodo.7435228.
Genomic coordinates of ORFs are given according Human
genome assembly hg38. Characterization of the annotated
TISs groups, as well as analysis of their Kozak scores and
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translation initiation signal, was performed in R software,
and the Wilcoxon two-sided Rank Sum test was used for
statistical analysis (P-values were corrected with the Holm–
Bonferroni correction method).

Plasmids

For cloning, we used the psiCHECK-2 vector (Promega,
USA). At first, we replaced the vector-derived ATG start
codon of the hRluc with TTG, thereby preventing its
background translation. To obtain the wild-type plasmids
for each gene of interest, we amplified 5′UTR with a
few first codons using genomic DNA (for single exon
5′UTRs) or complementary DNA of a healthy donor’s
primary skin fibroblasts (for multiple exons 5′UTRs).
To determine the exact sequences for cloning, we used
isoforms listed in Human Genome Mutation Database
(HGMD Professional v2021.3) as reference isoforms
for most of the studied genes. If the 5′end of HGMD
isoform did not coincide with the major FANTOM5
CAGE transcription start site, we used the isoform re-
flecting the CAGE-derived 5′end. Thus, we used the
following isoforms: NM 002111.8 (HTT), NM 001844.5
(COL2A1), NM 133378.4 (TTN), NM 005270.5 (GLI2),
NM 001014987.2 (LAT), NM 001122821.2 (SET),
NM 001372076.1 (PAX9), NM 014975.3 (MAST1),
NM 014268.4 (MAPRE2), NM 007129.5 (ZIC2),
NM 004453.4 (ETFDH). Next, we cloned the obtained
PCR products into a modified psiCHECK-2 vector using
Gibson Assembly Master Mix (NEB, USA).

To introduce the studied mutations into wild-type plas-
mids, Single-Primer Site-Directed Mutagenesis Method
was used (34). We created two types of mutation: stop-
removing and start-deletion. For the creation of stop-
removing constructions, different types of stop codon mu-
tations were introduced depending on the sequence of the
studied gene: substitutions, deletions or insertions of 1/2
nucleotides. In all cases, these mutations lead to the creation
of uORFs that overlap with the main CDSs. To create start
deletion mutations, we completely deleted the correspond-
ing start codon. The primers used for cloning and mutage-
nesis are listed in Supplementary Methods Table S3.

Luciferase assay

For the luciferase activity assay, the wild-type and mutant
plasmids were separately transfected into HEK293T us-
ing Lipofectamine 3000 (ThermoFisherScientific, USA) ac-
cording to the manufacturer’s protocol. Cells were seeded at
1.5 × 104 cells/well in 96-well poly-L-lysine-coated plates 24
h prior to transfection. We transfected 100 ng of plasmid
DNA per well. Forty-eight hours after transfection, Fire-
fly and Renilla luciferase activity was measured using Dual-
Glo® Luciferase Assay System (Promega, USA) in a black
96-well plate. The experiment was performed in at least four
independent biological repeats, each containing three tech-
nical replicates. Statistical analysis was performed by the
two-sided Student’s t-test using R software (P-values were
corrected with the Holm–Bonferroni correction method).
Data for each gene of interest were presented relative to the

wild-type construct as mean ± SEM among biological repli-
cates.

Implementation of the uORF Annotator to annotate the ef-
fect of genetic variants on uORFs

To annotate the effects of genetic variants within uORF se-
quences, we developed a custom software tool called uORF
Annotator. The tool takes the following files as input: (i)
a user-provided VCF file containing variants to be anno-
tated; (ii) a BED file containing annotated uORFs; and (iii)
reference genome FASTA and an annotation in the GTF
format with only uORF-containing transcripts. The out-
put of the program consists of an annotated VCF file, as
well as plain text (TSV) results table and a BED file con-
taining uORFs affected by truncating or extending vari-
ants (see below). During annotation, variants from the in-
put file are overlapped with both uORF intervals and ge-
nomic CDS intervals using BEDtools v. 2.26 (35). Then, the
effect of the variant on both the uORF itself and the main
ORF of the corresponding gene is determined by examining
the type of variant (i.e. SNV or indel), its location relative
to exon boundaries (i.e. exonic or splice site; deep intronic
variants were excluded from the analysis), and the expected
change in length or sequence of the uORF product and
main gene product. Only variants that fall within the uORF
boundaries are reported; optionally, a user may restrict out-
put to variants located outside of the main CDS of the
gene.

A BED file containing uORF features affected by vari-
ants is constructed only for variants that potentially af-
fect uORF length (nonsense variants, stop loss variants,
frameshift indels). To create such a file, a merged feature
is constructed from the exonic sequence of the uORF it-
self, exonic transcript sequence between the uORF stop
codon and the start codon of the main ORF, and the CDS
of the main gene. Then, the sequence of such merged fea-
ture (after introducing the variant) is examined, and the lo-
cation of the first stop codon is determined. The variant
is then classified into one of the four categories depend-
ing on the impact on the protein products of uORF and
main gene CDS: (i) main CDS unaffected - variants that
do not change the overlap between uORF and main CDS
(ii) overlap removal––uORF-truncating variants that elimi-
nate the existing overlap between uORF and main CDS (iii)
N-terminal extension––variants that lead to the production
of a chimeric protein product of the gene, possessing an ex-
tension at the N-terminus resulting from uORF translation;
and (iv) out-of-frame overlap––variants that lead to the ap-
pearance of a new overlapping segment between uORF and
main gene CDS, with the two sequences translated in differ-
ent frames. Genomic coordinates of annotated variants and
uORFs are given according to the hg38 human genome as-
sembly.

Machine learning (ML) approaches used for TIS annotation

To benefit from the hand-crafted dataset, we explored two
groups of ML models: (i) neural networks (NNs) and
(ii) tree ensembles. For the former, we utilized variations
of the transformer architecture, such as BERT (36), dis-
tilBERT (37) and deBERTa (38). We attempted to use
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the transfer learning paradigm, where the model is first
trained to recover masked input tokens (masked language
modeling, MLM) and then fine-tuned on the downstream
objective––a TIS prediction in our case. As a second ML
paradigm, we used boosted trees of XGBoost (39). The Sup-
plementary Methods provide a more detailed (yet simple)
justification for the models’ choices. The data preparation
routines differed for these two groups of models and are de-
tailed below.

Data preparation for ML models

Building the dataset for the model’s training and inference
required extracting 5’UTR regions of the protein-coding
genes. As previously, we utilized CAGE data from the FAN-
TOM5 project (40) to refine transcript start sites, config-
uring the ORFik package (41) to search for CAGE peaks
in the vicinity of 1000 nucleotides around the canonical
starts found in the Ensembl annotation. We processed each
transcript by removing intronic and concatenating exonic
regions. We removed duplicated sequences, thus retaining
only unique 5′UTR definitions. We mapped each sequence
to genomic coordinates and took a reverse complement for
the negative strand to unify direction. 5’UTR sequences
varied in length: from 1 to 7910 nucleotides after introns’ re-
moval. Thus, we filtered out sequences outside of [30, 3000]
boundaries, retaining over 92.6% of the entries.

In total, the dataset encompassed 79453 unique 5’UTR
sequences, out of which 19 576 were from manually cu-
rated genes and thereby comprised the modeling dataset.
We split the latter into the training (80%, 3011 genes, 15947
sequences), validation (10%, 379 genes, 1882 sequences),
and testing (10%, 371 genes, 1919 sequences) datasets ac-
cording to Ensembl gene IDs and accounting for overlap-
ping genes. The number of unique 5′UTRs exceeded the
number of genes six-fold: there were 5.27 transcripts with
different 5’UTR compositions per gene on average.

As pure sequence-based models resulted in poor perfor-
mance, we employed additional sequence-level features pro-
cessed from the experimental data. Namely, we fetched total
read counts for each position from ribosomal P-site identifi-
cation data downloaded from the GWIPS-viz browser web-
site (42). Read counts were capped at 5000 and then linearly
scaled between 0 and 10.

The subsequent data preparation routines depended on
the ML model used and are exemplified in Supplementary
Methods Figure S1. For the NN-based models, we utilized
the sliding window approach in two steps: (i) to produce k-
mers of length three––the subsequent input tokens––and (ii)
to split input tokenized sequences into segments of unified
size (98 with step 20). We padded tokenized shorter than
98 elements from the right side using a special PAD token.
Furthermore, two special tokens, added following the NLP
convention, signified each sequence’s start (CLS) and end
(SEP), resulting in 100-sized inputs. Before training, we fil-
tered out sequence slices without any classes. For the clas-
sification objective, we assigned each type of codon present
in the curated dataset a binary class following our data. We
masked the rest of the tokens nullifying their contribution
to the loss.

For the MLM, we utilized two strategies. Due to the over-
lapping of consecutive k-mers, they had to be masked con-
secutively. Thus, we randomly picked 5% of the input to-
kens in the first approach and broadened the selection to
two neighboring tokens. As a second approach, to direct
the attention mechanism towards putative translation ini-
tiation sites, the selection started with these and broadened
the same way as above. In both cases, the fraction of masked
tokens constituted approximately 15%.

In contrast to the seq2seq nature of the NN-based mod-
els, we trained XGBoost on the sentence-level objective.
Namely, we centered each input sequence on the start codon
and predicted its class. We encoded sequences using the one-
hot approach. For instance, a sequence ACGTX is encoded
as five vectors: (1, 0, 0, 0), (0,1, 0, 0), (0, 0,1, 0), (0, 0,
0,1) and (0, 0, 0, 0) where the X character is used to de-
note unknown nucleotides and the padding. Using flank
sizes of 50 around the start codon resulted in 101-sized se-
quences or 404-sized row-vector of the encoded representa-
tion. We augmented each sequence with the experimental
signal prepared as described above. Finally, for XGBoost,
we employed transcript-level features –– standardized per-
cell expression levels fetched from the human protein atlas
(43), reaching 581 total features per sequence.

The sliding window for NNs and centering for the XG-
Boost increased the modeling dataset size up to 176 456 and
437 970 instances, respectively. During inference and perfor-
mance assessment, we averaged ML-predicted probabilities
based on genomic coordinates and assigned a binary class
based on the threshold of 0.5.

To construct the lncRNA inference dataset, we relied on
the LNCipedia meta-aggregator database, version 5.2 (44).
Namely, we downloaded the exonic lncRNA sequences’ ge-
nomic coordinates in GFF format, manually extracted the
corresponding sequences from the hg38 reference, and con-
catenated them. Further, we filtered the obtained sequences
by the length between 200 and 5000 nucleotides, still en-
compassing almost all annotated lncRNAs, amounting to
a much more extensive quantity of the sequence data than
5’UTRs of the protein-coding genes: 117642 sequences with
626 median size, ∼125M nucleotides in total. The rest of
the data preparation routine followed the same steps as
above.

The ML models’ training detailed

Our approach to NN model training followed the main-
stream NLP paradigm in using the AdamW optimizer (45)
and a linear learning schedule with a short warmup period
to prevent early overfitting. Typically, we set the peak learn-
ing rate to 10−4, the warmup period comprising 1% of the
incremental steps across 300 epochs. We used the transform-
ers library (30) to obtain the NN models and the pytorch-
lightning to manage training, clip gradients and mixed pre-
cision.

To train and validate the XGBoost model, we used the
scikit-learn interface. We concatenated training and valida-
tion datasets during cross-validation and generated ten ran-
dom folds based on Gene IDs.

In both cases, we used loss function weights to handle
class imbalance. In the case of NN models, we manually
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set weights of 1 and 5 for negative and positive (valid TIS)
classes based on the observed balance between precision
and recall. In the case of XGBoost, the weights (and other
key hyperparameters) were optimized with Optuna (46) (re-
fer to Supplementary Methods Table S1 for the resulting
parameters and their description).

We used the early stopping technique to avoid overfitting
at the later stages of the training process. In the case of NNs,
we halted the training if the loss function (cross-entropy)
didn’t improve for ten consecutive epochs. In the case of
XGBoost, adding decision trees terminated if the last ten
added trees did not improve the loss.

RESULTS

Manual annotation revealed ∼5.2 thousand of additional
translation initiation sites in 1889 OMIM genes

Ribosome profiling technology revealed that many human
5′UTRs could be translated, and there are several lists of po-
tentially translated uORFs (13,14,19). However, these lists
have disadvantages that impede their application in identi-
fying potential disease-causing variants in the genetic data
of patients with Mendelian disorders. To create a more suit-
able list of uORFs, we performed a manual annotation of
alternative upstream translation initiation sites (TISs) for
genes associated with Mendelian disorders.

We took 3641 genes mentioned in the OMIM database:
1242 genes associated with dominant inheritance patterns
only and 2399 associated with recessive or both inheritance
patterns. We used publicly available data presented in the
GWIPS-viz (42) and Trips-Viz (22) browsers to analyze
these genes. At first, we checked the level of mRNA expres-
sion using the global aggregate of RNA-seq coverage data
from 20 different cell types available in the GWIPS-viz. We
analyzed transcripts in which the maximum exon coverage
was at least 10 times higher than the background coverage
of the adjacent intergenic or intronic regions (and was at
least 20 in absolute terms). Moreover, we determined the ex-
act 5′-end of mRNA using FANTOM5 CAGE data of the
identified transcription start sites (TSSs) (23). The analyzed
TSSs were also supported by RNA-seq coverage.

Next, we annotated upstream translation initiation sites
(uTISs). For this, we used initiating and elongating ribo-
somes profiling data from the eight independent studies
of the six different cell types and only elongating ribo-
somes profiling data from additional 39 studies of 23 cell
types. These data were presented as tracks in the GWIPS-
viz browser and as single transcript plot in the Trips-Viz
browser. Additionally, we performed a transcriptome-scale
prediction of Kozak-sequence strengths. Since it was previ-
ously shown that non-canonical TISs are widespread (47),
we analyzed the Kozak consensus sequence both for ATG
start codons and for near-cognate codons (NCCs: TTG,
GTG, CTG, AAG, AGG, ACG, ATA, ATT, ATC). In addi-
tion, we used a list of mouse uORFs created by Wang et al.
(33) to define conservatively translated uORFs.

Our manual annotation of alternative translation initi-
ation sites was conducted in conformity with the follow-
ing criteria: (i) a distinct peak of initiating ribosome pro-
filing data; (ii) the identified peak corresponded to distinct
elongating ribosomes profiling signal; (iii) the peak matched

with Kozak consensus; (iv) Trips-Viz single transcript plot
(showing the ORF architecture) confirmed the translation
of expected ORF; (v) the presence of a translation of the
corresponding uORF in the mouse dataset was strong, but
not a mandatory criterion. Algorithm of manual annota-
tion and examples of uTISs detection are shown in Sup-
plementary Figures S3 – S14. Next, we used in-house tool
to generate ORFs from annotated TISs based primarily on
HGMD RefSeq curated transcripts.

As a result, we identified upstream TISs in half of the
studied genes (1889), while 20% did not contain additional
TISs, and 30% were not covered by available Ribo-seq data.
Annotated TISs could lead to the creation of upstream open
reading frames, as well as to alternative translation initia-
tion of the gene’s main coding sequences. We noted that 22%
of uORFs have several TISs but a common stop-codon.
According to our annotation, 783 genes contain only one
uORF, and 153 out of them have multiple TISs. Addition-
ally, 999 genes contain more than one uORFs (Figure 1A).
The maximum uORF number (eleven) was observed in the
NR2F1 gene; in five other genes (NR2F2, CEP250, DUSP6,
EXTL3 and ABL1) we identified eight or nine uORFs. In-
terestingly, all these genes have long 5′UTRs with uORFs
evenly distributed from the 5′-end to the reference trans-
lation start. This observation hints that such uORFs can
regulate the translation of the main gene CDS through cas-
caded translation reinitiation. Such examples were previ-
ously described for other genes, even those containing one
or two uORFs (48,49). Besides, we revealed that 389 genes
(10,5% of all studied) have alternative TISs for their refer-
ence CDS, which leads to both extension and truncation of
protein N-termini.

In total, we annotated ∼5.2 thousand additional TISs
and divided ORFs they produce into four groups: (i) up-
stream ORFs that do not overlap with the gene’s main
coding sequence (non-overlapping uORFs); (ii) upstream
ORFs that overlap with the gene’s main coding sequence
(overlapping uORFs); (iii) alternative TISs leading to exten-
sion of reference coding sequence; (iv) alternative TISs lead-
ing to truncation of reference coding sequence (Figure 1C,
Supplemental data S1, S2). Notably, 71% of all additional
upstream TISs corresponded to non-ATG codons (Figure
1B, C). The most commonly used near-cognate codons are
CTG (35%) and GTG (14%) (Figure 1B).

Comparison of manually annotated uORFs with previously
published uORFs lists

We compared our manually annotated TISs of uORFs with
the previously published studies. We used human uORFs
predictions from three studies and considered only uORFs
found in the OMIM genes. In total, we included in the
comparative analysis: 39 thousand (out of ∼189 thousand)
uORFs found by McGillivray et al.(14); 1.7 thousand (out
of 7.8 thousand) uORFs found by Ji et al. (13); and 449 (out
of 1933) uORFs found by Scholz et al. (19).

We compared ATG-started and non-ATG-started
uORFs separately since different studies had different
prediction rates for these groups. Only 7.8% of the uORFs
predicted by McGillivray et al. started with ATG-codon,
while Ji et al. had 58.6% of them. In our data, 28% of all
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Figure 1. (A) Distribution of annotated uORFs in the OMIM genes. (B) Start codons for annotated TISs in the 5′UTRs of OMIM genes. (C) Annotated
TISs are divided into four groups; each group contains both ATG- and non-ATG-started TISs in varying proportions.

uORFs were ATG-started. Scholz et al. described only
ATG-started uORFs.

Overall, we analyzed 4152 ATG starts for uORFs from
four studies. Comparative analysis revealed that only 137
ATG-started uORFs are present in all four datasets (Figure
2A). 435 ATG-started uORFs were found in three out of
four datasets, and 1140 –– in at least two datasets. Notably, a
major part of ATG-started uORF overlapped between dif-
ferent studies. The only exception is the data obtained by
McGillivray et al., where 73% of the uORFs identified by
the authors were not part of other datasets. In contrast, 70%
of ATG-started uORFs described in the present study were
present in other datasets.

Next, we compared the non-ATG-started uORFs from
three suitable datasets. In total, the analysis included
37 193 non-ATG-started uORFs. We observed that only
121 uORFs are present in all three datasets (Figure 2B).
Any two out of three datasets had 1940 uORFs in common.
Thus, we observed that non-ATG-started uORFs over-
lapped much worse than ATG-started. 94% of the uORFs
in the McGillivray’s et al. dataset and 44% in our dataset
did not intersect with other lists.

Based on the comparative analysis, we created a list of the
most reliable uORFs designating them as ‘high confidence
uORFs’. In this list we included only uORFs predicted in
at least two different studies (Supplemental Data S3). Thus,
we identified 1140 ATG-started and 2061 non-ATG-started
high confidence uORFs. Interestingly, although the propor-
tion of ATG-started uORFs overlapping between multiple
datasets is much higher, the final high-confidence list con-
tains almost two times more non-ATG-started uORFs.

Analysis of kozak scores and translation initiation level of an-
notated translation initiation sites

The major group of annotated additional TISs refers to
the upstream ORFs. We identified ∼4.7 thousand TISs
related to uORFs in 1782 OMIM genes: ∼3.3 thousand
for upstream ORFs that do not overlap with downstream
CDS and ∼1.4 thousand for upstream ORFs that do. Both
uORFs types may significantly affect the translation of the
main coding region of a gene by numerous mechanisms,
including leaky-scanning, ribosome-stalling, and transla-
tion reinitiation (2). However, the effect of the overlapping
uORFs seems to be more pronounced since they directly
compete for ribosome binding with downstream CDSs.
Thus, we assumed that the features of TISs belonging to
distinct uORF groups should differ.

We revealed 38% of the canonical ATG TISs among
the non-overlapping uORFs, while there were only 13.5%
among overlapping uORFs (Figure 1S). We analyzed
the translation initiation signal of each uORF start rela-
tive to the corresponding start of downstream CDS, us-
ing initiating ribosome profiling data from the GWIPS-
viz browser. This analysis revealed that half of all uORF
TISs had the translation initiation signal equal to or
higher than the main protein-coding ORF. Moreover, we
found that overlapping uORFs had lower relative trans-
lation initiation levels compared to non-overlapping (P-
value = 6.41x10−23, Wilcoxon two-sided Rank Sum test),
while non-ATG TISs had lower relative translation ini-
tiation levels than ATG-starting in both uORFs groups
(non-overlapping: P-value = 6.49x10−22; overlapping:
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A B

Figure 2. The overlaps of ATG-started (A) and non-ATG-started (B) uORFs found in the OMIM genes in the current study and McGillivray et al. (14),
Ji et al. (13), Scholz et al. (19) studies.

P-value = 1.76x10−9, Wilcoxon two-sided rank sum test)
(Figure 3A).

We have also analyzed the Kozak context for different
uORFs TISs. We used the Kozak score calculated with-
out taking into account the start codon. It means that our
Kozak score reflects only the surrounding context of the an-
alyzed start codon. We compared Kozak scores of differ-
ent uORFs groups and reference gene CDSs (Figure 3B).
Notably, all groups of uORFs had a significantly lower
Kozak score than reference CDSs (P-value = 1.46x10−147,
Wilcoxon two-sided rank sum test). Considering only ATG-
started uORFs, we observed a stronger decrease in the
Kozak score. This data may suggest a negative selection
against strong TISs in 5′UTRs. However, we demonstrated
that the uORFs translation initiation level is often higher
compared to corresponding CDSs (Figure 3A). For exam-
ple, 69% of ATG-starting uORFs had translation initiation
levels higher than the downstream CDS, while only 38% of
them had a higher Kozak score. This observation is con-
sistent with the fact that during scanning, the ribosomal
preinitiation complex (PIC) preferably recognizes the first
suitable start codon rather than the start codon in a stronger
Kozak context.

Next, we compared Kozak scores between different
uORFs groups (Figure 3B). We did not observe a differ-
ence in Kozak context score between overlapping and non-
overlapping non-ATG-started uORFs (P-value = 0.7961,
Wilcoxon two-sided rank sum test) while overlapping
ATG-started uORFs had lower Kozak score than non-
overlapping (P-value = 3.11x10−05, Wilcoxon two-sided
rank sum test). Further analysis of Kozak scores revealed
that ATG-started uORFs had significantly lower Kozak
scores than non-ATG-started (P-value = 1.43x10−28,
Wilcoxon two-sided rank sum test) (Figure 3B), in con-
trast non-ATG uORFs had lower translation initiation level
than ATG-started (Figure 3A). This observation confirms
that the presence of an optimal Kozak context is important
for the efficient use of near-cognate start codons, what was
shown in previous studies (50).

In addition, we identified 506 alternative TISs related to
the main CDSs in 386 out of the 3641 OMIM genes. 463
alternative TISs lead to the extension of a reference coding
sequence. As expected, there was no CDS extension started

with ATG-codon since the standard annotation process fo-
cused on the longest gene ORFs. Analysis of the relative
translation initiation signal obtained from initiating ribo-
some profiling data revealed that most of the CDS exten-
sions had lower translation initiation signals than corre-
sponding reference starts (Figure 3A). The Kozak sequence
strength of the extended TISs was also significantly less than
the reference (P-value = 1.29x10−31, Wilcoxon two-sided
rank sum test) and did not differ from the TISs of non-ATG
starting uORFs (Figure 3B).

Other 43 annotated TISs lead to the main CDS trunca-
tion, and half of these truncations (51%) are ATG-related.
Interestingly, two-thirds of the CDS truncations are related
to mRNA 5′-end isoforms. In such genes, at least one of
the transcription start sites is located downstream from the
reference translation start, according to FANTOM5 CAGE
data. Thus, these start sites are not true alternative transla-
tion initiation start sites. Most of the other CDS trunca-
tions are TISs located very close to the reference start and
having a comparable translation initiation signal, and such
starts should not lead to a significant change in the protein
structure.

Experimental validation of predicted uORFs translation

For experimental validation, we selected eight predicted
uORFs: two overlapping and six non-overlapping uORFs.
We cloned the full-length 5′UTRs with the few first codons
of the studied genes into the psiCHECK-2 vector. In obtain-
ing wild-type plasmids, the 5′UTR was fused with Renilla
luciferase so that the CDS of luciferase started with the ref-
erence start codon of the gene. Simultaneously, the original
vector-derived luciferase start codon was eliminated from
the final plasmids. Next, we introduced uORF-disrupting
mutations in each construct and analyzed their effect on the
translation of the reference CDS using a dual luciferase as-
say in the HEK293T cell line.

To analyze overlapping uORFs, we deleted their start
codons. Such ‘start-deletion’ mutations prevent the trans-
lation of overlapping uORFs and, therefore, should lead
to an increase in luciferase level (Figure 4A). We analyzed
two ATG-started overlapping uORFs in the PAX9 and
MAST1 genes. MAST1 uORF was predicted exclusively in
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Figure 3. Comparison of relative translation initiation signal according to initiating ribosome profiling data from the GWIPS-viz browser (A) and com-
parison of Kozak score calculated without taking into account the start codon (B) between different groups of uORFs and N-terminal CDS extensions.

the present study. PAX9 uORF was revealed in the present
and Jin et al. (13) studies. We performed luciferase experi-
ments and observed a strong increase in the luciferase level
for both overlapping uORFs (Figure 4B). Thus, we experi-
mentally confirmed the translation of ATG-started overlap-
ping uORFs in the PAX9 and MAST1 genes. Pathogenic
variants in these genes lead to Tooth agenesis (PAX9) and
Mega-corpus-callosum syndrome with cerebellar hypopla-
sia and cortical malformations (MAST1). In the present
study, we showed that disruption of overlapping uORFs
in these genes could significantly affect protein expression.
However, it remains unclear whether the nucleotide variants
in these overlapping uORFs can lead to Mendelian disor-
ders. This phenomenon is of interest for further investiga-
tion.

Another group of uORFs is uORFs that do not overlap
with the downstream gene CDSs. For experimental analy-
sis of non-overlapping uORFs, we first disrupted their stop
codons. Such ‘stop-removing’ mutations lead to a forma-
tion of extended uORFs that out-of-frame overlap with the
downstream CDSs and, therefore, should lead to a decrease
in luciferase level. Next, we deleted the start-codons of the
resulting overlapping uORFs, which should increase the lu-
ciferase translation (Figure 4C). We analyzed four ATG-
started uORFs in the HTT, TTN, GLI2 and COL2A1 genes
and two CTG-started in the LAT and SET genes. For the
HTT, TTN and GLI2 genes, we observed strong expected
effects for both stop-removing and start-deletion mutations
(Figure 4D) and therefore validated the existence of ATG-
started uORFs in these genes. For another ATG-started

uORF in COL2A1, we did not observe a statistically signif-
icant effect for stop removal mutation. However, the sub-
sequent deletion of the start-codon resulted in a significant
1.5-fold increase in luciferase translation level (Figure 4D).
This led us to assume that uORF in the COL2A1 gene ex-
ists, but its effect on downstream CDS translation level is
low, at least in our model system.

Thus, we experimentally confirmed the translation of
ATG-started uORFs in the HTT, TTN, GLI2 and COL2A1
genes. Three of them were predicted exclusively in the
present study (in TTN, GLI2 and COL2A1). Moreover,
we showed that mutations disrupting uORFs in the HTT,
TTN and GLI2 could lead to a decrease in the main pro-
tein expression, resulting in a loss or reduction of gene
function. Pathogenic variants in these genes cause Hunting-
ton’s disease (HTT), some cardiomyopathies and muscular
dystrophies (TTN), Culler-Jones syndrome, and Holopros-
encephaly 9 (GLI2). It was previously shown that loss-of-
function variants in the GLI2 and TTN genes lead to the
development of the disease (51,52). Thus, we suggested that
nucleotide variants that disrupt uORFs in these two genes
could potentially cause Mendelian disorders.

For non-ATG-started uORFs, the expected effects of mu-
tations on luciferase translation were not detected at all
(Figure 4D). Although some mutations resulted in slight
changes in luciferase activity, the direction of these changes
did not match those mediated by uORF, suggesting that
these changes are not related to uORFs. We noted that
LAT uORF was presented exclusively in our uORF dataset,
while SET uORF was also identified in the previous study
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Figure 4. Experimental validation of translation for annotated overlapping (A, B) and non-overlapping (C, D) uORFs. (A, C) The schemes of the plasmids
used for the experiment. (B, D) Results of the dual-luciferase reporter assay in HEK293T cells transfected with each plasmids for the indicated genes. The
start-codons of the analyzed uORFs are listed below the gene name. Data are represented relative to the WT construct as mean ± SEM (*P < 0.05).

and, therefore, classified as ‘high confidence.’ However, we
did not detect the translation of both of these uORFs. We
hypothesized that the lack of effect for non-ATG uORFs in
our experiment may be associated with a pronounced tis-
sue specificity of their expression or the presence of other
regulatory elements that can affect the translation of the
main CDS. Previously, Wang et al. showed that uORF ex-
pression is highly tissue- and developmental stage-specific
in mice (33). Moreover, analysis of initiating ribosome pro-
files for individual experiments from GWIPS-Viz and Trips-
Viz browsers revealed that LAT and SET uORFs’ TISs
are indeed present only in some cell types. Another rea-
son for the lack of the effect for non-ATG uORFs may
be that such uORFs are translated much less efficiently
compared to ATG-started main gene CDS. Therefore, the
translation level of the created overlapping uORF may not
be sufficient to significantly suppress the translation of the
main CDS.

Experimental validation of predicted N-terminal extensions
of CDS in the OMIM genes

All annotated TISs associated with N-terminal CDS exten-
sions started with non-ATG codons. We selected two such

extensions in the MAPRE2 and ZIC2 genes for experimen-
tal validation. For this, we created plasmids containing wild
type 5′UTR of studied genes fused with Renilla luciferase
as described above. Next, we created three types of mu-
tated plasmids: with the deletion of the alternative predicted
start-codon, with the deletion of reference start-codon, and
with the deletion of both start-codons. Thus, we assessed
the contribution of both TISs to the total protein transla-
tion level using dual luciferase assay in the HEK293T cell
line (Figure 5A).

Experimental analysis of MAPRE2 revealed an insignif-
icant decrease in the luciferase activity for deletion of alter-
native TIS, while the removal of reference start-codon re-
sulted in a 10-fold decrease of luciferase level. (Figure 5B).
This suggests that our experimental system cannot reliably
detect MAPRE2 N-terminal extension. Analysis of ZIC2
revealed a slight (11–13%) but significant decrease in the lu-
ciferase activity upon deletion of alternative TIS, at least
in the context of the absence of the reference start codon.
However, the effect was much weaker compared to the dele-
tion of reference ATG, leading us to conclude that the
translation of a small fraction of the ZIC2 protein started
with an alternative GTG-start codon, at least in our model
system.
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Figure 5. Experimental validation of annotated non-ATG-started N-terminal extensions of the MAPRE2 and ZIC2 CDSs. (A) The schemes of the plasmids
used for the experiment. (B) Results of the dual-luciferase reporter assay in HEK293T cells transfected with each plasmids for the indicated genes. The
start-codons of the analyzed uORFs are listed below the gene name. Data are represented relative to the WT construct as mean ± SEM (*P < 0.05).

Annotation of genetic variants affecting uORFs

Several previous studies revealed genetic variants that dis-
rupt the existing uORFs and thereby lead to Mendelian dis-
orders and malignancies (8,11). In the present study, we im-
plemented a software tool to annotate the effects of genetic
variants located in annotated uORFs. It takes a VCF file
with the variants of interest as input. In addition to the an-
notated VCF file, the tool generates a BED files that can be
loaded into the genomic browser (e.g. GWIPS-viz, UCSC,
IGV) to visualize the effect of a variant on the uORF struc-
ture (Figure 6B). We used our tool to evaluate the effects of
known pathogenic variants from HGMD Pro 2021.3 (24)
and ClinVar database (from 2022-01-29) (25) as well as vari-
ants present in the Genome Aggregation Database (gno-
mAD) v3.1.2 genomes (26).

Excluding deep intronic variants and large
deletions/insertions, 123 pathogenic (disease-causing -
DM) variants from HGMD and 83 pathogenic or likely
pathogenic variants from ClinVar were found to be located
in the 5′UTRs and affect uORFs (Supplemental Data S4).
Of these, the most prevalent class was missense variants
(53 in HGMD and 34 in ClinVar). Together with other
variants altering the amino acid sequence of the uORFs
(i.e. in-frame deletions/insertions, stop-gained), they rep-
resented 47% and 51% of the variants from HGMD and
ClinVar, respectively (Figure 6A).

The most commonly described pathogenic variants that
affect uORFs are frameshift and stop loss variants (9,11).
Such variants lead to the formation of extended uORFs that
may overlap with the downstream protein-coding sequences
and thereby reduce their translation. We classified these
variants as probably leading to loss of gene function (pLoF)
and additionally analyzed how the resulting change in the
uORF structure affects the main coding part of the gene.
For this, frameshift and stop loss variants in the uORFs
were divided into three groups: (i) variants leading to trans-
lation of uORF that do not affect reference CDS; (ii) vari-
ants leading to N-terminal extension of CDS; (iii) variants

producing uORF that out-of-frame overlaps with the down-
stream CDS (Figure 6A). We observed 16 pLoF pathogenic
variants in HGMD and 13 in ClinVar, of them 11 and 4, re-
spectively, resulting in the creation of overlapping uORFs.
Some of them were previously described in the literature in
relation to uORF disruption, e.g. in the PAX6 gene (11).
Besides, we identified an uncharacterized stop loss variant
(chr8:22130605T>C) located in the previously described
uORF in the HR gene (10). We also revealed pLoF vari-
ants in previously undescribed uORFs, e.g. stop loss vari-
ant (chr4:158672382A >G) in the ETFDH uORF (Figure
6B) and frameshift variant (chr22:29603933A >AT) in the
NF2 uORF. Both of these variants result in the forma-
tion of extended ATG-started uORFs that overlap with the
downstream CDSs. Thus, we suggest that the pathogenic-
ity of these variants is associated with the disruption
of uORFs.

To confirm this hypothesis for the ETFDH gene, we con-
ducted luciferase experiments for the chr4:158672382A >G
(NM 004453.4:c.-75A >G) variant. This variant was de-
scribed as the cause of the Multiple acyl-coenzyme A de-
hydrogenation deficiency (MADD) (MIM # 231680) (53).
The experiments were performed according to the scheme
described above (Figure 4C). Instead of the model stop-
removing variant, we introduced a real variant identified in
a patient (c.-75A >G). Using luciferase assay in HEK293T
cells, we showed that the studied variant led to a significant
reduction of the main CDS translation (Figure 6C). Further
removal of the start-codon in the context of the variant led
to a rescue of the protein translation level (Figure 6C). Thus,
we showed that the c.-75A >G variant in the ETFDH gene
leads to a decrease in the expression of the main protein
through the disruption of uORF.

Another intriguing class of uORF-affecting variants is
splice variants inside the 5′UTR introns. These variants also
can lead to uORF frameshift (11); however, their effect on
other mechanisms of gene expression regulation should be
considered.
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Figure 6. Analysis of pathogenic and likely pathogenic variants from the HGMD (DM) and ClinVar (P/LP) databases, as well as population variants from
the gnomAD database, using uORF Annotator. (A) The proportion of different types of genetic variants affecting ATG- and non-ATG-started uORFs
among pathogenic/likely pathogenic variants (HGMD + ClinVar) and population variants from the gnomAD. The consequences of different types of
variants are schematically depicted to the right of the diagram. (B) The scheme of annotated uORFs in the ETFDH gene (upper) and visualization of
uORF Annotator prediction results (below). Track ‘Variants in uORFs’ displays the annotated variant; track ‘Affected ATG uORFs’ shows the original
uORF in which the variant is localized (black) and the resulting uORF (red). (C) Experimental analysis of c.-75A > G variant in the ETFDH uORF using
dual-luciferase reporter assay in HEK293T cells. Data are represented relative to the WT construct as mean ± SEM (*P < 0.05).

We also used our uORF Annotator to evaluate the
effects of variants of uncertain significance (VUS) from
ClinVar. 1881 variants were found to affect the uORF
sequences, excluding deep intronic variants and large
deletions/insertions (Supplemental Data S5). Among them,
we identified 101 variants belonging to the uORF pLoF
class (42 in ATG-started uORFs and 59 in non-ATG-
started uORFs). 22 of them lead to the formation of over-
lapping uORFs (8 in ATG-started uORFs) and 18 lead to
N-terminal extensions (7 in ATG-started uORFs). We hy-
pothesize that many of these variants could be reclassified
as likely pathogenic after detailed analysis and experimental
validation.

Next, we used our tool to analyze gnomAD variants from
a healthy population. We identified 75 319 variants affecting
uORFs. Of these, 68% were protein-changed variants, and
22% were synonymous (Figure 6A). The differences in the
proportions of the main variant classes (three types of pLoF
variants, protein changed variants, splice site variants, and
synonymous variants) between gnomAD and pathogenic
HGMD/ClinVar were highly significant (P � 0.001 in
Fisher’s exact test) (Figure 6A). uORF pLoF and splice
variants were more frequent among pathogenic variants.
Although splicing variants can realize their pathogenicity
through different mechanisms, the pathogenicity of pLoF
variants is most likely associated with the uORFs.

In addition, we compared the proportions of different
variants between ATG and non-ATG-started uORFs (Fig-
ure 6A). We found that, in the case of pathogenic vari-
ants, pLoF variants were less frequent in non-ATG-started
uORFs compared to ATG-started uORFs, while vice versa
in case of gnomAD. Moreover, this difference is enhanced
when considering the most ‘high-impact’ group - variants
that lead to CDS overlap (Figure 6A). In the previous sec-
tions, we showed that there are more non-ATG uORFs.
However, they overlapped much worse between different
studies (Figure 2B) and generally had a lower relative level
of translation initiation (Figure 3A). Besides, in our exper-
iments, we did not detect non-ATG uORFs translation, as
well as their effect on downstream CDSs, probably due to
their tissue specificity or low translation level (Figure 4D).
To sum up, we hypothesized that variants in the non-ATG-
started uORFs may be less significant in the context of
Mendelian disorders.

Models’ training for TIS prediction

We used our manually curated data to perform transla-
tion initiation sites (TIS) prediction in other genes. In at-
tempts to create a TIS prediction model relying solely on
sequence data, we extensively experimented with various
NN architectures. We explored two principal approaches:
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Table 1. Models’ performance and comparison to published data on the test dataset

F1 PRC REC BAC TN FN FP TP

XGBoost
CTG 0.73 0.67 0.79 0.89 5600 40 75 154
ATG 0.76 0.70 0.82 0.89 1887 31 59 139
GTG 0.66 0.61 0.72 0.85 3759 24 39 61
ACG 0.69 0.65 0.73 0.86 1400 12 17 32
TTG 0.66 0.62 0.70 0.85 3042 13 19 31
ATC 0.80 0.80 0.80 0.90 1918 5 5 20
ATT 0.55 0.44 0.73 0.86 2347 4 14 11
ATA 0.55 0.43 0.75 0.87 1307 1 4 3
AAG 0.00 0.00 0.00 0.50 3762 2 1 0
AGG 0.00 0.00 0.00 0.50 5015 1 2 0

distilBERT
CTG 0.64 0.50 0.88 0.93 5502 23 173 171
ATG 0.62 0.48 0.88 0.90 1783 20 163 150
GTG 0.63 0.51 0.81 0.90 3733 16 65 69
ACG 0.60 0.47 0.82 0.89 1376 8 41 36
TTG 0.58 0.51 0.68 0.84 3032 14 29 30
ATC 0.68 0.57 0.84 0.92 1907 4 16 21
ATT 0.37 0.26 0.60 0.79 2336 6 25 9
ATA 0.00 0.00 0.00 0.50 1307 4 4 0
AAG 0.00 0.00 0.00 0.50 3758 2 5 0
AGG 0.00 0.00 0.00 0.50 5012 1 5 0

McGillivray et al.
CTG 0.17 0.10 0.51 0.68 4839 96 836 98
ATG 0.37 0.33 0.43 0.68 1796 97 150 73
GTG 0.12 0.07 0.51 0.68 3225 42 573 43
ACG 0.14 0.08 0.55 0.68 1150 20 267 24
TTG 0.11 0.06 0.57 0.72 2654 19 407 25
ATC 0.10 0.05 0.48 0.69 1713 13 210 12
ATT 0.05 0.03 0.47 0.68 2113 8 248 7
ATA 0.04 0.02 0.50 0.71 1206 2 105 2

Ji et al.
CTG 0.08 0.29 0.05 0.52 5653 185 22 9
ATG 0.45 0.78 0.32 0.65 1931 116 15 54
GTG 0.12 0.35 0.07 0.53 3787 79 11 6
TTG 0.07 0.15 0.05 0.52 3050 42 11 2
ATC 0.00 0.00 0.00 0.50 1923 25 0 0

Scholz et al.
ATG 0.29 0.77 0.18 0.59 1937 140 9 30

(i) token-level prediction, where the model outputs proba-
bilities for each sequence token (k-mer of size three) and
(ii) sequence level, where input sequences are centered on
valid start codons, and the model learns to infer whether
they constitute valid TIS. Note that all transformer models
in this study require a single pretrained model to leverage
both tasks. As a result, we trained the following architec-
tures: BERT (36), DeBERTa (38), and distilBERT (37) on
sequence for both of these tasks (and FunnelTransformer
(54) for the sentence-level classification only): using and
omitting the pretraining phase on the MLM objective. Fur-
thermore, we attempted to benefit from the DNABERT
model pretrained on DNA sequences using the exact size
(3) of the k-mers. To our surprise, none of these ventures
achieved acceptable performance, reaching a maximum of
0.25 F1 score.

Hence, we employed Ribo-seq-derived experimental data
that served as one of the critical criteria during manual cu-
ration. Using it, we focused on token-level prediction with
the distilBERT model and sentence-level classification us-
ing XGBoost. Further experimentation with the distilBERT
revealed that (i) pretraining on the MLM task didn’t yield
substantial benefit while drastically increasing the model’s
complexity and (ii) lowering this complexity by reducing

both the size of the internal representations and the num-
ber of layers resulted in a better generalization. The result-
ing distilBERT model (Supplementary Methods Figure S2)
had 96K trainable parameters, which was minuscule com-
pared to over 40M of the default architecture.

Following the hypothesis that a simpler model may be
more suitable for our purpose, we trained the XGBoost al-
gorithm on a sentence-level classification objective. Due to
affordable computational complexity, we employed hyper-
parameters’ optimization targeted at the best average F1
score and cross-validated its performance (Supplementary
Methods Table S2).

Table 1 provides a comparison of our predictions to
the aforementioned datasets published by Ji et al. (13),
McGillivray et al. (14), and Scholz et al. (19) on our test
dataset using overlapping start codons in terms of F1
score, precision (PRC), recall (REC) and balanced accu-
racy (BAC) (Supplementary Methods provides definitions
and intuitions for performance metrics). Firstly, XGBoost
outperformed distilBERT using only 225 trees and provided
a classifier with balanced precision and recall. Overall, the
performance correlated with the number of positive exam-
ples, except for the ATC start codons. For well-represented
TISs, the F1 score fluctuated between 0.6 and 0.7. XGBoost
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resulted in better precision, while distilBERT yielded higher
recall.

For comparison with other authors, we treated our hand-
crafted dataset as ‘ground truth’. This and us formulating
the learning objective as identifying every potential TIS, re-
gardless of whether it resides in a valid open reading frame
(that is, ignoring stop-codons), which differs from the clas-
sical uORF definition used by other authors, may have im-
pacted drawn comparisons. Predictions were highly skewed
towards false positives for McGillivray et al. and false neg-
atives for Ji et al. and Scholz et al.

We utilized our XGBoost model on the inference dataset
comprising 5’UTR sequences from the 15 066 genes that
did not undergo our manual curation process. We estimated
23 985 out of 110 0276 TIS as functional. These potentially
active TIS are scattered across 14 772 unique 5’UTR exonic
transcript sequences of 7836 genes.

We also performed TIS prediction for human lncRNA.
Interestingly, the lncRNA inference dataset rendered a
much lower positivity rate: applying the same thresh-
old, our model labeled 9746 (0.14%, in 4689 genes)
of nearly 7M putative sites as positive. Some of the
genes (e.g. lnc-ATP6V1G2-DDX39B-1:2, lnc-PITX1-4:2,
lnc-OR4F16-8:1) had up to twenty predicted TISs, com-
prising intriguing cases for further investigation. Further-
more, while the most popular CTG comprised the major-
ity of predicted TIS among the 5’UTR sequences, this bal-
ance shifted towards the canonical ATG start codon for
lncRNA.

DISCUSSION

To date, the efficiency of genetic diagnosis of Mendelian dis-
orders does not exceed 50%, partly because only coding ex-
ons and splicing regions are sequenced and analyzed during
routine procedures. Whole-genome sequencing can detect
almost any genetic variant; however, the interpretation of
their pathogenicity remains a critical challenge. Thus, ac-
curate annotation of the regulatory elements in the human
genome is essential for the diagnosis of hereditary diseases.

The 5`UTRs of the genes contain elements important for
the translation regulation of a transcript. Upstream open
reading frames (uORFs) are one of those elements. It was
previously shown that pathogenic variants disrupting the
uORFs could lead to various diseases (8,9,11). However,
all these studies are devoted to in-depth detailed analysis
of a particular gene, and there is still no universal algo-
rithm for the analysis and interpretation of 5`UTR variants.
There have been several previous studies that described a
large number of uORFs in human genes (13,14,19). How-
ever, uORFs from different studies do not overlap well since
they were obtained based on different Ribo-seq datasets,
while uORFs expression is highly tissue- and developmen-
tal stage-specific (33). Moreover, due to the complexity and
heterogeneity of translational regulation and the absence
of reliable standards for testing computational approaches,
manual annotation has the potential to significantly im-
prove data quality compared to classical bioinformatics
analysis.

In the present study, we attempted to obtain high-quality
data by manually annotating upstream translation initia-

tion sites (uTISs) in the OMIM genes. For this, we analyzed
a large amount of high-quality Ribo-Seq data presented
in user-friendly GWIPS-viz and Trips-Viz web browsers
(21,22). One of the main criteria for annotating TISs was
the presence of a distinct peak of initiating ribosome pro-
filing data. These data were obtained during ribosome pro-
filing of cells treated with lactimomycin (LTM) that prefer-
entially acts on the 80S initiation complex when its E-site
is empty. Although initiating ribosome profiling allows en-
richment for the 80S ribosome at the start codon, this pro-
cedure can cause a number of artifacts (17). Therefore, we
assessed the ribosome profiling signal corresponding to the
translation initiation peak and verified the translation of ex-
pected ORF using a Trips-Viz single transcript plot.

Another strict criterion was the matching of the initiating
peak with a potential start codon and Kozak context. We
calculated Kozak score of surrounding nucleotides equally
for ATG and non-ATG start-codons. Although previous
study indicated that the optimal context for different start-
codons is not exactly the same (55), these differences were
not crucial or contradictory. Thus, our Kozak strength pre-
diction is suitable for annotating TISs and subsequent anal-
ysis, even though it is not perfect.

We annotated ∼5.2 thousand additional TISs, ∼4.7 thou-
sand of which were related to uORFs (Supplemental Data
S1, S2). Based on initiating ribosome profiling data, we
revealed that half of uORF TISs had a translation ini-
tiation signal equal to or higher than the main protein-
coding ORF. Moreover, we found that this signal depends
on uORF type and start-codon. Although the peaks of ini-
tiating ribosome profiling are not a perfect measure of the
translation initiation and elongation efficiency, our obser-
vations suggest that uORFs are actively translated in a large
number of genes.

In addition, we created a list of ‘high confidence’ uORFs
based on a comparative analysis of different studies (Sup-
plemental Data S3). To the best of our knowledge, this con-
stituted the first attempt to obtain ‘clean’ data that can be
used in interpreting the variants’ pathogenicity.

Next, we implemented a software tool (uORF Anno-
tator, available at https://doi.org/10.5281/zenodo.7435228
and https://github.com/bioinf/uORF annotator/) to evalu-
ate the effects of genetic variants located in manually anno-
tated uORFs. We identified more than 150 pathogenic ge-
netic variants that affect the uORFs. Dozens of them dis-
rupted uORFs’ structure. We also found variants of uncer-
tain significance that disrupt uORFs and require detailed
functional analysis for their possible reclassification. Our
experiments, as well as previous studies (9,11), showed that
such variants can significantly affect main CDS translation.
This is also consistent with Whiffin et al. study in which the
authors showed that variants disrupting uORF stop codons
are under strong negative selection (12). Thus, it is impor-
tant to consider both the location of the uORF relative to
the CDS and the type of uORF variant. All these features
determine the activation of different mechanisms that can
affect the translation of the main protein-coding region,
which can lead not only to the suppression of expression
but also to its enhancement. For example, variants that dis-
rupt non-overlapping uORFs and result in reduced trans-
lation of the main protein of certain genes can lead to the

https://doi.org/10.5281/zenodo.7435228
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development of Mendelian diseases through a haploinsuffi-
ciency mechanism. On the other hand, variants that disrupt
overlapping uORFs and lead to upregulation of protein ex-
pression of oncogenes may play a role in the cancer devel-
opment.

Recently, UTRannotator tool was described for annotat-
ing variants in the 5′UTRs (56). A distinctive feature of
our uORF Annotator is the visualization of the influence
of annotated variants on the uORFs structure. For this,
our tool generates BED files (separately for ATG and non-
ATG-started uORFs) that can be loaded into the genomic
browser (e.g. GWIPS-viz, UCSC, IGV). Such visualization
facilitates the analysis of the tool results, the formulation of
the hypotheses about the pathogenicity mechanism of the
analyzed variant, and design of the experiments.

According to our bioinformatic and experimental anal-
ysis, variants in the ATG-started uORFs have a more
pronounced effect on CDS translation compared to non-
ATG started. However, during annotation, we found more
non-ATG uORFs, even considering only ‘high confidence’
uORFs. Moreover, many previous studies confirm this
trend. For instance, Na et al. observed many non-ATG
alternative translation initiation sites (47). The authors
showed that the most commonly used non-ATG start
codons were CTG and GTG, which also coincides with our
data. In a study provided by McGillivray et al., the CTG
start was also the most frequently used (14). Moreover, it
was experimentally shown that the decrease in the transla-
tion activation signal depends on the start codon in the fol-
lowing order: AUG > CTG > GTG > TTG (50) although
the order of non-ATG TIS activity may vary depending on
the nucleotide context (55). The fact that we and other au-
thors found many non-ATG uORFs demonstrates the great
interest in their further study. However, in the context of
Mendelian disorders, their role may be less significant com-
pared to ATG-started uORFs. Firstly, because non-ATG
uORFs are translated much less efficiently compared to
ATG-started, and therefore their effect on the translation
of the main ATG-started CDS may not be strong enough
to cause Mendelian disorder (55). We also assumed that due
to this fact, we did not observe the expected effect of ‘stop-
removing’ mutations in our experimental system for non-
ATG uORFs. Another possible reason for this is that the
non-ATG Kozak sequences have tissue-specific translation
initiation features and should be studied in suitable biolog-
ical models.

Analysis of the 5`UTRs regions also revealed TISs re-
lated to changes in the reference CDS length, which are of
particular interest. In many cases, this was due to incorrect
annotation of the mRNA structure of RefSeq genes. Quite
often, we observed CAGE peaks indicating the transcrip-
tion start site, either far upstream of the annotated 5`-end
of the mRNA or vice versa within the mRNA sequence.
However, we found more than 400 cases of a possible ex-
tension of CDS. We showed that translation of protein-
coding ORFs can begin with a non-ATG-started Kozak
sequence. Our experiments partially confirmed this, since
it is likely that non-ATG TISs have low translation initia-
tion efficiency or are expressed in a tissue-specific manner.
We found far fewer potential CDS truncations than exten-
sions, and most of them are ATG-started. In many cases,

these truncations are quite small in size and affect a few
amino acids. This is consistent with previous observations
that ATG triplets occur more often in the same frame down-
stream of weak CDS starts than of strong starts. This may
help reduce synthesis of wasteful out-of-frame product and
also aid the production of multiple proteoforms from cer-
tain mRNAs (57). Thus, our observations demonstrate that
correct annotation of the coding part of the OMIM genes is
crucial since it is directly related to the interpretation of the
variants found in patients with hereditary diseases. There-
fore, an in-depth investigation of such cases is important for
medical genetics.

Due to the limited number of tissues with available Ribo-
seq data, we were unable to analyze all OMIM genes. More-
over, due to the high labor intensity of manual TIS annota-
tion, we did not analyze most of human genes. Therefore,
we decided to develop a machine-learning algorithm that
allows us to predict the uORF for all human genes. We used
our uORFs dataset to train a neural network discriminat-
ing between translation start sites. The model was trained
on unique 5`UTR DNA sequences, each providing a unique
context for the putative TIS, and internally used the exper-
imental Ribo-seq signal.

Our attempts to create a pure sequence-based model have
been unsuccessful so far. We acknowledge that having such
a model would immediately broaden the applicability do-
main to allow, e.g. deep mutational scanning of 5’UTR se-
quences of various organisms. Hence, we suspect our cur-
rent predictions contain substantial false negatives in the
regions less covered by the experimental data. On the other
hand, we are more confident in our positive predictions
since the RiboSeq data from many experiments back them
up. While the complete disentangling from the external
features was not feasible, this dependence stayed minimal,
compared to, e.g. the work of McGillivray et al., requiring
eighty-nine features for classification.

To our surprise, the widely adopted across various NLP
applications practice of transfer learning, where the model
is pretrained on a masked language modeling objective
and then fine-tuned on downstream tasks, yielded ambigu-
ous results. DNABERT model (58) demonstrated extreme
overfitting and a decrease in performance compared to
DistilBert-based architecture with four times less trainable
parameters: with or without pretraining the latter. We ini-
tially assumed the observation was due to us excising in-
tronic sequences, thereby changing the native DNA struc-
ture DNABERT was trained on. Following this, we hypoth-
esized that two rounds of fine-tuning may solve the prob-
lem: (i) MLM objective on 5’UTR sequences and (ii) token-
classification objective. While DNABERT was efficient in
MLM, this was not consequential for its ability to discrim-
inate between TIS.

The resulting best model was XGBoost trained to predict
the class of the start codon at the center of the sequence.
It relied on experimental RiboSeq signal and employed
transcript-level features––standardized per-cell expression
levels. As the current model’s applicability domain is lim-
ited, its primary function is to extrapolate the manually cu-
rated dataset to the other genes of the human genome. Our
inference yielded that 2.18% TISs among the 5′UTRs of
the 7836 of the 15 066 genes that did not undergo man-
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ual curation are likely active. While this does not close up
the human uORFome annotation problem, it nevertheless
provides an extensive amount of data for further hypothesis
testing by other researchers. Moreover, as we demonstrated
in this work, the built model has no competition, thus con-
stituting the most reliable source of TIS predictions.
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