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Abstract
Salmonella enterica serotype Enteritidis is one of the main pathogens associated with foodborne illnesses worldwide. Biofilm 
formation plays a significant role in the persistence of pathogens in food production environments. Owing to an increase 
in antimicrobial resistance, there is a growing need to identify alternative methods to control pathogenic microorganisms 
in poultry environments. Thus, this study aimed to synthesize silver nanoparticles (AgNPs) and evaluate their antibiofilm 
activity against poultry-origin Salmonella Enteritidis in comparison to a chemical disinfectant. AgNPs were synthesized, 
characterized, and tested for their minimum inhibitory concentration, minimum bactericidal concentration, and antibiofilm 
activity against S. Enteritidis strains on polyethylene surfaces. The synthesized AgNPs, dispersed in a liquid medium, were 
spherical in shape with a mean diameter of 6.2 nm. AgNPs exhibited concentration-dependent bactericidal action. The bacte-
rial reduction was significantly higher with AgNPs (3.91  log10 CFU ∙  cm−2) than that with sanitizer (2.57  log10 CFU ∙  cm−2). 
Regarding the time of contact, the bacterial count after a contact time of 30 min was significantly lower than that after 10 min. 
The AgNPs exhibited antimicrobial and antibiofilm activity for the removal of biofilms produced by S. Enteritidis, demon-
strating its potential as an alternative antimicrobial agent. The bactericidal mechanisms of AgNPs are complex; hence, the 
risk of bacterial resistance is minimal, making nanoparticles a potential alternative for microbial control in the poultry chain.
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Introduction

Salmonella spp. are among the most common foodborne 
pathogens, affecting numerous people annually [1]. Salmo-
nella enterica serotype Enteritidis is one of the main bac-
teria causing most foodborne illnesses worldwide [2, 3]. In 
Brazil, between 2009 and 2017, approximately 35% of the 

foodborne outbreaks linked to bacterial agents were caused 
by Salmonella spp. [4]. Poultry products are recognized as 
the main source of Salmonella infection in humans [5].

The survival and persistence of pathogens in the envi-
ronment, particularly in poultry processing plants, are sig-
nificant risk factors, which contribute to their dissemination 
through the food chain [6]. Biofilm formation plays a sig-
nificant role in the survival of pathogens in food production 
environments [7]. This represents a risk to consumer health 
and results in economic losses for the industry [8]. Salmo-
nella Enteritidis has the ability to adhere to surfaces com-
monly found in the poultry processing industry over a wide 
temperature range [9–12]. Due to the increasing number of 
antimicrobial-resistant strains, it is necessary to identify 
alternative methods to control pathogenic microorganisms 
in poultry environments [13]; the use of nanoparticles is a 
potential alternative to antimicrobial agents [14].

Nanoparticles are materials with at least one dimension 
(1–100 nm) in the nanometric scale or whose basic unit in 
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the three-dimensional space is in this range [14]. Nanoparti-
cles have several applications, including in drugs and medi-
cations, manufacturing and materials, environment, electron-
ics, energy harvesting, and mechanical industries [15].

Metal nanoparticles, such as those of silver, copper, tita-
nium, gold, and zinc, usually exhibit antimicrobial activity, 
with differences in potencies and spectra of activity [16]. 
Silver nanoparticles (AgNPs) are known for their wide range 
of applications and low cytotoxicity in mammalian cells. 
Their antimicrobial activity is associated with the genera-
tion of reactive oxygen species [17]. Previous studies have 
shown the antimicrobial effect of AgNPs against foodborne 
pathogens such as Salmonella serotypes, Escherichia coli, 
and Listeria monocytogenes [18, 19].

However, whether AgNPs have the potential to prevent 
and remove S. Enteritidis biofilms from surfaces found in 
poultry environments is still unclear. Therefore, this study 
aimed to synthesize AgNPs and evaluate their antibiofilm 
activity against poultry-origin Salmonella Enteritidis.

Materials and methods

Preparation of AgNPs

AgNPs were synthesized via a chemical reduction method 
using hydrogen. Synthesis was performed at the Molecular 
Catalysis Laboratory (Institute of Chemistry, Universidade 
Federal do Rio Grande do Sul), according to the method 
described by Redel et al. [20]. Briefly, 100 mg of silver oxide 
 (Ag2O) and 240 μL of butylimidazole were dispersed and 
dissolved in 3 mL of an ionic liquid (1-ethyl-3-methylimi-
dazolium methanesulfonate) in a Fisher-Porter reactor for 
15 min at room temperature (± 25 °C). The system was then 
charged with 4 atm of hydrogen and stirred for 2 h at 80 °C. 
Following this, the reactor was evacuated at 50 °C for 1 h. 
Ultrapure water (50 mL) was then added to this colloidal 
solution.

Characterization of AgNPs

AgNP synthesis was confirmed, using UV–Vis spectros-
copy, by the presence of a plasmonic band at approximately 
400 nm, which is characteristic of this type of a nanoparticle. 
Cary 50 Conc spectrophotometer (Varian, Brentwood, USA) 
was used, and the measurements were performed by absorb-
ance scanning in the wavelength range of 300–800 nm using 
the average scan mode.

The obtained nanoparticles were also analyzed using 
transmission electron microscopy (TEM), to determine their 
size, shape, composition, and dispersion [21–23]. TEM anal-
ysis was performed using an EM 208S microscope (Philips, 
Beaverton, USA) operating at 100 kV. A small amount of 
nanoparticles was dispersed in isopropanol. A drop of this 
solution was then added to a carbon grid/plate (300 mesh) 
for reading. Analyses were performed using a JEM 1200 
ExII electron microscope (Jeol, Tokyo, Japan), operating 
at 120 kV. Size and distribution of the nanoparticles were 
determined at a resolution of 470 pixels/cm to obtain more 
accurate measurements. A histogram was generated by 
counting approximately 200–300 particles and grouping 
them in terms of size. The particle diameters in the micro-
graphs were measured using Origin software (OriginLab, 
Northampton, USA).

Bacterial strains

Ten strains of Salmonella Enteritidis were randomly selected 
from our stock collection. All the strains had been isolated 
from poultry sources (Table 1) and were previously tested 
for their ability to produce biofilms at 28 °C in polystyrene 
microplates. The strains were stored at − 80 °C in brain 
heart infusion (BHI) broth (Oxoid, Hampshire, England) 
supplemented with 25% glycerol (Synth, Diadema, Brazil). 
For reactivation, the isolates were seeded on xylose lysine 
deoxycholate (XLD) agar (Merck; Darmstadt, Germany) and 

Table 1  Salmonella Enteritidis 
strains: identification, source, 
and year of isolation

Strain identifica-
tion

Source of isolation Year of isolation

330 Poultry product involved in human salmonellosis outbreaks 2008
217 Drag swab 2000
311 Poultry product involved in human salmonellosis outbreaks 2011
344 Poultry product involved in human salmonellosis outbreaks 2007
329 Poultry product involved in human salmonellosis outbreaks 2008
338 Poultry product involved in human salmonellosis outbreaks 2008
275 Poultry product involved in human salmonellosis outbreaks 2004
224 Poultry viscera 2000
230 Drag swab 2001
282 Poultry product involved in human salmonellosis outbreaks 2007
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incubated at 37 °C. After 24 h, colonies that were morpho-
logically consistent with those of Salmonella spp. (black-
ish-centered colonies) were identified; of these, one colony 
was selected and inoculated into BHI broth under the same 
incubation conditions.

Determination of minimum inhibitory concentration 
and minimum bactericidal concentration of AgNPs

Inoculum preparation

The strains were cultivated on Luria–Bertani (LB) agar 
(Kasvi, São José dos Pinhais, Brazil) at 37 °C for 24 h. 
After incubation, the colonies were inoculated into LB broth 
(Kasvi, São José dos Pinhais, Brazil) to adjust the LB culture 
turbidity to an optical density (OD) of 0.030–0.040 using 
a spectrophotometer, operating at a wavelength of 595 nm 
(SP-22; Biospectro; São Paulo, Brazil), which corresponds 
to a standard inoculum of  107 colony-forming units (CFU)/
mL. Serial dilution in LB broth was performed to obtain a 
culture of  105 CFU/mL, which was used to determine the 
minimum inhibitory concentration (MIC) and minimum 
bactericidal concentration (MBC) of AgNPs [24].

Minimum inhibitory concentration (MIC)

The MIC was determined using the broth microdilution 
method, according to the method described by Duffy et al. 
[24]. Briefly, the AgNP stock solution (1 mg/mL) was 
diluted in LB broth, and the AgNP concentrations of 17, 18, 
20, 25, 50, and 100 μg/mL were tested. Sterile 96-well flat-
bottomed polystyrene microplates (Kasvi, São José dos Pin-
hais, Brazil) were used for MIC determinations. In columns 
1 to 6, 50 μL of LB broth, 100 μL of AgNPs (one concen-
tration for each column), and 50 μL of bacterial suspension 
at  105 CFU/mL were added. As a negative control, 100 μL 
of LB broth and 100 μL of each AgNP concentration were 
added to three wells in each column. As a positive control, 
150 μL of LB broth and 50 μL of bacterial suspension at 
 105 CFU/mL were added to column 12. The plates were then 
incubated under aerobic conditions at 37 °C for 24 h. The 
OD was measured using a microplate reader at a wavelength 
of 595 nm (Biotek, Winooski, VT, USA).

Minimum bactericidal concentration (MBC)

The MBC was determined from the same 96 well plates used 
for the MIC by counting the bacteria in wells with no or 
very little visible growth. Bacterial counts were performed 
on XLD medium using the drop plate technique [25]. MBC 
is defined as the lowest concentration that kills 99.9% of the 
initial bacterial population [24].

Removal of formed biofilms from polymeric surfaces

High-density polyethylene (HDPE) coupons were consid-
ered for this assay because of their widespread use in poultry 
production, particularly in transportation crates. The cou-
pons were produced with dimensions of 1 cm (width) × 1 cm 
(length) × 0.1 cm (thickness).

The strains were reactivated in BHI broth for 18–24 h 
at 37 °C. After incubation, the strains were cultured on 
trypticase soy agar (Oxoid, Basingstoke, UK) plates for 
24 h at 37 °C. One colony of each strain was suspended in 
5 mL of trypticase soy broth without glucose (TSB) (BD 
Biosciences, Franklin Lakes, NJ, USA) for 18 h at 37 °C. 
Turbidity of the TSB culture was adjusted to 1 on the 
McFarland scale, corresponding to the standard inoculum 
of  108 CFU·mL−1, with 0.224–0.300 optical density (OD) 
in a spectrophotometer at a wavelength of 620 nm (SP-22; 
Biospectro; São Paulo, Brazil).

To evaluate the ability of the nanoparticles to remove 
biofilms formed by S. Enteritidis, 3 mL of each bacterial 
suspension was inoculated into three wells of a 12-well flat-
bottomed polystyrene plate (Kasvi, São José dos Pinhais, 
Brazil). Coupons were tested in triplicates and individu-
ally added to the wells. The plates were incubated at 28 °C 
for 24 h. After incubation, the coupons were individually 
removed using sterile tweezers and washed with 5 mL of 
0.1% buffered peptone water (BPW) (Merck, Darmstadt, 
Germany), to remove planktonic cells. Furthermore, the 
coupons were transferred to another microplate contain-
ing the following three treatments: (1) 3 mL of AgNPs at 
200 μg/mL; (2) 3 mL of a polyhexamethylene biguanide 
hydrochloride-based sanitizer associated with a quaternary 
ammonium compound at 200 ppm; and (3) 3 mL of sterile 
distilled water (control group). The selected concentrations 
are those recommended for food contact surfaces (FDA, 
2021). Plates containing coupons were incubated at 28 °C 
for 10 min (AgNPs and sanitizer) or 30 min (AgNPs). For 
the sanitizer, the maximum contact time at the highest con-
centration recommended by the manufacturer was 10 min. 
After contact (10 or 30 min), the coupons were removed 
using sterile tweezers and immersed for 5 min in 5 mL of 
0.1% BPW containing neutralizing agents, 2% polysorbate 
(Dinâmica, Diadema, Brazil), 0.25% sodium thiosulfate 
(Dinâmica, Diadema, Brazil), and five glass beads (1 mm). 
The coupons were homogenized on a vortex shaker (Kasvi, 
São José dos Pinhais, Brazil) for 1 min to release sessile 
cells.

After serial dilutions  (10−1 to  10−4) performed using 
0.85% (isotonic) sodium chloride solution as the diluent, 
a bacterial count was performed for each coupon using the 
drop plate technique [25] on XLD agar. The plates were 
incubated at 37 °C for 24 h under aerobic conditions to count 
the colony-forming units per square centimeter (CFU∙cm−2). 



288 Brazilian Journal of Microbiology (2023) 54:285–292

1 3

To determine the microbiological count, the surface area on 
both sides of the coupon and the side area were considered, 
as shown in the following formula [26, 27]:

where VD is the diluent volume used for rinsing (5 mL), 
VA is the aliquot volume used for plating (0.01 mL), Av 
is the average count recovered from the plates (CFU), D 
is the dilution used for counting, and A corresponds to the 
coupon area (2.4  cm2). The results were expressed as log10 
CFU ∙  cm−2.

Statistical analyses

All statistical analyses were performed using GraphPad 
Prism software (GraphPad, San Diego, CA, USA), with 
a significance level of 5%. One-way analysis of variance, 
followed by Tukey’s honestly significant difference (HSD) 
test and t test were used to detect differences among the 
treatments.

CFU ∙ cm
−2

=

(

VD

VA

)

× AV ×

D

A

Results

Characterization of AgNPs

From the electron microscopy images showed, it was 
found that the synthesized AgNPs were dispersed in a liq-
uid medium and were mostly spherical in shape (Fig. 1A). 
The mean diameter was 6.2 ± 3.3 nm (Fig. 1B).

Determination of MIC and MBC of AgNPs

The values for MIC and MBC are shown in Fig. 2. Of the 
evaluated strains, 50% (5/10) were susceptible to 25 μg/
mL AgNP, 20% (2/10) to 18 μg/mL AgNP, 20% (2/10) 
to 20 μg/mL AgNP, and 10% (1/ 10) to 50 μg/mL AgNP. 
There was no statistical difference (p > 0.05) between MIC 
(19.50 ± 2.32  μg/mL) and MBC (25.10 ± 9.26  μg/mL) 
mean values. AgNPs exhibited a statistically significant 
(p < 0.05) concentration-dependent bactericidal action 
(Fig. 3).

Fig. 1  Silver nanoparticles 
(AgNPs): A Micrograph of 
AgNPs: dispersion in liquid 
medium and spherical shape. 
B Distribution histogram of 
AgNPs by diameter (nm)

Fig. 2  Minimum inhibitory 
concentration (MIC) and mini-
mum bactericidal concentration 
(MBC) of silver nanoparticles 
(AgNPs): A individual results. 
B Mean ± standard deviation
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Removal of formed biofilm on polymeric surfaces

The individual bacterial counts after treatment with AgNPs 
and sanitizer are shown in Fig. 4. Significant differences 
(p < 0.05) in bacterial counts were observed after 10 min 
of contact for both the treatment groups compared with 
those in the control group. The reduction was significantly 
(p < 0.05) higher for AgNPs (3.91  log10 CFU ∙  cm−2) than 
that for the sanitizer (2.57  log10 CFU ∙  cm−2). After 30 min 
of contact, AgNPs (1.17  log10 CFU ∙  cm−2) presented a sig-
nificant reduction (p < 0.05) in bacterial count compared 
to the control (6.84  log10 CFU ∙  cm−2). Based on contact 
time, the bacterial count after 30 min was significantly lower 
(p < 0.05) than that after 10 min for AgNPs.

Discussion

Salmonella Enteritidis is linked to outbreaks of foodborne 
diseases worldwide, and poultry products are the main 
source of contamination [1, 5]. Food-processing plant 
environments present ideal surfaces for biofilm formation, 
mainly because of the large amount of available nutrients 
[10]. In addition, to economic losses, these structures are 
also a risk to consumer health, because rupture of bio-
films is associated with the release of pathogens in food 
facilities, favoring food contamination [8]. Thus, food-
processing establishments must ensure product safety [28].

Surfaces used in poultry production include polyethyl-
ene, stainless steel, polypropylene, polyurethane, silicone, 
and glass [29]. Polyethylene is routinely used during food 
preparation in industrial plants and is also present in poul-
try farms, including in transportation crates [30, 31]. The 
ability of Salmonella to produce biofilms on polyethylene 
has been previously described [11]. Chemical compounds 
are routinely used in disinfection programs to reduce 
contamination. However, the role of the environment in 
the spread of antimicrobial resistance has been widely 
recognized [32]. Thus, research to identify and develop 
alternative methods for controlling pathogenic microor-
ganisms in poultry environments has increased in recent 
years. Among these methods, nanoparticles are a promis-
ing alternative, which are gaining special interest [33].

The intrinsic properties of metallic nanoparticles, 
including AgNPs, are primarily associated with their size, 
composition, crystallinity, and morphology. Reducing the 
size of the metal to the nanoscale modifies its chemical, 
mechanical, electrical, structural, morphological, and 
optical properties. This is because nanomaterials have 

Fig. 3  Mean optical density (OD) reduction in Salmonella Enteritidis 
strains measured after incubating for 24 h at 37 °C to determine the 
minimum inhibitory concentration. Different letters indicate sig-
nificant difference (Tukey test; p < 0.05) among optical density (OD) 
observed for different concentration of silver nanoparticles. Mean of 
three replicates per sample

Fig. 4  Bacterial counts of 
Salmonella Enteritidis on 
polymeric surfaces accord-
ing to the treatment (AgNPs 
or  sanitizer1) after 10 (A) or 
30 min (B) of contact. Differ-
ent letters indicate significant 
difference in the same time of 
contact (Tukey test; p < 0.05). 
1Polyhexamethylene biguanide 
hydrochloride-based sanitizer 
associated with a quaternary 
ammonium compound
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a considerable number of atoms on their surface, which 
leads to high surface reactivity [34]. The AgNPs syn-
thesized in this study had a diameter of less than 10 nm, 
which is considered the optimal maximum value. They 
were dispersed in a liquid medium and presented a spheri-
cal shape. The characteristics observed in the nanopar-
ticles synthesized in this study were in accordance with 
those recommended in the literature [15]. These charac-
teristics are critical since they are considered ideal for the 
optimum performance of nanomaterials.

According to Elez et al. [17], AgNPs are promising can-
didates as replacements for antimicrobial agents owing 
to their intrinsic characteristics. Large-scale synthesis of 
AgNPs is simple, safe, and economical, and their surfaces 
can be easily modified. Another important characteristic of 
AgNPs is that bacterial resistance to them is rare [17, 35]. 
Of the evaluated strains, 50% were susceptible to 25 μg/mL 
of AgNPs. Previous studies have shown the antimicrobial 
effects of AgNPs at similar concentrations against foodborne 
pathogens, including Salmonella serotypes [17–19]. How-
ever, their antibiofilm activities against S. Enteritidis remain 
unclear. In addition, bacteria in biofilms are known to show 
increased resistant to antimicrobial compounds [36].

Our results demonstrated that AgNPs exhibited antibi-
ofilm activity, aiding the removal of S. Enteritidis biofilms 
in HDPE coupons. Although both treatments (AgNPs and 
sanitizer) demonstrated antibiofilm activity, the bacterial 
count after treatment with nanoparticles was significantly 
lower than that after treating with the sanitizer. The instabil-
ity of chemical compounds, decreased effectiveness in the 
presence of organic material, and decreased ability to pen-
etrate the biofilm matrix are some factors that can result in 
resistance to conventional sanitizers, which are not observed 
in nanoparticles [37, 38].

For chemical compounds, the reduction in bacterial 
cells by chemical disinfectants is contact time dependent, 
and antibiofilm activity usually requires prolonged periods 
of contact [39]. The results also highlight the influence of 
contact time on the increased antibiofilm activity of nano-
particles [37]. To evaluate this effect, two contact times (10 
and 30 min) were assessed in the present study. Ten minutes 
was selected to simulate the time required for operational 
procedures, as determined by Brazilian legislation [40, 41]. 
Therefore, both the compounds were tested at this contact 
time. As disinfectants must be removed after sanitization, 
they were not tested after 30 min. There is no legislation in 
Brazil regarding the presence of nanoparticles in food or ani-
mal production farms. Therefore, we tested the antibiofilm 
activity of AgNPs after 30 min of contact, to evaluate the 
effect of time on biofilm removal. For nanoparticles, the con-
tact time influenced the bacterial count reduction, and after 
30 min of contact, it was significantly lower than that after 
10 min. Contact time plays a significant role in inhibiting 

pathogen growth [42]. According to the European Union 
standard EN 13,697:2001, sanitization procedures must 
achieve a reduction in bacterial counts of at least 4  log10 
CFU  cm−2 on surfaces that are in contact with food [43, 44]. 
In this study, the antibiofilm effect of AgNPs after 10 min of 
contact was close to this recommended value; however, after 
30 min of contact, the bacterial reduction was more than the 
recommended value.

AgNPs exhibited antimicrobial and antibiofilm activity 
for the removal of biofilms produced by S. Enteritidis, dem-
onstrating their potential as alternative antimicrobial agents. 
The bactericidal mechanisms of AgNPs are complex; hence, 
the risk of bacterial resistance is minimal, making nano-
particles a potential alternative for microbial control in the 
poultry chain.
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