
ARTICLE

Significance tests for R2 of out-of-sample prediction using polygenic
scores
Authors

Md. Moksedul Momin, Soohyun Lee,

Naomi R. Wray, S. Hong Lee

Correspondence
cvasu.momin@gmail.com (M.M.M.),
hong.lee@unisa.edu.au (S.H.L.)
R2 is a well-established measure for the

reliability of polygenic score models

although its significance test is rarely

considered in this context. We release an R

package r2redux that allows formal

statistical comparison of two polygenic score

models, providing the 95% confidence

interval and significance of R2 difference.
Momin et al., 2023, The American Journal of Human Genetics 110, 349–358
February 2, 2023 � 2023 American Society of Human Genetics.
https://doi.org/10.1016/j.ajhg.2023.01.004 ll

mailto:cvasu.momin@gmail.�com
mailto:hong.lee@unisa.edu.�au
https://doi.org/10.1016/j.ajhg.2023.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2023.01.004&domain=pdf


ARTICLE

Significance tests for R2 of out-of-sample
prediction using polygenic scores

Md. Moksedul Momin,1,2,3,4,* Soohyun Lee,5 Naomi R. Wray,6,7 and S. Hong Lee1,2,4,*
Summary
The coefficient of determination (R2) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However,

the sampling variance of R2 is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when compar-

isons are made between PGSs based on different discovery samples, the sampling covariance of R2 is required to test the difference be-

tween them. Here, we show how to estimate the variance and covariance of R2 values to assess the 95% CI and p value of the R2 differ-

ence. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and

Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of

UKBB PGSs compared to BBJ PGSs (p value 7.6e�31 for cholesterol and 1.4e�50 for BMI). A joint model of UKBB and BBJ PGSs signif-

icantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e�05 for cholesterol and 1.3e�28 for BMI).

We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value

8.9e�26 for UKBB and 3.8e�17 for BBJ). We suggest that the proposed approach (available in R package r2redux) should be used to

test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative

predictive ability of PGSs.
Introduction

Complex traits are affected by many risk factors including

polygenic effects.1–3 Genetic profile analysis can quantify

how polygenic effects are associated with future disease

risk at the individual and population levels.4,5 Genetic

profiling has potential benefits that can help people

make informed decisions when they manage their health

and medical care.6–8

Genome-wide association studies (GWASs) have pro-

vided an opportunity to estimate genetic profile or

polygenic scores (PGSs) that represent individual risk pre-

dictions from genetic data.4,9–14 Typically, the effects of

genome-wide single-nucleotide polymorphisms (SNPs)

associated with complex traits are estimated in a discovery

dataset, which are projected in an independent target data-

set. Then, for each individual in the target samples the

weighted genotypic coefficients according to the projected

SNP effects (i.e., PGSs) are derived and correlated with

outcome (trait including affected/unaffected for disease)

to quantify the prediction accuracy. The squared correla-

tion or coefficient of determination (R2) is a useful measure

to quantify the reliability of the PGS. Note that R2 is equiv-

alent to the squared regression coefficient if the dependent

and explanatory variables are column standardized.15

Previously, we introduced ameasure of R2 on the liability

scale that can be comparable across different models and

scales16 when using disease traits or ascertained case-con-
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trol data. Choi et al.12 reported that this R2 measure on

the liability scale outperforms the widely used Nagelkerke

pseudo R2 in controlling for bias due to ascertained case-

control samples. Nagelkerke pseudo R2 estimates depend

on the proportion of affected individuals in the sample.

In contrast, R2 on the liability scale does not depend on

the proportion of cases in the sample but does require an

estimate of the lifetime population prevalence of the

disease.

Wand et al.11 suggested that any PGS study should

report R2 as an indicator of the predictive ability. Choi

et al.12 concluded that R2 is a useful metric to measure as-

sociation and goodness of fit in the interpretation of PGS

predictions. Many studies have demonstrated the predic-

tive ability of PGSs, using R2.12,13,17,18 However, the vari-

ance of R215 has been rarely studied especially in the

context of PGSs although it is the crucial parameter for

estimation of confidence intervals (CI) of R2. Further-

more, estimates of the covariance between a pair of R2

values (e.g., from two sets of PGSs) are necessary to assess

whether they are significantly different from each other,

or if the ratio of two R2 values significantly deviates from

the expectation. This significance test for the difference

or ratio is important when comparing two or multiple

sets of PGSs that are derived from different sets of

SNPs, e.g., genomic partitioning, genome-wide associa-

tion p value thresholds (pT) analysis, or PGSs based on

pathway subsets.19,20
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In this study, we use R2 measures and their variance-

covariance matrix to assess whether the predictive abilities

of PGSs based on different sources are significantly

different from each other. We derive the variance and

covariance of R2 values to generate estimates of its 95%

CI and p value of the R2 difference, considering two sets

of dependent or independent PGSs. We also derive the

variance and covariance matrix (i.e., information matrix)

of squared regression coefficients in a multiple regression

model, testing whether the proportion of the squared

regression coefficient attributable to SNPs in the regulatory

region is significantly higher than expected (i.e., PGS-

based genomic partitioning method). We apply this

approach to real data to compare PGSs calculated in

28,880 European individuals using UK Biobank (UKBB)

and Biobank Japan (BBJ) GWAS summary statistics for

cholesterol and BMI.
Material and methods

We used data from the UK Biobank (https://www.ukbiobank.ac.

uk), the scientific protocol of which has been reviewed and

approved by the Northwest Multi-center Research Ethics Commit-

tee, National Information Governance Board for Health & Social

Care, and Community Health Index Advisory Group. UK Biobank

has obtained informed consent from all participants. Our access to

the UK Biobank data was under the reference number 14575.

Publicly available GWAS summary statistics of Biobank Japan

(BBJ)21,22 were used, following BBJ’s guidelines (http://jenger.

riken.jp/en/result). The research ethics approval of this study has

been obtained from the University of South Australia Human

Research Ethics Committee.

PGS models
We use a linear model that regresses the observed phenotypes on a

single or multiple sets of PGSs. It is assumed that the phenotypes

are already adjusted for other non-genetic and environmental fac-

tors (e.g., demographic variables, ancestry principal components),

and PGSs are already calculated based on GWAS summary

statistics.

A PGS model can be written as

y ¼ Xbþ e (Equation 1)

where y is the vector of standardized phenotypes of trait, X is a

column-standardized N 3 M matrix including M sets of PGS, b is

the vector of regression coefficients of X (i.e., PGS), and e is the

vector of residuals. For example, with two sets of PGSs (M ¼ 2),

X and bb can be expressed as

X ¼ ½x1;x2�

bb ¼
� bb1bb2

�
¼ ðX0XÞ�1X0y ¼ S�1

22 S21 ; (Equation 2)

S ¼
� ðS11Þ ðS12Þ
ðS21Þ ðS22Þ

�
¼
24 ð1Þ �

ry;x1 ry;x2
�

 
ry;x1

ry;x2

!  
1 rx1 ;x2

rx1 ;x2 1

!35
(Equation 3)
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where ry;x1 ; ry;x2 ; and rx1 ;x2 are correlations between y and the first

PGS (x1), y and the second PGS (x2), and between the two PGSs

(x1 and x2), respectively, in the sample. Using bb that are estimated

in the multiple regression (Equation 2), the predicted phenotypes

(by) can be obtained as

by ¼ Xbb:
The coefficient of determination for this multiple regression

model with X ¼ ½x1;x2� in Equation 1 can be written as

r2y;ðx1 ;x2Þ ¼ 1 �
PN
i¼1

�
yi � byi

�2
PN
i¼1

y2i

¼
PN
i¼1

by2

i

N
¼ bb2

1 þ bb2

2 þ 2rx1 ;x2
bb1
bb2:

(Equation 4)

With a single set of PGSs, i.e., M ¼ 1 andX ¼ ½x1� or ½x2� in Equa-

tion 1, the expression of R2 can be reduced as

r2y;x1 ¼
PN
i¼1

by2

i

N
¼ bb2

1 with X ¼ ½x1�

or

r2y;x2 ¼
PN
i¼1

by2

i

N
¼ bb2

2 with X ¼ ½x2�:

It is noted that r2y;ðx1 ;x2Þ, r
2
y;x1

, or r2y;x2 is an estimate of parameter

r2y;ðx1 ;x2Þ;r
2
y;x1

; or r2y;x2 , and each estimate has a sampling variance.
Variance of R2

The distribution of R2 can be transformed to a non-central c2 dis-

tribution with mean ¼ Mþ l and variance ¼ 23 ðM þ2l) where

l ¼ N3R2

ð1�R2Þ2 is the non-centrality parameter. For example, the vari-

ance of the transformed value for r2y;x1 is

var

�� bb1

sdðbb1Þ

�2�
¼ 1

varðbb1Þ
2
var
�bb2

1

� ¼ 2ðM þ2lÞ:

Therefore,

var
�
r2y;x1

	
¼ var

�bb2

1

� ¼ 2varðbb1Þ
2ðM þ2lÞ (Equation 5)

where varðbb1Þ ¼ 1=N$ð1 � r2y;x1 Þ
2
, M ¼ 1, and r2y;x1 is the squared

correlation in the population and can be approximated as

r2y;x1zr2y;x1 .
23,24

In a similar manner, Equation 5 can be extended to multiple

explanatory variables as

var
�
r2y;ðx1 ;x2 ;.;xM Þ

	
z2

�
1

N
$
�
1 � r2y;ðx1 ;x2 ;.;xM Þ

	2�2
ðM þ2lÞ;

(Equation 6)

that is, Equation 6 is a generalized form of Equation 5.

Wishart25 introduced a formula to obtain the variance of R2

(also see Stuart and Ord26 and Olkin and Finn15) as

Var
�
R2
� ¼

h
43R2 3

�
1 � R2

�2
3 fN � ðM þ 1Þg2

i

�
N2 � 1

�
3 ðN þ 3Þ�

which provides an equivalent estimate as in Equation 6. Wishart25

derived his formula of the variance of R2 based on the hypergeo-

metric series that has been used in the literature including Olkin
y 2, 2023
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and Finn.15 We introduce Equation 6 derived based on the trans-

formation of a non-central c2 distribution. Both Equation 6 and

Wishart equation provide identical estimates of the variance of

R2 (Figure S1). The s.e. of R2 estimate is the square root of varðR2Þ:
Variance of the difference between two R2 values
FollowingOlkin andFinn,15weuse the deltamethod to estimate the

varianceof thedifferencebetweenR2 valuesbasedon twosets of PGS

(x1 andx2). Assuming that the difference of R2 values can be formu-

lated as a function of the correlations, i.e., f ðry;x1 ;ry;x2 ;rx1 ;x2 Þ, the delta
method approximates the variance of the difference as

varðf Þ ¼ q0Uq (Equation 7)

where

q0 ¼
�

vf

vry;x1
;
vf

vry;x2
;

vf

vrx1 ;x2

�
(Equation 8)

is the derivatives of f with respect to the correlations and

U ¼
24 var

�
ry;x1

�
cov
�
ry;x1 ; ry;x2

�
cov
�
ry;x1 ; rx1 ;x2

�
cov
�
ry;x1 ; ry;x2

�
var
�
ry;x2

�
cov
�
ry;x2 ; rx1 ;x2

�
cov
�
ry;x1 ; rx1 ;x2

�
cov
�
ry;x2 ; rx1 ;x2

�
var
�
rx1 ;x2

�
35

Each element of U is shown in Olkin and Finn15 (also see Supple-

mental Note A).

From Equation 7, the following variances of differences can be

estimated and used in our PGS analyses.

R2 difference when using different discovery samples to generate the

PGS

The variance of R2 difference can be written as

var
�
r2y;x1 � r2y;x2

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ r2y;x1 � r2y;x2 ;

(Equation 9)

which allows us to compare two PGSmodels that are not nested to

each other (see R2 difference when using different information

sources in results section), for which the conventional log likeli-

hood ratio test cannot be applied.

In Equation 9, the values of r2y;x1 � r2y;x2 from random samples in

the population are normally distributed when the sample size is

sufficient.15 Assuming that our PGS analysis is sufficiently pow-

ered (n > 25,000), the p value for the significance test of the differ-

ence can be derived from�
r2y;x1 � r2y;x2

	2
var
�
r2y;x1 � r2y;x2

	 � c2
1

and the 95% confidence interval is��
r2y;x1 � r2y;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;x1 � r2y;x2

	r
;
�
r2y;x1 � r2y;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;x1 � r2y;x2

	r �
(Equation 10)

When comparisons are made between R2 values based on two

sets of PGSs (x1 and x2), the sampling covariance of R2 is required,

which is explicitly used in Equations 7 and 9. If the sampling

covariance ignored, the test statistics can be biased (Figures S2

and S3).

R2 difference when using nested models

When using nested models, the variance of R2 difference can be

written as
The America
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ r2y;ðx1 ;x2Þ � r2y;x2

¼ bb2

1 þ bb2

2 þ2rx1 ;x2
bb1
bb2 � r2y;x2

(Equation 11)

where bb1 and bb2 are the estimated regression coefficients from a

multiple regression (Equation 2), calculated from S (see Equations

2, 3, and 4). Again, the derivative with respect to each of the

correlations can be obtained for this function (Equation 8). Note

that the comparison between r2y;ðx1 ;x2Þ and r2y;x2 is equivalent

to the log likelihood ratio test (i.e., y ¼ x1b1 þ x2b2 þ e vs. y ¼
x2b2 þ e).15

The values of r2y;ðx1 ;x2Þ � r2y;x2 in Equation 11 from random sam-

ples in the population follows a non-central chi-squared distribu-

tion with a non-centrality parameter ¼ N3
r2
y;ðx1 ;x2 Þ

� r2y;x2

ð1� r2
y;ðx1 ;x2 Þ

� r2y;x2
Þ2 . The p

value for the significance test of the difference can be derived from

l � c2
1

and the 95% confidence interval is"�
r2y;ðx1 ;x2Þ � r2y;x2

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
x97:5% � l � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ 2lÞp ;

�
r2y;ðx1 ;x2Þ � r2y;x2

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
x2:5% � l � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ 2lÞp #
(Equation 12)

where x% is the value at the percentile of the inverse of non-central

chi-squared cumulative distribution function with mean ¼ lþ 1

and d.f. ¼ 1.

When the sample size is large, the values of r2y;ðx1 ;x2Þ � r2y;x2 from

random samples in the population are normally distributed,15 and

the 95% confidence interval is

h�
r2y;ðx1 ;x2Þ � r2y;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
;�

r2y;ðx1 ;x2Þ � r2y;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r i (Equation 13)

Note that Equations 12 and 13 are equivalent when the sample

size is sufficient.15

R2 difference when using two independent sets of PGSs

In this case, there is no correlation structure between two indepen-

dent sets of PGSs (rx1 ;x2 ¼ 0, e.g., PGSs inmale and female individ-

uals), so the variance of R2 difference is simply the sum of the var-

iances of each R2 value, which can be obtained from Equation 5.

For example, assuming rx1 ;x2 ¼ 0, the variance of R2 difference

can be written as

var
�
r2y1 ;x1 � r2y2 ;x2

	
¼ 2

�
1

N1

$
�
1 � r2y1 ;ðx1Þ

	2�2
ð1þ2l1Þ

þ 2

�
1

N2

$
�
1 � r2y2 ;ðx1Þ

	2�2
ð1þ2l2Þ

(Equation 14)

where y1 and y2 are the vectors of standardized phenotypes andN1

and N2 are the sample sizes for the two independent sets of PGSs.

The non-centrality parameters (l1 and l2) for two independent

PGSs can be written as

l1 ¼ N1 3 r2y1 ;x1�
1 � r2y1 ;x1

	2 and l2 ¼ N2 3 r2y2 ;x2�
1 � r2y2 ;x2

	2 :
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The p value for the significance test of the difference can be

derived from �
r2y1 ;x1 � r2y2 ;x2

	2
var
�
r2y1 ;x1 � r2y2 ;x2

	 � c2
1

and the 95% confidence interval15 is��
r2y1 ;x1 � r2y2 ;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y1 ;x1 � r2y2 ;x2

	r
;
�
r2y1 ;x1 � r2y2 ;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y1 ;x1 � r2y2 ;x2

	r �
(Equation 15)

PGS-based genomic partitioning analysis

It is of interest to test whether a set of PGSs based on a genomic

region of interest (or a pathway-based SNP subset) can better pre-

dict the phenotypes, compared to the rest of genomic regions. The

proportion of the coefficient of determination explained by x1 can

be estimated as bb2

1=r
2
y;ðx1 ;x2Þ from a multiple regression, y ¼ x1þ

x2 þ e, where x1 is the PGS of a genomic region of interest and x2
is the PGS of the rest of genomic regions. The expected proportion

of the coefficient of determination explained by x1 can be calcu-

lated from prior information, referred to as pexp ¼ # SNPs used

for PGS1/total # SNPs. We are interested in testing whether the

value of bb2

1=r
2
y;ðx1 ;x2Þ is significantly different from its expectation,

pexp, which requires to estimate the sampling variance of bb2

1=

r2y;ðx1 ;x2Þ, using Equation 7. The variance of the proportion can be

written as

var
�bb2

1

.
r2y;ðx1 ;x2Þ

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ bb2

1

.
r2y;ðx1 ;x2Þ

(Equation 16)

where bb1 is the estimated regression coefficient of x1, calculated from

S (Equation 3), and r2y;ðx1 ;x2Þ ¼ bb2

1 þ bb2

2 þ 2rx1 ;x2
bb1
bb2 is the coeffi-

cient of determination. Therefore, it is possible to get the derivative

with respect to each of the correlations, ry;x1 ; ry;x2 ; and rx1 ;x2 in Equa-

tion8. This variance canbe used to obtain the significance and95CI

of the observed proportion of the coefficient of determination.

Analogous to Equation 9, the values of
bb2

1

r2
y;ðx1 ;x2 Þ

� pexp with

random samples in the population are asymptotically normal.15

Using aWald test, the p value for the significance test of the differ-

ence can be derived from�� bb2

1

r2
y;ðx1 ;x2Þ

� pexp

��2
var

� bb2

1

r2
y;ðx1 ;x2Þ

� pexp

� � c2
1

The 95% confidence interval of the ratio is

" bb2

1

r2y;ðx1 ;x2Þ
� pexp

!
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!vuut ;

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!

þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!vuut #
(Equation 17)

In addition, the package, r2redux, can provide varðbb2

1Þ, varðbb2

2Þ,
and varðbb2

1 � bb2

2Þ, i.e., the information matrix of the squared

regression coefficients (see Supplemental Note B) that is useful

when comparing the actual values of bb2

1 and bb2

2.
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It is noted that the delta method employed in this study is

a well-established approach to derive the distribution of a

function of an asymptotically normal variable.27 Following

Olkin and Finn,15 we used the delta method to derive the

variances of R2 and their difference as a function of regression

coefficients (Equations 7, 8, 9, 11, and 16). We explicitly

checked that the regression coefficients are asymptotically

normal, using a realistic correlation structure among variables

(Figures S4–S6).
Data
The UK Biobank is a large-scale biomedical database that com-

prises 0.5 million individuals who had been recruited between

2006 and 2010; their age ranged between 40 and 69 years.28,29

The data consist of health-related information for samples who

are genotyped for genome-wide SNPs. A stringent quality control

(QC) process was applied to UKBB data that excludes individuals

with non-white British ancestries, mismatched sex between re-

ported and inferred from genotypic information, genotype call

rate < 0.95, or putative sex chromosome aneuploidy. The SNP

QC criteria filtered out SNPs with an imputation reliability <0.6,

missingness >0.05, minor allele frequency (MAF) < 0.01, or

Hardy-Weinberg equilibrium p value <10�7. We also applied a

relatedness cut-off QC (>0.05) so that there was no high pairwise

relatedness among individuals. After QC, 288,792 individuals and

7,701,772 SNPs were retained.
Discovery GWAS data
Ninety percent of the individuals from the 288,792 QCed indi-

viduals were randomly selected as discovery samples (n ¼
259,912 to generate GWAS summary statistics (UKBB hereafter)

for the 7,701,772 SNPs.. For the GWAS with the 259,912 UKBB

discovery samples, we used BMI and cholesterol that were

adjusted for age, sex, birth year, Townsend Deprivation Index

(TDI), education, genotype measurement batch, assessment cen-

ter, and the first 10 ancestry principal components using a linear

regression.

We also have access to Japanese Biobank (BBJ) (http://jenger.

riken.jp/en/result) GWAS summary statistics (BBJ hereafter) for

BMI21 (n ¼ 158,284) and cholesterol22 (n ¼ 128,305) for

5,961,601 SNPs.
Target data
Ten percent of the individuals from the 288,792 QCed individuals

were randomly selected as an independent target dataset (n ¼
28,880) that were non-overlapping and unrelated with the UKBB

and BBJ discovery samples. In the PGS analyses, we used only

4,113,630 SNPs that were common between UKBB and BBJ

GWAS data after excluding ambiguous SNPs and SNPs with any

strand issue.

In the target dataset (n ¼ 28,880), the phenotypes of each trait

were adjusted for age, sex, birth year, TDI, education, genotype

batch, assessment center, and the first 10 principal components

using a linear regression. The pre-adjusted phenotypes were corre-

lated with PGSs estimated in the following step. For each trait, we

used the UKBB and BBJ GWAS summary statistics to estimate two

sets of PGSs (UKBB PGSs vs. BBJ PGSs for the 28,880 target individ-

uals ), using PLINK2 (https://www.cog-genomics.org/plink/2.0/)

with the score function.30 Then, we estimated the correlation be-

tween the PGS and pre-adjusted phenotypes to obtain R2 values in

the PGS analyses.
y 2, 2023
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Figure 1. The predictive ability (R2) of
PGSs when predicting 28,880 European in-
dividuals using UKBB or BBJ discovery
GWAS dataset
(A) The main bars represent R2 values and
error bars correspond 95% confidence inter-
vals. Two sets of GWAS summary statistics
were obtained fromUKBB and BBJ discovery
GWAS datasets to estimate two sets of PGSs.
(B) Dot points represent the differences of
R2 values between UKBB and BBJ PGS
models, and error bars indicate 95% confi-
dence intervals of the difference.
Functional annotation of the genome
We annotated the genome using pre-defined functional categories

(regulatory vs. non-regulatory genomic regions).31 Regulatory re-

gion includes SNPs from coding regions, untranslated regions

(UTRs), andpromotors.Non-regulatory region includes all theother

regions except the regulatory region. The number of SNPs belong to

regulatory and non-regulatory is 158,653 and 3,954,947 (i.e., 4% of

the total SNPs are located in the regulatory region).

Simulation of dependent and explanatory variables
For a quantitative trait, we simulated dependent variable (y) and

PGSs (x1 and x2), varying the correlation structure of24 1 ry;x1 ry;x2
ry;x1 1 rx1 ;x2
ry;x2 rx1 ;x2 1

35 and the sample size (detailed simulation

parameters are shown in Figures S7–S15). For a disease trait, the

same simulation procedure was used, and the simulated quantita-

tive phenotypes were transformed to binary responses using a

liability threshold model with a population prevalence of k ¼
0.05. For example, case-control status was assigned to individuals

according to their standardized quantitative phenotypes (i.e., lia-

bility), i.e., cases have liability greater than a threshold such that

the proportion of cases is k ¼ 0.05. The empirical variances of

r2y;x1 , r
2
y;x1

� r2y;x2 , r
2
y;ðx1 ;x2Þ � r2y;x2 , and

bb2

1

r2
y;ðx1 ;x2 Þ

� pexp were obtained

over 10,000 replicates, which were compared to the

theoretical variances estimated using Equations 6, 9, 11, and 17,

respectively.
Results

Simulation verification

The theory of the proposed method has been explicitly

verified using simulations, varying sample size, and values

of r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , and
bb2

1

r2
y;ðx1 ;x2Þ

� pexp

(Figures S7–S15). The empirical variances obtained

from 10,000 simulated replicates are almost perfectly

correlated with the theoretical variance for the values of

r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1 ;x2Þ � r2y;x2 ,
bb2

1

r2
y;ðx1 ;x2Þ

� pexp when

varying the sample size (Figures S7–S10) and when varying

R2 values (Figures S11–S14). When considering two inde-

pendent PGSs, the theoretical and empirical variances are

also agreed well (Figure S15).
The America
R2 difference when using different information sources:

UKBB vs. BBJ

It is of interest to determine whether different information

sources (e.g., ancestries) have significantly different predic-

tive abilities in PGS analyses, which can be assessed using

Equations 9 and 10. Figure 1 illustrates that when predict-

ing the 28,880 European target samples, the coefficient of

determinations (R2) with the UKBB and BBJ PGSs were

0.024 (95% CI ¼ 0.021–0.028) and 0.003 (95% CI ¼
0.002–0.004), respectively, for cholesterol. However, these

R2 values and CIs cannot be used to assess their difference

because the two sets of PGSs are not independent. Further-

more, the two PGS models with UKBB and BBJ are not

nested to each other, so the likelihood ratio test could

not be used either. For this problem, we used Equations 9

and 10 to obtain the variance, 95% CI (0.0175–0.0247),

and p value (7.6e�31) of the R2 difference, accounting

for the dependency between UKBB and BBJ PGSs, for

cholesterol (Figure 1). Similarly, the test statistics of the

R2 difference was obtained for BMI, 0.035–0.046 for 95%

CI and p value ¼ 1.4e�50 (Figure 1).

It is also interesting to whether BBJ PGSs provides a signif-

icant improvement in the predictive ability, in addition to

UKBB PGSs, when predicting the 28,880 European target

samples. Figure 2 compares R2 value with each UKBB or

BBJ PGSs to R2 value from a joint model fitting UKBB and

BBJ PGSs simultaneously. Using Equations 11 and 12, we ac-

quired the variance, 95% CI (0.0001–0.001), and p value

(3.5e�05) of R2 difference when comparing the joint model

with a single model with UKBB, indicating that BBJ PGSs

contributed to a significant improvement for cholesterol.

Similarly, BBJ PGSs improved the predictive ability signifi-

cantly (p value ¼ 1.3e�28) for BMI. As expected, excluding

UKBB PGSs from the joint model substantially decreased

the prediction accuracy (p value ¼ 1.6e�136 for cholesterol

and 3.0e�308 for BMI).
R2 difference when using two independent sets of PGSs:

male vs. female

We were also interested in testing whether the PGSs could

predict the adjusted phenotypes of the target individuals

equally well for males and females. In this case, there is

no correlation structure between male and female PGSs,
n Journal of Human Genetics 110, 349–358, February 2, 2023 353



Figure 2. The predictive ability (R2) of a
PGSmodel based on UKBB or BBJ discovery
dataset, compared to the joint model of
both UKBB and BBJ when predicting
28,880 European individuals
(A) The main bars represent R2 values and er-
ror bars correspond 95% confidence inter-
vals. Two sets of GWAS summary statistics
were obtained from UKBB and BBJ discovery
GWAS datasets to estimate two sets of PGSs,
i.e., UKBB and BBJ PGSs. In addition, a joint
model fitting both UKBB and BBJ PGSs was
compared.

(B) Dot points represent the differences of R2 values between the joint model and UKBB or BBJ PGS model, and error bars indicate 95%
confidence intervals of the difference.
so the variance of R2 difference is simply the sum of the

variances of each R2 value, which can be obtained from

Equation 5 or 6. Figure S16 shows that there was no signif-

icant difference between male and female PGSs in their

predictive ability for cholesterol and BMI whether using

UKBB or BBJ discovery GWAS dataset.

PGSs with genome-wide association p value thresholds

(pT)

PGSs also have beenwidely used to determine which pT pro-

vides the highest prediction accuracy, for example, using

PGS software such as PLINK.30,32 However, there is a lack of

test statistics that can assess whether the predictive ability

of the best-performing pT is significantly different from the

other pT. Figure 3A illustrates that R2 value is the highest at

pT ¼ 0.3 when predicting 28,880 European individuals in

the target dataset, using BBJ discovery GWAS dataset (BMI).

However, it is not clear if the predictive ability at pT ¼ 0.3 is

significantly higher than the adjacent pT (e.g., pT ¼ 0.2 or

0.4), and it may be important to report pT of which the pre-

dictive ability is not statistically different from the best-per-

forming pT. Using Equations 9 and10,we assessed the signif-

icanceofdifferencebetweenthebest-performingpTandeach

of the other pT (Figure 3B). From this analysis, we found that

the best-performing pT was not significantly different from

pT ranging between 0.1 and 1, but significantly different

from pT < 0.05 (Figure 3B). When using the UKBB discovery

GWAS dataset to predict the 28,880 European individuals,

the highest R2 value at the pTof 1 was significantly different

from all the other pT (Figure S17B).

Interestingly, the highest R2 value was found at pT ¼
1e�04 (Figure 4A) when predicting the European target

samples using BBJ discovery GWAS dataset for cholesterol,

which was not statistically different from pT ¼ 0.001 but

was significantly higher than the other pT (Figure 4B). For

the same target samples and trait, the best R2 value was ob-

tained from pT ¼ 0.01 when using the UKBB discovery

GWAS dataset (Figure S18A). Except for pT ¼ 0.01, 0.05,

and 0.1, R2 values at the other pT were significantly

different from the best R2 values (Figure S18B).

PGS-based genomic partitioning analyses

Genomic partitioning analyses have been widely

applied.31,33–35 Such analysis could be useful in the PGS
354 The American Journal of Human Genetics 110, 349–358, Februar
context. Using Equation 16, we can estimate the variance

of the
bb2

regu

R2 where bbregu is the estimated regression coefficient

from a multiple regression (Equation 2), and assess

whether the observed proportion (
bb2

regu

R2 ) is significant

different from pexp (i.e., the coverage of the SNPs belonged

to the category). For example, we partitioned the genome-

wide SNPs into the regulatory (158,653) and non-regulato-

ry (3,954,947) regions, following Gusev et al.,31 resulting

pexp ¼ 4% of SNP coverage for the regulatory region as

the expectation. We simultaneously fit two sets of PGSs

from regulatory and non-regulatory regions to get bb2

regu

and bb2

non� regu, using a multiple regression, then assess

whether the value of
bb2

regu

R2 � pexp is significantly different

from zero (Equation 17). Figure 5 shows that the predictive

ability of regulatory SNPs was significantly higher than the

expectation (p value ¼ 8.9e�26 for UKBB and 3.8e�17 for

BBJ) for cholesterol. In contrast, the predictive ability of

regulatory SNPs was not better than the expectation for

BMI (Figure 5).
Application to binary responses and ascertained case-

control data

The proposed method is also explicitly verified using simu-

lation for binary or case-control data, varying sample size

and values of r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , andbb2

1

R2 � pexp (Figures S19–S26). The empirical variances ob-

tained from 10,000 simulated replicates are almost iden-

tical with the theoretical variances for the values of r2y;x1 ,

r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , and
bb2

1

R2 � pexp when varying

the sample size (Figures S19–S22) and when varying R2

values (Figures S23–S26). In the case of ascertained case-

control, a similar pattern is shown, i.e., the empirically

observed variances obtained from 10,000 simulated repli-

cates are agreed well with the theoretical variances for

the values (Figures S27–S30). This finding shows that the

proposed method can be applied to test the significance

of difference between predictive abilities of PGSs for binary

traits and ascertained case-control traits when R2 is not
y 2, 2023



Figure 3. The predictive ability (R2) of PGSs estimated based on
SNPs below pT when predicting BMI in 28,880 European samples
using BBJ discovery samples (GWAS summary statistics)
(A) The main bars represent R2 values and error bars correspond
95% confidence intervals. The values above 95% CIs are p values
indicating that R2 values are not different from zero.
(B) Themain bars represent the difference of R2 values between the
corresponding pT and the best-performing pT and error bars indi-
cate 95% confidence intervals. The values above 95% CIs are p
values indicating the significance of the difference between the
pairs of R2 values.

Figure 4. The predictive ability (R2) of PGSs estimated based on
SNPs below the pT when predicting cholesterol in 28,880 Euro-
pean samples using BBJ discovery samples (GWAS summary sta-
tistics)
(A) The main bars represent R2 values and error bars correspond
95% confidence intervals. The values above 95% CIs are p values
indicating that R2 values are not different from zero.
(B) Themain bars represent the difference of R2 values between the
corresponding pT and the best-performing pT and error bars indi-
cate 95% confidence intervals. The values above 95% CIs are p
values indicating the significance of the difference between the
pairs of R2 values.
very high (<0.1). Note that the empirical and theoretical

variances diverge when R2 values on the observed scale

are more than 0.1 for binary responses and ascertained

case control (Figures S31 and S32). Although R2

value > 0.1 is not frequently observed in the current PGS

studies (Table S2), a careful interpretation is required for

the variance of such high R2, and we would not recom-

mend using the theoretical approximation.
Discussion

R2 has been widely used tomeasure the predictive ability of

PGSs.13 However, the confidence interval of R2 has rarely

been reported, and the test statistic for the difference of

two R2 values has not been well documented. Here, we
The America
show how to get the variance of each estimated R2 value

and covariance between two R2 estimates (from two sets

of PGSs) that can be used to assess whether they are signif-

icantly different from each other.

Martin et al.18 reported that the PGS prediction accuracy

is higher when discovery and target samples are from the

same ancestry background, compared to when the samples

are from different ancestries. However, they did not

formally assess the statistical significance of the increase

(no p value provided). More importantly, they did not

consider the correlation structure between predictors

when they compared two PGSs. We applied the proposed

approach and found that the predictive ability of PGSs
n Journal of Human Genetics 110, 349–358, February 2, 2023 355



Figure 5. PGS-based genomic partition-
ing method to assess whether the predic-
tive ability is enriched in the regulatory re-
gion for cholesterol and BMI
Here pexp ¼ 0.04 is the expectation for
the regulatory SNPs based on the
proportion of SNPs allocated to this anno-
tation.
(A) Themain bars represent squared regres-
sion coefficients attributable to SNPs in the

regulatory region (bb2

regu) andnon-regulatory

region (bb2

non� regu), and error bars correspond to 95% confidence intervals when predicting 28,880 European samples using UKBB or BBJ

GWAS summary statistics.
(B)Dotpoints represent thedifferencebetween theobserved and expectedproportions (

bb2

regu

R2 � pexp) and error bars indicate 95%confidence
intervals of the difference.
based on UKBB discovery GWASs is significantly higher

than that of PGSs based on BBJ discovery GWASs, by

formally deriving the 95% CI and p value of the R2

difference.

Many studies evaluating PGSs use the pT method12

and report the pT that maximizes performance. This

provides useful information when inferring the genetic

architecture of the trait of interest and when fine-tuning

pT as a hyper-parameter in PGS methods.32,36–38 For such

cases, it may be crucial to determine if the best-perform-

ing pT is genuinely better than other (adjacent) pT or if

it occurs just by random chance (i.e., sampling

error). For example, in Figure 3, the best-performing pT
is 0.3 (the set of SNPs with pT % 0.3), which is, however,

not statistically different from pT % 0.2 or % 0.1. Note

that the set of SNPs with pT % 0.1 is nested within

SNPs with pT % 0.3, meaning that the additional

SNPs in the latter would not significantly improve

the prediction accuracy. Therefore, pT % 0.1 should be

used instead of the pT % 0.3 as the former is a more parsi-

monious model than the latter. Our proposed approach

can formally assess statistical difference among pT,

providing 95% CI of the difference with a significance

p value.

We also derived an informationmatrix of squared regres-

sion coefficients in a multiple regression model, establish-

ing a PGS-based genomic partitioning method that could

test whether the ratio of two squared regression coeffi-

cients is significantly deviated from its expectation given

the proportion of SNPs allocated to each partition. This is

analogous to the existing genomic partitioning approaches

using GREML or LDSC31,33–35 that may have an overfitting

issue because SNP effects and genomic partitioning are esti-

mated in the same samples.

In conclusion, we show how to estimate the variance

and covariance of R2 estimates to quantify the 95% CI

and p value of the difference and ratio when comparing

two PGSs, which is available in R package r2redux (see Sup-

plemental Note B). We suggest that the proposed approach

should be used to test the statistical significance of differ-

ence and ratio between pairs of PGSs, which may help to

draw a correct conclusion about the predictive ability

of PGSs.
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Data and code availability

The genotype and phenotype data of the UK Biobank can be ac-

cessed through procedures described on its webpage (https://

www.ukbiobank.ac.uk/) and summary statistics of BMI and

cholesterol from Japanese Biobank (BBJ) can be obtained from

its website (http://jenger.riken.jp/en/). r2redux can be down-

loaded from (https://github.com/mommy003/r2redux) or from

CRAN [install.packages("r2redux") in R] (also see Supplemental

Note B).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.01.004.
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