
GigaScience, 2023, 12, 1–10

DOI: 10.1093/gigascience/giad006

Research

Workflow sharing with automated metadata validation
and test execution to improve the reusability of
published workflows

Hirotaka Suetake 1, Tsukasa Fukusato 2, Takeo Igarashi 1 and Tazro Ohta 3,*

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-0033, Japan
2Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-0033, Japan
3Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
∗Correspondence authors. Tazro Ohta, Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information
and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan. E-mail: t.ohta@dbcls.rois.ac.jp

Abstract

Background: Many open-source workflow systems have made bioinformatics data analysis procedures portable. Sharing these work-
flows provides researchers easy access to high-quality analysis methods without the requirement of computational expertise. How-
ever, published workflows are not always guaranteed to be reliably reusable. Therefore, a system is needed to lower the cost of sharing
workflows in a reusable form.

Results: We introduce Yevis, a system to build a workflow registry that automatically validates and tests workflows to be published.
The validation and test are based on the requirements we defined for a workflow being reusable with confidence. Yevis runs on GitHub
and Zenodo and allows workflow hosting without the need of dedicated computing resources. A Yevis registry accepts workflow
registration via a GitHub pull request, followed by an automatic validation and test process for the submitted workflow. As a proof
of concept, we built a registry using Yevis to host workflows from a community to demonstrate how a workflow can be shared while
fulfilling the defined requirements.

Conclusions: Yevis helps in the building of a workflow registry to share reusable workflows without requiring extensive human
resources. By following Yevis’s workflow-sharing procedure, one can operate a registry while satisfying the reusable workflow criteria.
This system is particularly useful to individuals or communities that want to share workflows but lacks the specific technical expertise
to build and maintain a workflow registry from scratch.

Keywords: workflow, workflow language, continuous integration, open science, reproducibility, reusability

Background
Due to the low cost and high throughput of measurement instru-
ments that acquire digital data from biological samples, the vol-
ume of readily available data has become enormous [1]. To obtain
scientific knowledge from large datasets, a number of computa-
tional data analysis processes are required, for example, in DNA
sequencing, sequence read trimming, alignment with reference
genomes, and annotation using public databases [2]. Researchers
have developed analysis tools for each process and often publish
them as open-source software [3]. To avoid the need to execute
these tools manually, researchers usually write a script to com-
bine them into what is called a workflow [4].

To build and maintain a complex workflow that combines
many tools efficiently [5], many workflow systems have been de-
veloped [6,7]. Some of these systems have large user communities,
such as Galaxy [8], the Common Workflow Language (CWL) [9],
the Workflow Description Language (WDL) [10], Nextflow [11], and
Snakemake [12]. Although each system has its unique character-
istics, they have a common aim: to make computational methods
portable, maintainable, reproducible, and shareable [4]. Most sys-
tems have a syntax for describing a workflow that is part of what
is called a workflow language. They also have an execution system

that works with computational frameworks, such as a job sched-
uler and container virtualization [13].

With the popularization of workflow systems, many research
communities have worked on workflow sharing in the form
of a workflow language. Workflow registries, such as Work-
flowHub [14], Dockstore [15], and nf-core [16], have been devel-
oped as public repositories for the sharing of workflows. Work-
flow execution systems also utilize these registries as their tool li-
braries. To improve the interoperability of workflow registries, the
Global Alliance for Genomics Health (GA4GH) proposed the Tool
Registry Service (TRS) specification that provides a standard pro-
tocol for sharing workflows [17,18].

Sharing workflows not only increases the transparency of re-
search but also helps researchers by facilitating the reuse of pro-
grams, thereby making data analysis procedures more efficient.
However, workflows that are accessible on the Internet are not al-
ways straightforward for others to use. If a published workflow is
not appropriately licensed, researchers cannot use it because the
permission for secondary use is unclear. A workflow may also not
be executable because its format is incorrect, or dependent files
cannot be found. Even if a workflow can be executed, the correct-
ness of its operation often cannot be verified because no tests have

Received: July 12, 2022. Revised: October 21, 2022. Accepted: January 30, 2023
C© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0003-2765-0049
http://orcid.org/0000-0002-5090-1443
http://orcid.org/0000-0002-5495-6441
http://orcid.org/0000-0003-3777-5945
mailto:t.ohta@dbcls.rois.ac.jp
http://creativecommons.org/licenses/by/4.0/


2 | GigaScience, 2023, Vol. 12, No. 1

been provided. Furthermore, the contact details of the person re-
sponsible for the published workflow are not always attached to
it.

It is noteworthy that these issues in reusing public workflows
are not often obvious to workflow developers. To clarify the re-
quirements for workflow sharing, Goble et al. [19] have proposed
the concept of a FAIR (findable, accessible, interoperable, and
reusable) workflow. This inheritance of the FAIR principles [20] fo-
cuses on the structure, forms, versioning, executability, and reuse
of workflows. However, the question remains as to who should
guarantee to users that published workflows can be reused fol-
lowing the FAIR workflow guidelines.

WorkflowHub asks submitters to take responsibility for work-
flows: when a workflow is registered on WorkflowHub, the license
and author identity should be clearly stated, encouraging them
to publish FAIR workflows. However, there is no obligation as to
the correctness of the workflow syntax, its executability, or test-
ing. Not placing too many responsibilities on workflow submit-
ters keeps obstacles to submission low, which will likely increase
the diversity of public workflows on WorkflowHub; however, it will
also likely increase the number of one-off submissions, which one
can assume are at higher risk for the workflow problems previ-
ously described.

Unlike WorkflowHub, in nf-core, the community that operates
the registry holds more accountability for published workflows.
Workflow submitters are required to join the nf-core commu-
nity, develop workflows according to their guidelines, and pre-
pare them for testing. These requirements enable nf-core to col-
lect workflows with remarkable reliability. However, the commu-
nity’s effort tends to focus on maintaining more generic workflows
that have a large number of potential users. Consequently, nf-core
states that it does not accept submissions of bespoke workflows.
This is an understandable policy, as maintaining a workflow re-
quires domain knowledge of its content, and this is difficult to
maintain in the absence of the person who developed the work-
flow.

In order to improve research efficiency through workflow shar-
ing, research communities need the publication of diverse work-
flows in a reusable form. However, as shown by existing workflow
registries, there is a trade-off between publishing a wide variety of
workflows and maintaining the reusability of the workflows that
are published. Solving this issue requires reducing the cost to de-
velopers in making and keeping their workflows reusable, which
currently relies on manual effort. This is achievable by redefining
the FAIR workflow concept as a set of technical requirements and
providing a system that automates their validation and testing.

We introduce Yevis, a system to share workflows with auto-
mated metadata validation and test execution. The system ex-
pects developers and researchers who design workflows using
workflow languages as users, although it does not require ad-
vanced computer skills to operate the system. Through the de-
velopment of Yevis, we specified a set of technical requirements
that define a reusable workflow, according to the FAIR workflow
concept. Yevis helps researchers and communities share work-
flows that satisfy the requirements by supporting a build of an
independent workflow registry. To allow workflow hosting with-
out the need of additional dedicated computing resources, Yevis
works on 2 public web services: GitHub, a source code-sharing
and software development service, and Zenodo, a public research
data repository. In addition, a Yevis registry provides a web-based
workflow browser, and the GA4GH TRS-compatible API ensures
interoperability with other existing workflow registries. Yevis is
particularly powerful when individuals or communities want to

share workflows but are without the technical expertise to build
and maintain a web application. To demonstrate that workflows
can be shared that fulfill the defined requirements using Yevis,
we built a registry for workflows that an existing community has
managed.

Implementations
System design
Fig. 1 shows the overall architecture of the workflow registry built
by Yevis. The repository administrator uses our GitHub repository
template and follows the guide to set up a Yevis-based registry
creating new repositories on GitHub and Zenodo. After creating
the metadata and passing the workflow test on a local computer,
workflow developers submit the metadata as a pull request to the
GitHub repository. Once the repository receives the pull request,
it automatically tests the workflow again on GitHub Actions,
GitHub’s continuous integration/continuous delivery (CI/CD) en-
vironment. The system has the option to use an external WES in-
stance for testing before accepting the submission. The registry
administrator will check the test result and approve, that is, merge
the pull request. Once the submission is approved, the repository
runs another GitHub Actions automatically to upload the content
to the Zenodo repository and the GitHub pages.

To implement the system, we first defined a set of require-
ments that the Yevis system can automatically verify or test (Ta-
ble 1). By satisfying these requirements inspired by FAIR work-
flow, we consider a workflow is “reusable with confidence.” These
criteria have 3 aspects: workflow availability, accessibility, and
traceability. The TRS defines the specification of computational
tool/workflow metadata representation, including workflow’s URI,
used language, version, and so on. It ensures the interoperabili-
ties among different tool/workflow registries and enables work-
flow engines to retrieve the information to execute a workflow
maintained at a remote server, which improves the reusability
of published workflows. To help researchers share reusable work-
flows, we took an approach to aid them in building their own work-
flow registry that automatically ensures its reusability. We define
a workflow registry as a service that serves workflow information
via the GA4GH TRS protocol.

The information provided by the TRS API is various workflow
metadata, such as author information, documentation, language
type and version, dependent materials, and testing materials.
Large files, such as dependent materials and testing materials, are
not directly included in the TRS API response but are described as
remote locations, such as HTTP protocol URLs. Therefore, the en-
tities that a workflow registry collects are a set of workflow meta-
data described in the form of the TRS API response. In this study,
therefore, we designed the system as an API server that delivers
the TRS API response.

In the Yevis registry, a workflow-sharing procedure is divided
into 3 processes: submission, review, and publication (Fig. 2). To
address the requirements listed in Table 1, the Yevis system auto-
matically performs processes, such as metadata validation, work-
flow testing, test provenance generation, persisting associated
files, DOI assignment, and TRS response deployment. To generate
the TRS API response and publish it while addressing the require-
ments listed in Table 1, we implemented a command-line appli-
cation called Yevis-cli. This application contains various utilities
to support the workflow registration procedure, including valida-
tion and testing. As a service and infrastructure to perform these
steps, we designed Yevis to use the services of GitHub and Zen-



Workflow sharing with automated metadata validation and test execution | 3

Figure 1: The overall architecture of the Yevis system. The registry administrator needs to set up a GitHub repository from our repository template
and a Zenodo repository for file persistence. Workflow developers test their workflows on a local computer using our Yevis-cli and then submit a pull
request to the GitHub repository. The GitHub repository has 2 GitHub Actions, testing on GitHub Actions or an external WES instance and publishing
workflow contents and metadata to the Zenodo repository and GitHub pages.

Table 1: The requirements for a workflow to be considered reusable with confidence. We classify these requirements from the perspec-
tives of the availability, validity, and traceability of the workflows. We propose that these requirements should be ensured and provided
to users by the workflow registries

Perspective Requirement Description

Availability Main workflow description The main workflow description file is available and accessible without
restriction.

Dependent materials The dependencies of the main workflow are available, e.g., definitions of
dependent workflows and tools.

Testing materials The job configuration files for testing are available, e.g., parameter and input
files.

Open-source license The workflow and the related materials are published under an appropriate
open-source license.

Validity Language type The language used to describe the workflow is specified, e.g., CWL, WDL, or
Nextflow.

Language version The version of the workflow language used is specified.
Language syntax The language syntax of the workflow is valid.

Traceability Authors and maintainers The contact information of the authors and the maintainers is identified.
Documentation The documentation of the workflow is available.
Workflow ID The unique identifier to specify the workflow is assigned, ideally by a URI.
Workflow metadata version The version number of the workflow metadata is specified.

odo. Using these web services makes it possible for communities
to build a workflow registry without the need of maintaining their
own computer servers.

Workflow registration with automated validation
and testing
To set up a Yevis registry, registry maintainers need to do an ini-
tial configuration of GitHub and Zenodo; this involves, for exam-
ple, creating a GitHub repository, changing repository settings, and
setting up security credentials. The online documentation “Yevis:
Getting Started” shows the step-by-step procedures to deploy a
workflow registry and test it [21].

We defined the Yevis metadata file, a JSON or YAML format file
that contains structured workflow metadata (Fig. 3). Yevis-cli uses

this file as its input and output in the submission process. The
Yevis metadata file will be published on the registry along with
the TRS response to provide metadata that is not included in the
TRS protocol, such as an open-source license.

Submission process
Fig. 4 shows the submission process using Yevis-cli. During this
submission process, the workflow submitter describes the work-
flow metadata in their local environment and submits it through
a GitHub pull request (i.e., a review request to the registry main-
tainer). First, Yevis-cli generates a template for the Yevis metadata
file, which requires the URL of the main workflow description file
as an argument. In many workflow systems, the main workflow
description file is the entry point for workflow execution. Yevis-cli



4 | GigaScience, 2023, Vol. 12, No. 1

Figure 2: The flowchart of the workflow registration to a Yevis repository. The workflow registration procedure is divided into 3 processes: the
submission, review, and publication process. Each process is performed in different locations: in the submitter’s local environment, as part of the
GitHub pull request, or as the GitHub Actions. The generated TRS API response is deployed to GitHub Pages. The steps indicated by yellow boxes, such
as validating metadata, are performed automatically using Yevis-cli.

Figure 3: Example of the Yevis metadata file. The main workflow description, dependent materials, and so on are described as remote locations; the
file contains all the information that the Yevis-cli requires to automate the whole process. This is the actual metadata file for the workflow described
in the section “Sharing workflows using Yevis.” This file is automatically updated through the processes within Yevis; for example, the file URL field is
replaced by the Zenodo record URL that persists in the associated workflow files.

generates a template supplemented with workflow metadata au-
tomatically collected by using the GitHub REST API and inspect-
ing the workflow’s contents. Next, the submitter needs to edit the
Yevis metadata file template and add workflow tests. As a work-
flow testing, Yevis runs a workflow with specified input data files
and checks the final execution status. If the run is completed suc-
cessfully, Yevis considers the workflow passed the test. Yevis-cli
runs the test using a GA4GH Workflow Execution Service (WES)

instance, a type of web service also described as workflow as a
service [18, 22]; therefore, the testing materials must be written
along with the specification of the WES run request. Yevis-cli per-
forms these tests to check if the workflow execution completes
successfully. After preparing the Yevis metadata file, Yevis-cli val-
idates the workflow metadata syntax and runs tests using WES
in the submitter’s local environment. If no WES endpoint is spec-
ified, the tests are run using Sapporo [23], a production-ready im-



Workflow sharing with automated metadata validation and test execution | 5

Figure 4: The timeline of the workflow submission process using Yevis-cli. The submitter executes 4 subcommands of Yevis-cli: “make-template,”
“validate,” “test,” and “pull-request” in its local environment. The submitter needs to edit a template of the Yevis metadata file using any text editor. The
workflow and its metadata need to pass validation and testing before their submission, which helps to reduce the burden on the registry maintainer.

plementation of WES, and Docker [24], a container virtualization
environment. Using these portable WES environments also en-
sures the portability of testing in Yevis. Finally, Yevis-cli submits
the workflow as a GitHub pull request, once it confirms the re-
quired actions: the metadata validation and the test passing. This
restriction reduces the burden on the registry maintainer because
many of the requirements listed in Table 1 can be ensured during
the submission process rather than the review process.

Review process
Fig. 5 shows the workflow review process using Yevis-cli. During
the review process, registry maintainers examine each workflow
submitted as a Yevis metadata file on the GitHub pull request UI.
Because the submission method is restricted to Yevis-cli, the sub-
mitted workflow is guaranteed to pass validation and testing. To
ensure the reproducibility of test results on a local computer, Yevis
automatically validates and tests it on GitHub Actions [25]. Af-
ter automated validation and testing, the maintainers review the
test results and log files to consider whether to approve the pull
request. Rather than using a chat tool or a mailing list, the re-
view process through the GitHub pull request improves the trans-
parency and traceability of workflow publication.

Publication process
Fig. 6 shows the workflow submission process using Yevis-cli. Dur-
ing the publication process, the system automatically persists all
files associated with the workflow. It generates the TRS response
from the Yevis metadata file. The approval of the pull request au-
tomatically triggers the publication process on GitHub Actions. In
the GitHub Actions script, Yevis-cli uses the Zenodo API to create
a new Zenodo upload and persists all files related to the work-
flow [26]. It obtains the DOI and persistent URLs of workflows
from Zenodo and appends them to the Yevis metadata file. Fol-

lowing the Zenodo upload, the Yevis-cli in the GitHub Actions
generates a TRS response JSON file and is deployed to GitHub
Pages, GitHub’s static webpage hosting service. Accordingly, the
Yevis metadata file is merged to the default branch of the GitHub
repository and deployed to GitHub Pages. With these 2 files, the
TRS response JSON file and the Yevis metadata file, a Yevis registry
covers the information that fulfills the requirements of a reusable
workflow.

Workflow browsing interface
To make it easier for registry maintainers and users to browse
workflows, we implemented Yevis-web, a workflow browsing in-
terface (Fig. 7). As the interface is a browser-based application
implemented in JavaScript, registry maintainers can deploy the
browser on GitHub Pages. Yevis-web accesses the TRS API served
via GitHub Pages and the GitHub REST API to retrieve workflow
information. To help organize the submissions to the registry, the
browser shows workflows of both statuses, those already pub-
lished and those still under the review process.

Results
Feature comparison with existing registries
To clarify the advantages of a workflow registry built by Yevis,
we compared the characteristics of a Yevis-based registry with
WorkflowHub [14], Dockstore [15], and nf-core [16]. As comparison
views, we focused on 3 aspects: diversity, reliability, and usability
of workflows available in a registry.

In the diversity of registered workflow, as “Acceptable work-
flows” in Table 2, WorkflowHub and Dockstore have an advan-
tage because they have no restrictions on workflows in terms
of their purposes or languages. As mentioned in the Introduc-
tion section, nf-core has the policy to collect only best-practice



6 | GigaScience, 2023, Vol. 12, No. 1

Figure 5: The timeline of the workflow review process using Yevis-cli. The workflow and its metadata are again validated and tested automatically on
GitHub Actions. The test results and logs can then be reviewed by the registry maintainers with the GitHub pull request UI.

Figure 6: The timeline of the workflow publication process using Yevis-cli. All steps are performed automatically on GitHub Actions. All files related to
the workflow are persisted by uploading them to Zenodo. The DOI is generated by Zenodo, and the Yevis metadata file is updated to append the DOI
information and the persisted file URL. The GitHub Actions generates a TRS response from the Yevis metadata; it then deploys both of them to GitHub
Pages.

workflows written in Nextflow. In contrast, a Yevis-based registry
can accept any workflows written in any language as long as the
registry administrator approves the submission. The only limita-
tion in a Yevis-based registry is the testing environment because
the submission to the registry requires a suitable testing envi-
ronment for the given workflow. By default, Yevis uses Sapporo
WES for its test execution, a WES implementation with multi-
engine support that enables developers to extend its execution
capability.

With the reliability of available workflows, we prioritize the fea-
tures such as general quality control of submissions and testing
preparation. As shown in Table 2, in WorkflowHub and Dockstore,
each developer is responsible for quality control and testing for
the submission. As a result, they may have workflows that are
not reusable, such as those lack dependencies, documentation, or
the appropriate open-source license. The platforms do not have a
strict testing policy, although it helps lower the barrier to submis-

sion. On the other hand, nf-core does quality control and testing
of its workflows by its community to provide reliable workflows. In
a Yevis-based registry, the registry itself provides automated func-
tions to manage the quality of workflows based on the proposed
requirements and test workflows in the submitter’s environment
and the remote CI/CD environment.

For usability, we focused on 2 standardized forms to identify the
workflow: DOI and TRS 2. A Yevis-based registry is only 1 of the 4
that provides DOI for each registered workflow. Assigning DOI for
workflow files prevents the problem of altering resource URLs. For
TRS compatibility, currently, nf-core is the only one not provid-
ing TRS responses. It may be because of the design of Nextflow
language, which boosts developers’ productivity on a specific di-
rectory structure rather than using distributed relevant workflow
files. However, 3 of 4 have TRS compatibility, which helps data sci-
entists write a tool to reuse the available workflows with the uni-
fied API response.



Workflow sharing with automated metadata validation and test execution | 7

Figure 7: Screenshot of Yevis-web. Yevis-web is a browser-based application used via a web browser, which is deployed by workflow registry
maintainers and communicates with the TRS API and GitHub REST API to retrieve workflow information. The browser shows both published and
under-review workflows to help maintainers in organizing the registry. Upon selecting a workflow of interest, Yevis-web displays more detailed
information, such as test results and the contents of the files related to the workflow.

Table 2: Feature comparison with existing registries and Yevis-based registry. We focused on 5 characteristics of registries: accept-
able workflows on each registry, workflow quality control responsibility, workflow testing responsibility, DOI assignment, and TRS
compatibility.

Registry URL Acceptable workflows Quality control by Testing by DOI TRS

WorkflowHub workflowhub.eu No restrictions Each developer Each developer No Yes
Dockstore dockstore.org No restrictions Each developer Each developer No Yes
nf-core nf-co.re Generic workflows only nf-core community nf-core community No No
Built by Yevis (a GitHub repo.) Depend on

administrator
Automated by Yevis Forced by Yevis Yes Yes

Sharing workflows using Yevis
To demonstrate that a research community can publish the work-
flows using Yevis while addressing the requirements listed in Ta-
ble 1, we built a workflow registry that publishes “DAT2-cwl” work-
flows with the Yevis system [27] (https://github.com/pitagora-ne
twork/yevis-DAT2-cwl). These workflows written in CWL are the
appendix of the book Next Generation Sequencer DRY Analysis Man-
ual, 2nd edition [28], and are maintained by the book’s authors and
communities. These workflows have been maintained by a com-
munity of bioinformatics experts; however, they fulfill only a part
of the requirements that we defined. For example, the workflows
have test data but would require continuous testing. They also
lack workflow metadata in a standard format.

Among the DAT2-cwl workflows, we selected a bacterial
genome analysis workflow in building a new registry with
Yevis [29]. This workflow combines the following command-line
tools: SeqKit [30], FastQC [31], fastp [32], and Platanus-b [33]. Each
tool used in the workflow is packaged in a Docker container. First,
we described a Yevis metadata file (Fig. 3) for this workflow using
Yevis-cli and appended a test of the workflow in the form of a WES
run request. We then performed the workflow registration proce-
dure described in the section “Workflow registration with auto-
mated validation and testing” using Yevis-cli that enables the au-
tomation of many of the steps in the validation, testing, reviewing,
and publishing.

Through the publication procedure of the bacteria genome
analysis workflow, we evaluated how the Yevis system addressed
the requirements listed in Table 1. Requirements classified as
“Availability” were addressed by being uploaded to Zenodo under
an appropriate open-source license [34]. The Yevis metadata file

(Fig. 3) [35] and TRS API response (Fig. 8) were updated through
Yevis’s publication process to use URLs persisted by Zenodo. Re-
quirements classified as “Validity” were addressed by running
tests on GitHub Actions. The contents in the Yevis metadata file
and the TRS response satisfy the validity requirements, such as
workflow type, workflow language version, and the URL of the test
results. Requirements classified as “Traceability” were addressed
by describing, reviewing, and publishing them in the Yevis meta-
data file and TRS API response. From the above, we confirmed that
Yevis successfully published the bacteria genome analysis work-
flow while addressing the defined requirements.

Discussion
Through our survey of existing workflow registries, such as Dock-
store, WorkflowHub, and nf-core, it was revealed that they are
maintained based on numerous contributions by various commu-
nities and the use of sufficient computer resources. While these
established workflow registries accept submissions and are avail-
able for use by researchers, there are still cases in which there is a
need to create a new workflow publication platform. For example,
in the case of the Bioinformation and DDBJ center, the institute
(hereafter referred to simply as DDBJ) needed to have a collec-
tion of workflows that would be allowed to run on the WES on
their computing platform. Therefore, we designed Yevis as a tool
to help workflow developers create a registry to share their work-
flows. DDBJ used Yevis to create and then to maintain a workflow
registry dedicated to workflows for use on the DDBJ WES [36].

Yevis can promote the concept of a distributed workflow reg-
istry model that underlies the specifications of the GA4GH Cloud

https://github.com/pitagora-network/yevis-DAT2-cwl


8 | GigaScience, 2023, Vol. 12, No. 1

Figure 8: TRS API response of the DAT2-cwl/bacteria-genome workflow. This JSON response is deployed on GitHub Pages by Yevis and is accessible via
the HTTP protocol. The main workflow metadata in the TRS protocol are served at the path “/tools/{id}/versions/{version_id}.” Two other possible paths
for the associated files and the tests are “/tools/{id}/versions/{version_id}/files” and “/tools/{id}/versions/{version_id}/tests.”

Work Stream [18]. In the distributed workflow registry model, re-
searchers have the option to build their own workflow registry,
rather than submitting to a centralized registry. The API standard
for a workflow registry specified by GA4GH enables a decentral-
ized model, which promotes diversity in workflow development
and in the research of analysis methods. Resource sharing, partic-
ularly of analysis methods, has a bigger impact on a community
studying a minor target with limited human resources.

The Yevis system strongly relies on web services, such as
GitHub and Zenodo. This is because we aimed to provide support
to individuals or communities without sufficient computing re-
sources, but this may result in a lock-in to these web services. To
demonstrate the proposed methods are achievable without using
any third-party web services, we prepared the script and proce-
dures for an on-premise Yevis registry (https://data.dbcls.jp/∼inu
tano/yevis/yevis_on_premise.zip). Although the on-premise ver-
sion lacks some useful features, such as the review interface or
external resource validation, the alternate implementation shows
the robustness of our idea to build a workflow registry even with-
out dependencies.

While we provide the GitHub-based version as a primary solu-
tion, there are also limitations caused by the restriction of the web
service. Automatic testing with GitHub Actions may cause the is-
sue of computational resource shortage. To extend the capability
of testing, Yevis has the option to specify the location of an exter-
nal WES endpoint to run the test, which also enables the testing
with a specific computational request such as GPUs or job sched-
ulers. The registry maintainer can check the testing log as an ar-
tifact file on GitHub action. However, the file will expire 90 days
after execution. To keep the provenance of the test log, we aim to
improve the system to have a function to record the test proce-
dure in a standard format, such as RO-crate.

Compared to existing workflow registries that have a web
form for workflow registration, the Yevis system provides only a
command-line interface, Yevis-cli, as a method to submit a work-
flow. This is because we prefer to test workflows locally in advance
of submission, while the existing registries test as part of a review
process. By using the same test suite on both the submitter’s en-
vironment (local) and as part of the registry’s automatic process
(remote), Yevis-cli ensures better reliability of the test results. This

also helps to reduce the cost to a registry maintainer by ensuring
a workflow is at least runnable on the submitter’s local environ-
ment.

The Yevis system provides a well-needed solution for research
communities that aim to share their workflows and wish to es-
tablish their own registry as described. However, we recognize it
still has some limitations. One of the challenges is how workflow
developers write the workflow testing. Currently, Yevis tests the
workflows by running them with the specified input files and eval-
uates the execution status. However, the execution status only
shows the successful completion of the computing process, which
does not ensure the workflow produced the outputs as expected.
Therefore, the test can pass even if the input files are not the ones
that reflect the real use cases. The evaluation of the outputs is
not as simple as checking the output file identities, because some
workflows can produce outputs with subtle differences, which do
not change the biological interpretation. For example, the correct
outputs of the same workflow may not be identical because of the
tools using heuristic algorithms or regularly updated databases.
We are challenging this problem in a separate project and aim
to incorporate the results into our system in the future [37]. An-
other challenge for the proposed distributed registry model is the
findability of workflows. In the model where each developer is re-
sponsible for their content, the use of appropriate terms for de-
scribing workflow metadata can be an issue. A possible solution
to improve the findability of workflows in distributed registries is
to collect metadata in a centralized registry to curate them and
create the search index. However, this will require a further chal-
lenge to distinguish the collected workflows using only metadata.

Many researchers agree that resource sharing is a key factor
in the era of data science. As workflow systems and their com-
munities grow, researchers have worked to share their data anal-
ysis procedures along with their data. Despite the fact that work-
flow systems are developed for automation, it sounds strange
that maintaining workflow registries still relies on manual efforts.
Through the development of Yevis, we found there are many pos-
sibilities for further automation in the process of resource sharing.
Through the defined requirements for reusable workflows and a
system that ensures them automatically, we believe that our work
can contribute to moving open science forward.

https://data.dbcls.jp/~inutano/yevis/yevis_on_premise.zip


Workflow sharing with automated metadata validation and test execution | 9

Availability of Source Code and
Requirements
Project name: Yevis-cli
Project homepage: https://github.com/ddbj/yevis-cli
DOI: 10.5281/zenodo.6541109
biotoolsID: yevis-cli
RRID: SCR_023204
Operating system(s): Platform independent
Programming language: Rust
Other requirements: Docker recommended
License: Apache License, Version 2.0

Project name: Yevis-web
Project homepage: https://github.com/ddbj/yevis-web
DOI: 10.5281/zenodo.6541031
biotoolsID: yevis-web
RRID: SCR_023205
Operating system(s): Platform independent
Programming language: TypeScript
License: Apache License, Version 2.0

Data Availability
Data and materials related to the DAT2-cwl workflows described
in the section “Sharing workflows using Yevis” are available on
GitHub and Zenodo as follows:
GitHub repository for DAT2-cwl workflows [27]
Workflow registry yevis-DAT2-cwl [38]
Workflow browser for yevis-DAT2-cwl [39]

Abbreviations
API: Application Programming Interface; CI/CD: continuous inte-
gration/continuous delivery; CWL: Common Workflow Language;
DDBJ: Bioinformation and DDBJ Center; FAIR: Findable, Accessi-
ble, Interoperable, and Reusable; GA4GH: Global Alliance for Ge-
nomics and Health; HTTP: Hypertext Transfer Protocol; ID: Iden-
tifier; REST: Representational State Transfer; TRS: Tool Registry
Service; UI: User Interface; URI: Uniform Resource Identifier; URL:
Uniform Resource Locator; WDL: Workflow Description Language;
WES: Workflow Execution Service.

Competing Interests
The authors declare that they have no competing interests.

Funding
This study was supported by JSPS KAKENHI (grant 20J22439), the
Life Science Database Integration Project, and the National Bio-
science Database Center of the Japan Science and Technology
Agency. This study was also supported by the CREST program of
the Japan Science and Technology Agency (grant JPMJCR17A1).

Authors’ Contributions
H.S. and T.O. conceived and developed the methodology and soft-
ware and conducted the investigation. H.S., T.F., and T.O. wrote the
manuscript. T.F., T.I., and T.O. supervised the project. All authors
read and approved the final version of the manuscript.

Acknowledgments
We thank the following scientific communities and their col-
laborative events where several of the authors engaged in irre-

placeable discussions and development throughout the project:
the Pitagora Meetup, Workflow Meetup Japan, NBDC/DBCLS Bio-
Hackathon Series, and Elixir’s BioHackathon Europe Series. We
also thank Ascade Inc. for their support with the software devel-
opment.

References
1. Goodwin, S, McPherson, JD, McCombie, RW. Coming of age: ten

years of next-generation sequencing technologies. Nat Rev Genet
2016;17(6):333–51.

2. Stein, LD. The case for cloud computing in genome informatics.
Genome Biol 2010;11(5):207.

3. Prins, P, de Ligt, J, Tarasov, A, et al. Toward effective software so-
lutions for big biology. Nat Biotechnol 2015;33(7):686–7.

4. Perkel, JM. Workflow systems turn raw data into scientific
knowledge. Nature 2019;573(7772):149–50.

5. Leprevost, FdV, Barbosa, VC, Francisco, EL, et al. On best prac-
tices in the development of bioinformatics software. Front Genet
2014;5:199.

6. Amstutz, P, Mikheev, M, Crusoe, MR, et al. Existing workflow
systems. 2021. https://s.apache.org/existing-workflow-systems,
(last accessed date 23 January 2023) .

7. Wratten, L, Wilm, A, Göke, J. Reproducible, scalable, and share-
able analysis pipelines with bioinformatics workflow managers.
Nat Methods 2021;18(10):1161–8.

8. Afgan, E, Baker, D, Batut, B, et al. The Galaxy platform for acces-
sible, reproducible and collaborative biomedical analyses: 2018
update. Nucleic Acids Res 2018;46:W537–44.

9. Crusoe, MR, Abeln, S, Iosup, A, et al. Methods included: stan-
dardizing computational reuse and portability with the com-
mon workflow language. Commun ACM 2022;65(6):54–63.

10. Voss, K, Gentry, J, Auwera, GVD. Full-stack genomics pipelining
with GATK4 + WDL + Cromwell. F1000Research 2017; 6:1381.

11. Di Tommaso, P, Chatzou, M, Floden, EW, et al. Nextflow en-
ables reproducible computational workflows. Nature Biotechnol
2017;35(4):316–9.

12. Koster, J, Rahmann, S. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 2012;28(19):2520–2.

13. Leprevost, FdV, Grüning, BA, Alves Aflitos, S, et al. BioContainers:
an open-source and community-driven framework for software
standardization. Bioinformatics 2017;33(16):2580–2.

14. Goble, C, Soiland-Reyes, S, Bacall, F, et al. Implementing FAIR
Digital Objects in the EOSC-Life Workflow Collaboratory. Zenodo.
2021; doi.org/10.5281/zenodo.4605653.

15. O’Connor, BD, Yuen, D, Chung, V, et al. The Dockstore: En-
abling modular, community-focused sharing of Docker-based
genomics tools and workflows. F1000Research 2017;6:52.

16. Ewels, PA, Peltzer, A, Fillinger, S, et al. The nf-core framework for
community-curated bioinformatics pipelines. Nature Biotechnol
2020;38(3):276–8.

17. Global Alliance for Genomics and Health. ga4gh/tool-registry-
service-schemas. GitHub. 2016. https://github.com/ga4gh/tool-
registry-service-schemas.

18. Rehm, HL, Page, AJH, Smith, L, et al. GA4GH: International poli-
cies and standards for data sharing across genomic research and
healthcare. Cell Genomics 2021;1(2):100029.

19. Goble, C, Cohen-Boulakia, S, Soiland-Reyes, S, et al. FAIR compu-
tational workflows. Data Intelligence 2020;2(1–2):108–21.

20. Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, et al. The FAIR
Guiding Principles for scientific data management and steward-
ship. Sci Data 2016;3(1):160018.

https://github.com/ddbj/yevis-cli
https://github.com/ddbj/yevis-web
https://s.apache.org/existing-workflow-systems
https://github.com/ga4gh/tool-registry-service-schemas


10 | GigaScience, 2023, Vol. 12, No. 1

21. Suetake, H, Ohta, T. Yevis: getting started. GitHub. 2022. https:
//sapporo-wes.github.io/yevis-cli/getting_started.

22. Global Alliance for Genomics and Health. ga4gh/workflow-
execution-service-schemas. GitHub. 2017. https://github.com/g
a4gh/workflow-execution-service-schemas.

23. Suetake, H, Tanjo, T, Ishii, M, et al. Sapporo: A workflow execu-
tion service that encourages the reuse of workflows in various
languages in bioinformatics. F1000Research 2022;11:889.

24. Merkel, D. Docker: Lightweight Linux containers for con-
sistent development and deployment. Linux J 2014;2014:2,
doi:10.5555/2600239.2600241.

25. Suetake, H, Ohta, T. ddbj/yevis-cli: 0.5.1—actions_example/
yevis-test-pr.yml. GitHub. 2022. https://github.com/ddbj/yevis-
cli/blob/0.5.1/actions_example/yevis-test-pr.yml.

26. Suetake, H, Ohta, T. ddbj/yevis-cli: 0.5.1—actions_example/
yevis-publish-pr.yml. GitHub. 2022. https://github.com/ddbj/ye
vis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml.

27. Pitagora Network Members. pitagora-network/DAT2-cwl: 1.1.1.
Zenodo. 2022. https://doi.org/10.5281/zenodo.6565977.

28. Hidemasa, B, Shimizu, A. Next generation sequencer DRY analysis
manual. 2nd ed. Shinagawa, Tokyo, Japan: Gakken Medical Shu-
junsha. 2019.

29. Pitagora Network Members. GitHub-pitagora-network/DAT2-
cwl: 1.1.1—workflow/bacteria-genome. Zenodo. 2022.
https://github.com/pitagora-network/DAT2-cwl/tree/1.1.1/
workflow/bacteria-genome.

30. Shen, W, Le, S, Li, Y, et al. SeqKit: a cross-platform and
ultrafast toolkit for FASTA/Q file manipulation. PLoS One
2016;11(10):e0163962.

31. Andrews, S. FastQC: a quality control tool for high throughput
sequence data. Babraham Institute; 2010. https://www.bioinfor
matics.babraham.ac.uk/projects/fastqc/, (last accessed date 15
february 2023).

32. Chen, S, Zhou, Y, Chen, Y, et al. fastp: An ultra-fast all-
in-one FASTQ preprocessor. Bioinformatics 2018;34(17):
i884–90.

33. Kajitani, R, Toshimoto, K, Noguchi, H, et al. Efficient de
novo assembly of highly heterozygous genomes from
whole-genome shotgun short reads. Genome Res 2014;24(8):
1384–95.

34. Suetake, H. DAT2-cwl/bacteria-genome workflow files uploaded
to Zenodo by Yevis. Zenodo. 2022. https://doi.org/10.5281/zeno
do.6545122.

35. Suetake, H. Yevis metadata file for the DAT2-cwl/bacteria-
genome workflow. Zenodo. 2022. https://github.com/pitagora-ne
twork/yevis-DAT2-cwl/blob/1.0.0/d03458d8-837c-4173-afa3-55
ebe538b0b2/yevis-metadata-1.0.0.yml.

36. Suetake, H, Ohta, T. ddbj/workflow-registry: 1.0.2. Zenodo. 2022.
https://doi.org/10.5281/zenodo.6719845.

37. Suetake, H, Fukusato, T, Igarashi, T, et al. A workflow repro-
ducibility scale for automatic validation of biological interpre-
tation results. bioRxiv. 2022, https://doi.org/10.1101/2022.10.11.5
11695 .

38. Suetake, H. pitagora-network/yevis-DAT2-cwl: 1.0.0. Zenodo.
2022. https://doi.org/10.5281/zenodo.6572565.

39. Suetake, H. pitagora-network/yevis-DAT2-cwl-browser: 1.0.0.
Zenodo. 2022. https://doi.org/10.5281/zenodo.6575089.

https://sapporo-wes.github.io/yevis-cli/getting_started
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-test-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml
https://doi.org/10.5281/zenodo.6565977
https://github.com/pitagora-network/DAT2-cwl/tree/1.1.1/workflow/bacteria-genome
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.5281/zenodo.6545122
https://github.com/pitagora-network/yevis-DAT2-cwl/blob/1.0.0/d03458d8-837c-4173-afa3-55ebe538b0b2/yevis-metadata-1.0.0.yml
https://doi.org/10.5281/zenodo.6719845
https://doi.org/10.1101/2022.10.11.511695 
https://doi.org/10.5281/zenodo.6572565
https://doi.org/10.5281/zenodo.6575089

