Table 2.
Model performance to predict amiodarone-induced thyroid dysfunction.
| Models | Major indices | Minor indices | |||||||
|
|
AUPRCa | Recall | F1-score | G-meanb | Accuracy | Precision | AUROCc | ||
| XGBoostd | |||||||||
|
|
Raw | 0.742 | 0.607 | 0.670 | 0.769 | 0.932 | 0.748 | 0.936 | |
|
|
B-SMTe | 0.751 | 0.756 | 0.688 | 0.845 | 0.923 | 0.632 | 0.934 | |
|
|
ENNf | 0.741 | 0.702 | 0.661 | 0.815 | 0.918 | 0.624 | 0.939 | |
|
|
B-SMT ENNg | 0.730 | 0.673 | 0.641 | 0.797 | 0.914 | 0.611 | 0.924 | |
| AdaBoosth | |||||||||
|
|
Raw | 0.643 | 0.516 | 0.593 | 0.708 | 0.919 | 0.696 | 0.923 | |
|
|
B-SMT | 0.654 | 0.858 | 0.589 | 0.861 | 0.864 | 0.448 | 0.921 | |
|
|
ENN | 0.635 | 0.742 | 0.640 | 0.829 | 0.905 | 0.562 | 0.922 | |
|
|
B-SMT ENN | 0.624 | 0.822 | 0.583 | 0.847 | 0.867 | 0.452 | 0.914 | |
| K-nearest neighbor | |||||||||
|
|
Raw | 0.500 | 0.149 | 0.249 | 0.385 | 0.898 | 0.759 | 0.835 | |
|
|
B-SMT | 0.470 | 0.829 | 0.330 | 0.699 | 0.617 | 0.206 | 0.816 | |
|
|
ENN | 0.393 | 0.255 | 0.337 | 0.496 | 0.886 | 0.496 | 0.825 | |
|
|
B-SMT ENN | 0.467 | 0.822 | 0.338 | 0.709 | 0.635 | 0.213 | 0.813 | |
| Logistic regression | |||||||||
|
|
Raw | 0.294 | 0.073 | 0.118 | 0.26 | 0.877 | 0.313 | 0.798 | |
|
|
B-SMT | 0.303 | 0.804 | 0.377 | 0.742 | 0.698 | 0.246 | 0.806 | |
|
|
ENN | 0.300 | 0.229 | 0.260 | 0.462 | 0.852 | 0.300 | 0.811 | |
|
|
B-SMT ENN | 0.305 | 0.778 | 0.389 | 0.746 | 0.722 | 0.259 | 0.803 | |
aAUPRC: area under the precision-recall curve.
bG-mean: geometric mean.
cAUROC: area under the receiver operating characteristic curve.
dXGBoost: extreme gradient boosting.
eB-SMT: borderline synthesized minority oversampling technique.
fENN: edited nearest neighbors.
gB-SMT ENN: hybrid oversampling with borderline synthetic minority oversampling technique and undersampling with edited nearest neighbor.
hAdaBoost: adaptive boosting.