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Abstract
Pseudomonas aeruginosa and species of Acinetobacter calcoaceticus-baumanii complex are multiresistant intrahospital 
opportunistic pathogens, able to acquire carbapenemases and produce outbreaks with high morbidity and mortality. Pseudomonas 
putida has also emerged with similar characteristics. The aim of this research was to characterize the Metallo-β-lactamases 
(MBLs) detected by surveillance in Paraguay in the first 5 years of their circulation in hospitals. The coexistence of KPC and 
OXA-type carbapenemases was also investigated. 70 MBL-producing strains from inpatients were detected from clinical samples 
and rectal swab from 11 hospitals. The strains were identified by manual, automated, and molecular methods. Antimicrobial 
susceptibility was studied by Kirby-Bauer and automated methods, while colistin susceptibility was determined by broth 
macrodilution. MBLs were investigated by synergy with EDTA against carbapenems and PCR, and their variants by sequencing. 
KPC and OXA-carbapenemases were investigated by PCR. Clonality was studied by pulsed-field gel electrophoresis (PFGE). 
The results demonstrated the circulation of blaVIM-2 (60%), blaNDM-1 (36%), and blaIMP-18 (4%). The MBL-producing species 
were P. putida (45.7%), P. aeruginosa (17.2%), A. baumannii (24.3%), A. pittii (5.7%), A. nosocomialis, (4.3%) A. haemolyticus 
(1.4%), and A. bereziniae (1.4%). PFGE analysis showed one dominant clone for A. baumannii, a predominant clone for half 
of the strains of P. aeruginosa, and a polyclonal spread for P. putida. In the first 5 years of circulation in Paraguay, MBLs were 
disseminated as unique variants per genotype, appeared only in Pseudomonas spp. and Acinetobacter spp., probably through 
horizontal transmission between species and vertical by some successful clones.

Keywords MBL · Pseudomonas aeruginosa · Pseudomonas putida · Acinetobacter spp. · PFGE

Introduction

Gram-negative bacteria resistant to carbapenems, such as 
Acinetobacter baumannii and Pseudomonas aeruginosa, 
are emerging causes of health care-associated infections 
and of global public health concerns [1]. Pseudomonas 
putida has also emerged as a multiresistant nosocomial 
opportunistic pathogen [2–4]. The most widespread 
mechanism of carbapenem resistance is the production 

of carbapenemases [5]. These enzymes can be classified 
according to their molecular characteristics into classes 
A, B, and D. The classes A (ex. KPC) and D (the OXAs) 
carbapenemases include enzymes that hydrolyze their 
substrates forming an acyl-enzyme through a serine 
of the active site, while the class B β-lactamases are 
metalloenzymes or metallo-β-lactamases (MBLs) that use 
at least one zinc ion from the active site to facilitate the 
hydrolysis of beta-lactam. The most important types of 
MBLs due to epidemiological spread and clinical relevance 
are IMP, VIM [6], and NDM [7]. SPM is characteristic of 
P. aeruginosa in Brazil [8].

The surveillance of MBLs dissemination in Paraguay 
began in 2009, with 21 laboratories members of the survail-
lance of the Antimicrobial Resistance Network dependent 
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on the Central Laboratory of Public Health—Ministry of 
Public Health and Social Welfare. The aim of this study 
was to characterize the MBLs detected among Pseudomonas 
spp. and A. calcoaceticus-baumannii complex isolates in 
Paraguay in the first 5 years of their circulation in hospi-
tals. The characterization involved identification of species 
and clonality of MBL-producing strains, determination of 
genotype and subtype of MBL, and coexistence of KPC and 
OXA-type carbapenemases in the strains.

Materials and methods

From November 2009 to December 2015, clinical 
carbapenem-resistant isolates of Pseudomonas spp. and 
A. calcoaceticus-baumannii complex collected from 
hospitalized patients from 11 Paraguayan hospitals were 
sent to the Central Laboratory of Public Health in Paraguay 
and submitted to phenotypic detection of MBL by inhibition 
with EDTA [9]. Only one isolate for each patient was 
included for further studies, except in one case where two 
isolates with different resistance phenotypes, recovered 
from tracheal secretion within 4 months of difference were 
included.

Species identification was performed by classical and 
automated methods (Vitek 2 Compact–Biomerieux, France). 
For A. calcoaceticus-baumannii complex, in addition to this 
a multiplex PCR was performed to detect the presence of 
blaOXA-51 according to the protocol described in the litera-
ture, which allows the detection of blaOXA-23; blaOXA-24 and 
blaOXA-58 [10]. The blaOXA-51 negative strains were sub-
jected to species-specific PCR for Acinetobacter pittii and 
Acinetobacter nosocomialis according to published protocol 
[11]. Isolates of Acinetobacter spp. that were negative for 
blaOXA-51 and species-specific PCR were subjected to rpoβ 
amplification PCR [12] and sequencing.

Antimicrobial susceptibility tests were performed by 
automated method (Vitek 2 Compact-Biomerieux, France). 
Susceptibility to colistin was determined by broth macrodi-
lution [13]. The results were interpreted according to the 
CLSI manual [13].

On surveillance, routine genotyping of MBLs was per-
formed by PCR for blaIMP, blaVIM, and blaNDM according 
to the protocol of the regional reference laboratory [14], 
however, for this work, the genotypes were verified accord-
ing to multiplex PCR [15]. The blaSPM—for P. aeruginosa 
strains—was investigated according to the published proto-
col [16]. The detection of the Serino-carbapenemase gene 
blaKPC was performed for P. aeruginosa isolates [17].

To determine the variant of each MBL genotype, PCR 
and subsequent sequencing were made according to the 
published protocol for IMP and VIM [18]. To determine 
NDM variants, primers designed by the Laboratório 

de Pesquisa em Infecção Hospitalar (LAPIH) from the 
Oswaldo Cruz Institute-Fiocruz, Brazil [19] were used 
(Table 1).

Macrogen Inc.-Korea performed sequencing. Using the 
Genbank database through the BLAST tool (https:// blast. 
ncbi. nlm. nih. gov/ Blast. cgi) the sequences were analyzed, 
and further studied by multiple alignments with BioEdit 
software comparing them with reference sequences avail-
able from NCBI.

To perform PFGE, the PulseNet protocol was used 
[20]. Restriction enzymes (Invitrogen by Thermo 
Fisher Scientific) and PFGE running conditions for P. 
aeruginosa, P. putida and Acinetobacter spp. (protocols 
not included in PulseNet Network) were taken from the 
scientific literature [21, 22] with adjusted running times, 
18.8 h for Acinetobacter spp. and 18.7 h for Pseudomonas 
spp. Salmonella serovar Braenderup H9812 (restricted 
with Xba I) was used as the standard strain. The images 
of gels were analyzed (Gel Doc EZ Imager-BioRad) using 
Gel Compare II Software (Applied Maths) to obtain the 
relationship between patterns. We determine clusters using 
the Unweighted Pair Group Mean (UPGMA) method, with 
90% Dice’s similarity coefficients among patterns to define 
each clonal group.

Results

Out of 1289 clinical carbapenem-resistant isolates of 
Pseudomonas spp. and A. calcoaceticus-baumannii 
complex studied between 2009 and 2015, 70 strains were 
MBL positive (5.4%). The first MBL-positive strain 
appeared in 2011 and the prevalence was 5.8% in 2011, 
2.4% in 2012, 3.2% in 2013, 5.9% in 2014, and 12.8% in 
2015 (see Fig. 1).

The blaVIM (n = 60%) was the most frequently MBL 
gene detected, followed by blaNDM (n = 36%) and blaIMP 
(n = 4%). No blaSPM or blaKPC genes were detected. Only 
the blaOXA-51 was detected in 65% of Acinetobacter spp. 
isolates (17 strains), since in A. pittii (4 strains), A. 
nosocomialis (3 strains), A. bereziniae (1 strain), and A. 
haemolyticus (1 strain) OXA-type carbapenemases were 
not detected.

Regarding geographical origin, all the positive strains 
came from the Capital and Central Department of Para-
guay. Concerning the source, 67% came from several clinical 
samples, and 33% from rectal swabs. blaNDM was detected 
mainly in rectal swabs (64%), blaVIM was mainly associated 
with clinical samples (83.3%) and the only three blaIMP were 
isolated from blood culture, cerebrospinal fluid, and pleural 
fluid, respectively.

About the association between MBL genotype and 
bacterial species, blaVIM was detected in P. aeruginosa 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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(n = 12) and P. putida (n = 30). blaIMP was detected in two 
P. putida strains and one A. pittii strain, while blaNDM 
appeared only in species of Acinetobacter spp.: A. bau-
mannii (n = 17), A. nosocomialis (n = 3), A. pittii (n = 3), 
A. haemolyticus (n = 1) and A. bereziniae (n = 1). Figure 2 
shows the proportion of detection of each genotype with 
respect to the carrier species and the time. blaVIM was 
the most prevalent genotype until 2014, mainly associated 
with P. putida.

Regarding the MBL variant genes, all blaNDM 
sequences aligned 100% with the reference sequence 
blaNDM-1 (GenBank FN396876.1), blaVIM, 38/42 strains 

aligned 99 to 100% with the reference sequence blaVIM-2 
(GenBank FN396876.1) (it was not possible to determine 
the blaVIM allelic variant from four isolates, because they 
were not viable at the time of sequencing). Concerning to 
blaIMP, the sequence of one P. putida isolate and A. pittii 
corresponded to blaIMP-18. The blaIMP allelic variant of 
one P. putida was not sequenced due to lack of viability 
too.

Concerning resistance profile (antibiotype), it was 
variable, and Table 2 shows the summary. The definition 
of resistance classification was according to Magiorakos 
et al. [23]. Only colistin maintained 100% susceptibility 

Table 1  Primers used in this work

Primer Gene Sequence 5′ → 3′ Amplicon size 
(pb)

Ref

A. pittii Apit-F rpoβ TGG GCA GTT ACC AGA TTG ACCTA 147 [11]
Apit-R AAC CAG CAG CTT CCA TTT GACG 

A. nosocomialis Anos-F rpoβ GCC GCT CGT GAA CGT GTA ATC 394 [11]
Anos-R CAT CGT GTG GCA TAT CTT CAAC 

Amplification of rpoB Ac696- F rpoβ TAY CGY AAA GAY TTG AAA GAAG 350 [12]
Ac1093-R CMACA CCY TTGTTMCCR TGA 

MBL genotyping VIM-F blaVIM AGT GGT GAG TAT CCG ACA G 261 [15]
VIM-R ATG AAA GTG CGT GGA GAC 
IMP-UF blaIMP GGY GTT TWT GTT CAT ACW TCKTTYGA 404 [15]
IMP-UR GGY ARC CAA ACC ACTASGTT ATC T
NDM-F blaNDM AGC ACA CTT CCT ATC TCG AC 512 [15]
NDM-R GGC GTA GTG CTC AGT GTC 
SPM-F blaSPM AGA CCG CGA TTT CTA TTC TT 505 [16]
SPM-R AGT TCC TTC GGC TTT ATC AT

OXA genotyping OXA-51 F blaOXA- 51 TAA TGC TTT GAT CGG CCT TG 353 [10]
OXA-51 R TGG ATT GCA CTT CAT CTT GG
OXA-23 F blaOXA- 23 GAT CGG ATT GGA GAA CCA GA 501 [10]
OXA-23 R ATT TCT GAC CGC ATT TCC AT
OXA-24 F blaOXA- 24 GGT TAG TTG GCC CCC TTA AA 246 [10]
OXA-24 R AGT TGA GCG AAA AGG GGA TT
OXA 58-F blaOXA- 58 AAG TAT TGG GGC TTG TGC TG 599 [10]
OXA 58-R CCC CTC TGC GCT CTA CAT AC

KPC screening KPC-F blaKPC AAC AAG GAA TAT CGT TGA TG 916 [17]
KPC-R AGA TGA TTT TCA GAG CCT TA

MBL variants VIM1-F blaVIM-1 TGT TAA AAG TTA TTA GTA GTT TAT TG 801 [18]
VIM1-R CTA CTC GGC GAC TGAGC 
VIM2-F blaVIM-2 ATG TTC AAA CTT TTG AGT AAG 801 [18]
VIM2-R CTA CTC AAC GAC TGA GCG 
IMP1-F blaIMP-1 ATG AGC AAG TTA TCT GTA TTC 741 [18]
IMP1-R TTA GTT GCT TGG TTT TGA TGG 
IMP2-F blaIMP-2 ATG AAG AAA TTA TTT GTT TTATG 741 [18]
IMP2-R TTA GTT ACT TGG CTG TGA TG
NDM-F blaNDM CGA AGC TGA GCA CCG CAT TA 764 [19]
NDM-R TCA GCG CAG CTT GTC GGC 
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in all isolates (MIC range ≤ 0.5 to 1 μg/mL, MIC50 and 
MIC90 = 0.5 μg/mL) (Fig. 3). Regarding P. aeruginosa, 
less than 50% were also susceptible to amikacin (5 strains), 
aztreonam (4 strains), and/or ciprofloxacin (3 strains). 
Concerning to P. putida, most of the isolates remained 
susceptible to amikacin (97%). All Acinetobacter spp. 
remained susceptible to tigecycline; some strains were 
also susceptible to amikacin (46%), gentamicin (42%), 
ciprofloxacin (38.5%), trimethoprim-sulfamethoxazole 
(35%), and ampicillin-sulbactam (11.6%). P. putida has 
a higher proportion of XDR (78%) and VIM antibiotypes 
II and III coincide with some of the IMP. Several of the 
isolates share the same pattern. The antibiotype mentioned 

in Table 2 is the same as the dendrograms that appear later 
(Figs. 4, 5, 6, 7, and 8).

About molecular typing with PFGE, VIM-2-producing 
P. aeruginosa (Fig. 4) revealed six different patterns or 
pulsotypes and four antibiotypes. Six isolates (50%) belong 
to dominant pulsotype C, including four subtypes. These 
strains were isolated in 2013 and 2015, came from four 
different hospitals and had the same antibiotype. The strains 
were isolated from both clinical samples and rectal swabs. 
Despite presenting different antibiotypes, the two isolates 
from the same patient (Pae 62 and Pae 69 isolates) belonged 
to the same pulsotype (pattern A). Figure 4 shows the 
dendrogram and complementary data of the strains studied.

Fig. 1  Number of MBL-positive 
isolates out of the total strains 
studied per year

Fig. 2  Number of MBL-positive 
isolates per year of each bacte-
rial species according to MBL 
genotype
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PFGE analysis for P. putida (Fig. 5) showed 25 different 
pulsotypes in the VIM-producing strains with only six 
antibiotypes, and no large clonal group was observed. 

However, there are isolates from different hospitals belonging 
to the same pulsotype. The IMP-producing strains belonged to 
different clones than VIM-producing isolates but share some of 

Table 2  Antimicrobial resistance characteristics of the MBL-positive strains

Ab A. baumannii, AnA. nosocomialis, AbeA. bereziniae, ApA. pittii, AhA. haemolyticus, *7: Ap n = 3, An n = 2, Ab n = 1, Abe n = 1. AT antibiotype, 
RP resistance profile, CAZ ceftazidime, CPM cefepime, IPM imipenem, MPM meropenem, PIT piperacillin/tazobactam, ATM aztreonam, GEN 
gentamicin, AMI amikacin, CIP ciprofloxacin, COL colistin, SUT trimethoprim/sulphametoxazole, AMS ampicillin/sulbactam, TGC  tigecycline

Species Genotype Nr. of strains Resistance pattern (not-sensitive) Sensitive pattern AT RP

P. aeruginosa VIM
7 CAZ, IPM, MPM, PIT, CPM, ATM, GEN, 

CIP,AMI
COL I XDR

2 CAZ, IPM, MPM, PIT, CPM, GEN, CIP ATM,AMI,COL II MDR
1 CAZ, IPM, MPM, PIT, CPM, ATM, GEN CIP,AMI,COL III MDR
2 CAZ, IPM, MPM, PIT, CPM, GEN ATM,CIP,AMI,COL IV MDR

P. putida VIM 1 CAZ, IPM, MPM, PIT, CPM, ATM, GEN, 
CIP,AMI

COL I XDR

VIM
IMP

13
1

CAZ, IPM, MPM, PIT, CPM, ATM, GEN, 
CIP

CAZ, IPM, MPM, PIT, CPM, ATM, GEN, 
CIP

AMI,COL
AMI,COL

II
II

XDR 
XDR

VIM
IMP

9
1

CAZ, IPM, MPM, PIT, CPM, ATM, CIP
CAZ, IPM, MPM, PIT, CPM, ATM, CIP

GEN,AMI,COL
GEN,AMI,COL

III
III

XDR
XDR

VIM 4 CAZ, IPM, MPM, PIT, CPM, ATM, GEN CIP,AMI,COL IV MDR
VIM 2 CAZ, IPM, MPM, PIT, CPM, GEN, CIP ATM, AMI,COL V MDR
VIM 1 CAZ, IPM, MPM, PIT, CPM, GEN ATM,CIP,AMI,COL VI MDR

Acinetobacter
spp.

NDM 13 Ab CAZ,IPM, MPM, PIT, CPM, GEN, AMI, 
CIP, SUT,AMS

COL,TGC I XDR

2 Ab CAZ,IPM, MPM, PIT, CPM, GEN, CIP, 
SUT, AMS

COL,AMI,TGC II MDR

1 An CAZ,IPM, MPM, PIT, CPM, SUT, AMS COL,GEN,AMI,CIP, TGC III MDR
1 Ab CAZ,IPM, MPM, PIT, CPM, CIP, SUT COL,GEN,AMI,AMS,TGC IV MDR
7 Ap, An, Ab, Abe * CAZ,IPM, MPM, PIT, CPM COL,GEN,AMI,CIP, SUT,TGC V MDR
1 Ah CAZ,IPM, MPM, PIT, CPM, AMI COL,GEN,CIP,SUT, AMS,TGC VI MDR

IMP 1 Ap CAZ,IPM, PIT, CPM, AMS MPM,COL,GEN,AMI,CIP,SUT, 
AMS,TGC 

VII MDR

Fig. 3  Minimal inhibitory 
concentrations of colistin. 
Abbreviations: Ahae: A. haemo-
lyticus, Abe: A. bereziniae, 
Apit: Acinetobacter pittii, 
Anos: A. nosocomialis, Aba: A. 
baumannii, Pae: P. aeruginosa, 
Pput: P. putida 
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the antibiotypes. The strains came from both clinical samples 
and rectal swabs.

The dendrogram for NDM-producing A. baumannii 
isolates (Fig.  6) revealed five different pulsotypes 
(A-E) and three antibiotypes (I, II, and V). Pulsotype 
A including seven subtypes (A1-A7) was found in 13 
strains, 12 of them from the same hospital (L1), and 
all except one with the same antibiotype. The first 
NDM-producing A. baumannii isolate detected in 2014 
recovered from a different hospital (L6) also belonged 
to the pulsotype A. The four remaining strains presented 
different patterns. In this group of strains, 12/17 came 
from rectal swabs.

Molecular typing with PFGE for A. pittii (Fig.  7) 
revealed three different pulsotypes (A–C) for two 
antibiotypes, one of them also present in A. baumannii (V, 
see Fig. 6). The first two NDM-producing A. pittii isolates, 
recovered from the same hospital, belonged to different 
pulsotypes (pulsotype A and C), already investigated in 
a previous publication [24]. Pulsotype A has with two 
closely related strains from the same hospital, isolated in 
different years, and the B and C pulsotypes are observed 
in one strain each. All NDM-positive strains showed the 
same antibiotypes, and they came from the same hospital. 
The IMP positive strain shows its own pulsotypes and 
antibiotype.

A. nosocomialis strains revealed two different 
pulsotypes (Fig. 8) and two antibiotypes, one of them 
(V) also present in A. baumannii and A. pittii. Two strains 
were grouped as A1 and A2 subtypes, while the third 
strain have a different pulsotype. All strains were isolated 
from the rectal swab.

Two strains were not included in the previous dendrograms, 
since they were typified as A. haemolyticus (antibiotype VI 
present in this single strain) and A. bereziniae (antibiotype V 
also present in A. baumannii and A. pittii).

Discussion

There are few studies published about intrahospital 
carbapenemases in Paraguayan non-fermenting gram-
negative rods using molecular methods. One of them is 
from Pasteran et  al. [24] which includes our strains A. 
piitii 1 and A. pitti 2 (see Fig. 7). Pasteran et al. identified 
those two strains as A. pittii by MALDI-TOF and were not 
clonally related by PFGE. These findings are consistent with 
our results. The study published by Rodriguez et al. [25] 
including A. baumannii paraguayan strains among others, 
found only OXA-23 carbapenemase and no MBL. None of 
these strains is part of the present work. In 2021, Melgarejo 
et al. [26] studying fermenting and non-fermenting gram-
negative bacilli in Paraguay, found strains of A. baumannii 
with OXA 51, OXA 23, NDM, and NDM + OXA 58, and 
P. aeruginosa with NDM, but all those strains were isolated 
in 2021. Our work shows the beginning and the first years 
of MBLs dissemination in non-fermenting gram-negative 
bacilli and their behavior over time. Since then, MBL-
producing strains have not ceased to be detected and as 
expected, the isolates increased gradually. It is possible to 
affirm that in Paraguay the MBL began to appear in BGNNF 
to spread years later in fermenting gram-negative bacilli 
also since the first publication in an Enterobacterales is 
from the year 2016 [27].

Fig. 4  Dendrogram of molecular typing of P. aeruginosa isolates. Abbreviations: tr: traqueal, re: rectal swab, ur: urine, ab: abdominal fluid, ca: 
catheter, Lab: origin (hospital laboratory) GT: genotype, PT: pulsotype, AT: antibiotype
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Regarding the MBL-producing species, P. putida, P. 
aeruginosa and A. baumannii, were the most prevalent in 
this investigation, as in another studies [8]. As expected, A. 
baumannii turned out to be the most prevalent of its genus 
(65%), followed by A. pittii and A. nosocomialis. This last 
two species, as well as A. haemolyticus and A. bereziniae, 

less prevalent, have been sporadically described as species 
involved in hospital infections [28, 29]. The most frequent 
association between bacterial species and genotype was 
observed with P. putida and VIM (43%), followed by A. 
baumannii associated with NDM (24%). It is interesting 
to note that NDM was detected in Acinetobacter spp. from 

Fig. 5  Dendrogram of molecular typing of P. putida strains. Abbreviations: ur: urine, sp: sputum, bl: blood, pl: pleural fluid, re: rectal swab, tr: 
traqueal, cf: cerebrospinal fluid, ca: catheter, ab: abdominal fluid, GT: genotype, PT: pulsotype, AT: antibiotype
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2011 to 2014 in “non-baumannii” species (A. pittii, A. 
haemolyticus, A. nosocomialis, A. bereziniae). However, 
appeared in A. baumannii in 2015 with practically absolute 
predominance.

Although IMP, VIM, and NDM genotypes are the 
most frequent MBLs in the world, [7, 30], the frequency 
is variable, characteristic of each country, region, or 
hospital, consequently, studies published, show a variable 

Fig. 6  Dendrogram of molecular typing of A. baumannii isolates. Abbreviations: ur: urine, re: rectal swab, ps: ps: secretion, tr: traqueal, bl: 
blood, GT: genotype, PT: pulsotype, AT: antibiotype

Fig. 7  Dendrogram of molecular typing of A. pittii strains. Abbreviations: bl: blood, re: rectal swab, cf: cerebrospinal fluid, GT: genotype, PT: 
pulsotype, AT: antibiotype. Obs: The strains A. pittii 1 and A. pittii 2 were studied in a previous publication [17]

Fig. 8  Dendrogram of molecular typing of A. nosocomialis isolates. Abreviations: re: rectal swab, GT: genotype, PT: pulsotype, AT: antibiotype
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prevalence [31, 32]. Before the description of NDM, the 
most frequently detected MBLs in the world were IMP 
and VIM type, being VIM the most predominant [5, 30]. 
In our study, the distribution percentage found was 60% 
VIM, 36% NDM, and 4% IMP, but the prevalence varied 
over to the years. In fact, the VIM-producing, the most 
frequently isolated until 2014, was surpassed in 2015 
by NDM associated to A. baumannii evidencing the 
great dissemination capacity of the mechanism in this 
genomespecies. In 2015 by the way, NDM was considered 
to becoming the most commonly and distributed 
carbapenemase worldwide [30].

Regarding the allelic variants described, VIM-1 and 
VIM-2 are the most frequent, reported in Europe [7, 33] 
and Asia [7]. In Latin American countries VIM-2 has 
been mostly detected [7] in Chile and Venezuela [34], 
Argentina [35], Brazil [36], Uruguay [37], and other 
countries, especially in P. aeruginosa followed by P. 
fluorescens. In this study, we demonstrate the circulation 
of VIM-2, associated with P. putida and P. aeruginosa. 
The allelic variant NDM-1, found in the present study, has 
been reported around the world, including Latin American 
countries such as Colombia, where it was detected in A. 
baumannii and A. nosocomialis [38], NDM-1 was also 
confirmed in A. baumannii [39] and in A. pittii [40] in 
Brazil. The IMP has been described with a lower prevalence 
than others. IMP-1 was the first variant described, followed 
later by IMP-2 [41], subsequently more variants were 
described. In this study, the IMP-18 subtype was detected 
in a lower prevalence. This variant has been detected in P. 
aeruginosa in Brazil [42].

In this work, only OXA-51, intrinsic to A. baumannii, 
was detected. None other OXA were found associated with 
MBL. In fact, the coexistence of OXA-type carbapenemase 
with NDM is unusual but has been documented [43].

Multiple clonalities of P. putida has been reported [44]. 
Some studies reported several P. putida clones with the same 
VIM-2 transposon in plasmids, together with a high proportion 
of MBL-producing strains compared to P. aeruginosa, 
suggesting that P. putida is a reservoir of these elements MDR 
transferable [44]. This situation could have been observed in 
this study, where in 2014 P. aeruginosa was not isolated and 
43% of the VIM-2-producing strains were P. putida versus 
17% of P. aeruginosa.

European reports suggest intrahospital transmission 
of VIM associated with P. aeruginosa [45]. Publications 
from Argentina [35], Spain [45], Colombia [46], and 
Brazil [47] show polyclonal propagation as well as spread 
by successful clones. In our study, we observed intra and 
out-off-hospital spread of the predominant clonal group. 
An outbreak would have started in one hospital, lasted 
2 years and spread at two other hospitals.

Clonal diversity as well as dissemination of successful 
clonal groups of A. baumannii has been demonstrated in 
several studies [48, 49]. All this has been verified in the 
present work. NDM-producing A. baumannii presented a 
group of strains with a common clonal origin (13/17 iso-
lates), all epidemiologically related, since 12 were from 
the same hospital (L1) and from the same year (2015). 
This could describe an outbreak in a hospital (L1) that 
would have originated in another hospital (L6), which had 
only one closely related isolate (95% similarity).

With this study, we ascertain the intra and interhospital 
dissemination of MBL-type carbapenemases, through 
polyclonal and successful clones capable of generating 
outbreaks, evidenced with the pulsotype A of A. baumannii, 
pulsotypes C of P. aeruginosa and R of P. putida. We also 
observed evidence of dissemination by mobile genetic 
elements due the presence of the same MBL variant in 
different species like VIM-2 in both P. aeruginosa and 
P. putida, IMP-18 in both P. putida and A. pitti, and 
NDM-1 in different Acinetobacter species. The presence 
of the same genotype variant and the same antibiotype in 
clonally unrelated strains suggests the spread of resistance 
by mobile genetic elements. It will be very interesting 
to compare this work with the subsequent evolution of 
carbapenemases in non-fermenting gram-negative rods in 
Paraguay, and the study of mobile genetic elements in more 
recent times.

Obviously, it is necessary to maintain and strengthen the 
surveillance of MBLs, as well as in-hospital containment 
measures to avoid the dissemination of these resistance mecha-
nisms and others that could be successfully transferred through 
mobile genetic elements sometimes associated with successful 
clones, both within the same hospital, as between hospitals in 
Paraguay. The transfer of patients from one hospital to another 
or the fact that in Paraguay health personnel work at the same 
time in different hospitals, could be part of the problem of the 
spread of colonizing bacteria of intrahospital origin.
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