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Abstract
Arctic-nesting geese face energetic challenges during spring migration, including ecological barriers and weather condi-
tions (e.g., precipitation and temperature), which in long-lived species can lead to a trade-off to defer reproduction in favor 
of greater survival. We used GPS location and acceleration data collected from 35 greater white-fronted geese of the North 
American midcontinent and Greenland populations at spring migration stopovers, and novel applications of Bayesian dynamic 
linear models to test daily effects of minimum temperature and precipitation on energy expenditure (i.e., overall dynamic 
body acceleration, ODBA) and proportion of time spent feeding (PTF), then examined the daily and additive importance of 
ODBA and PTF on probability of breeding deferral using stochastic antecedent models. We expected distinct responses in 
behavior and probability of breeding deferral between and within populations due to differences in stopover area availability. 
Time-varying coefficients of weather conditions were variable between ODBA and PTF, and often did not show consist-
ent patterns among birds, indicating plasticity in how individuals respond to conditions. An increase in antecedent ODBA 
was associated with a slightly increased probability of deferral in midcontinent geese but not Greenland geese. Probability 
of deferral decreased with increased PTF in both populations. We did not detect any differentially important time periods. 
These results suggest either that movements and behavior throughout spring migration do not explain breeding deferral 
or that ecological linkages between bird decisions during spring and subsequent breeding deferral were different between 
populations and across migration but occurred at different time scales than those we examined.
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Introduction

Long-lived species are expected to forego reproduction 
when conditions are such that expending energy in a repro-
ductive attempt would reduce residual reproductive value by 
compromising survival or future reproductive success (Ank-
ney and MacInnes 1978; Lindén and Møller 1989; Erikstad 
et al. 1998). While numerous studies have investigated how 
weather patterns influence migration flights in individuals, 
as well as overall impacts on populations (Shamoun-Baranes 
et al. 2017 and references therein), conditions at wintering 

or staging areas have also been linked to subsequent varia-
tion in demographic rates and life-history tradeoffs in birds 
(van Oudenhove et al. 2014; Dybala et al. 2013). Condi-
tions driven by large-scale climate patterns are responsible 
for lower reproduction in years when environmental condi-
tions are less favorable (Cubaynes et al. 2011; Cleasby et al. 
2017). In addition to weather conditions, physical charac-
teristics of migration routes can present challenges during 
migration. While birds undertaking an overall longer migra-
tion may be challenged by increased energy requirements, 
they generally have more flexibility to adjust their migration 
to conditions they encounter (Sorte and Fink 2017). Large 
water crossings such as oceans can diminish the predict-
ability of conditions from one stopover location to the next 
and therefore reduce a bird’s ability to respond to changes in 
timing of the onset of spring, which can affect forage quality 
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(Tombre et al. 2008) and can influence reproductive success 
(Lameris et al. 2018).

Arctic-nesting geese obtain resources for reproduction 
before and during migration, as well as after arrival to 
breeding areas (Gauthier et al. 2003; Drent et al. 2007). The 
stopover areas birds use to refuel and build fat and protein 
stores before continuing migration are of particular impor-
tance (Weber et al. 1998), as endogenous reserves explain 
variation in clutch size of Arctic-nesting geese (Alisauskas 
2002; Inger et al. 2010) and affect reproductive success and 
breeding mortality (Ankney and MacInnes, 1978). Precipi-
tation, e.g. snow, at staging areas can influence food avail-
ability (e.g., Webb et al. 2010; Haest et al. 2020) in addition 
to temperature affecting individual energy expenditure via 
increased thermoregulation (Wiersma and Piersma 1994; 
Bauer et al. 2008), with subsequent influence on reproduc-
tive performance (Inger et al. 2010; Harrison et al. 2011; van 
Oudenhove et al. 2014). Conversely, there is some evidence 
that migratory waterfowl can compensate for poor winter 
conditions during spring migration or when they arrive on 
breeding areas if conditions allow for better foraging oppor-
tunities (Steenweg et al. 2022).

Herein, we focused on two populations of greater white-
fronted geese (Anser albifrons): the Greenland subspecies 
(A. a. flavirostris) and the North American midcontinent 
population (A. a. frontalis). These populations exhibit con-
trasting population trends; the population size of midcon-
tinent geese has been stable or increasing in recent years 
(U.S. Fish and Wildlife Service 2020; R. Alisauskas, unpub-
lished data) while the Greenland population has declined 
39% since 1999 (Fox et al. 2020). Greenland geese cross the 
North Atlantic from wintering areas in Britain and Ireland 
to Icelandic staging areas, and to breeding areas in western 
Greenland, with relatively few sustained stops (Fox et al., 
2003). In contrast, midcontinent geese migrate entirely over 
land from southern US wintering areas to breeding areas in 
the Canadian and Alaskan Arctic, and despite the large tracts 
of boreal forest in Canada, have opportunities for much more 
frequent, shorter stops to refuel (Ely et al. 2013; VonBank 
2020; Fig. 1). Thus, geese within each population encounter 
distinct conditions and barrier-related stopover opportuni-
ties as they travel to the Arctic, which we anticipate might 
yield differences in the proportion of birds initiating a nest-
ing attempt or choosing to defer.

We employed two novel applications of modeling 
approaches to investigate the daily and cumulative effects 
of weather conditions on goose behavior and how behavior 
relates to subsequent probability of deferring reproduction 
in white-fronted geese. We aimed to demonstrate the use 
of these methods in the context of understanding linkages 
among environmental conditions, behavior, and reproduc-
tive success, and in identifying critical time periods in the 
annual cycle of these geese. Our first objective was to assess 

the influence of fine scale (i.e., daily) temperature and pre-
cipitation patterns on daily energy expenditure (ODBA) 
and proportion of time spent feeding (PTF) during spring 
migration and the pre-laying period via dynamic linear mod-
els (e.g., Holmes et al. 2019; Laine 2020). The analysis of 
time-varying coefficients will allow us to identify potential 
bottlenecks in resource accumulation due to unfavorable 
conditions. We predicted that PTF and ODBA would be 
positively associated with minimum temperature because 
low temperatures were expected to increase energy expendi-
ture due to increased energy demands of thermoregulation 
(Krams et al. 2010) and negatively associated with precipita-
tion, especially in the case of snow, which may hinder forag-
ing (Reed et al. 2004). We predicted that weather conditions 
would impact geese similarly within a population, with the 
potential for differences between birds attempting (or suc-
cessful) and deferring (or failed).

Next, we used a method described by Ogle et al. (2015) 
that builds on the concept of ecological memory, which is 
the contribution of previous experiences or states to cur-
rent or future responses (Padisák 1992), to determine the 
extent to which ODBA and PTF during spring migration 
and the pre-laying period explain variation in probability 
of deferring reproduction for birds in each population. We 
predicted that greater antecedent PTF would be associated 
with a lower probability of deferral, while greater anteced-
ent ODBA would be a predictor of increased probability of 
deferral, as we expected that ODBA would also be reflec-
tive of individual patterns of space use, and we expected 
these patterns to be more prominent in midcontinent birds, 
because Greenland geese are much more constricted in 
potential stopover areas (i.e., confined to Iceland in the mid-
dle of the ocean), and midcontinent geese have the potential 
to move across vast landscapes to find a suitable staging 
area. We predicted that if the model revealed differences in 
daily energy expenditure and time feeding between birds 
that attempted and deferred nesting, that the difference 
would be most pronounced late in migration, for example 
if the geese arrived on breeding areas and were faced with 
snow cover, decreasing their ability to recoup energy stores 
(Lameris et al. 2018) and therefore decreasing the likeli-
hood of attempting reproduction. Because the mechanism 
causing the population decline in Greenland white-fronted 
geese is not fully known, we hoped that the application of 
these methods would allow for identification of critical time 
points, if any exist, that could influence whether an indi-
vidual attempts or defers reproduction in a given year.
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Materials and methods

Study populations

The midcontinent white-fronted goose population is 
estimated at > 1.3 million birds (U.S. Fish and Wildlife 
Service 2020) while the Greenland white-fronted goose 
population consists of approximately 21,500 birds (Fox 
et al. 2020). Habitat in Arctic regions of Alaska, Canada 
and Greenland consists mainly of tundra, characterized by 
moss- and lichen-covered uplands with flood-prone grassy 
lowlands and sedge meadows (Ely and Raveling 1984; Fox 
and Stroud 1988). The distribution of these birds across 

foraging habitats within their respective wintering areas 
differs between populations. The largest wintering flocks 
of Greenland birds congregate on agricultural fields near 
Wexford, Ireland and Islay, southwest Scotland, while ~ 70 
other flocks are relatively small and typically less than a 
few hundred birds and show high fidelity to small geo-
graphical areas and to grass swards (Wilson et al. 1991; 
Warren et  al. 1992). During the winter, midcontinent 
geese are much more itinerate and spread across agricul-
tural landscapes of the southern United States and Mexico 
(Anderson and Haukos 2003; Ely et al. 2013), and indi-
viduals often use multiple areas within a single winter 
with a greater preference for arable crop types than the 
Greenland birds (VonBank et al. 2021).

Fig. 1  Migration locations of 10 North American midcontinent (red) 
and 25 Greenland (blue) greater white-fronted geese tracked via GPS 
across North America and northwest Europe in 2012–2013 (n = 15) 
and 2017–2018 (n = 20). Shaded areas (Prairie Pothole Region in 

North America and Iceland) indicate staging areas from which the 
last day in these regions was used to determine the end of the migra-
tion period for each bird. Inset shows latitudinal movements of 
migrating geese by date
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Goose captures and tracking devices

Greenland geese were captured on wintering areas in Ireland 
(52° 22′N, 6° 23′W) in 2012, 2013, 2017, and 2018, autumn 
staging areas in Iceland (64° 33′N, 21° 45′W) in 2016 and 
2017, and in Scotland (52° 0′N, 4° 2′ W) in 2012 and 2013. 
Midcontinent geese were captured on wintering areas across 
Texas (32° 54′N, 99° 53′W; 28° 53′N, 98° 52′W; 27° 20′N, 
97° 46′W) in 2016, 2017 and 2018. Geese were captured 
by cannon or rocket netting on both continents, as well as 
modified leg-hold traps in Texas (King et al. 1998), and 
were fitted with collars or backpack devices bearing GPS 
and accelerometer (ACC) technologies. The latter measured 
change in velocity in three directions (i.e., movement; Shep-
ard et al. 2008; Gómez Laich et al. 2011).

Forty-one Greenland geese were fitted with backpack 
devices attached with elastic shock cord (e-obs GmbH, 
Grünwald, Germany, 39 g including tag and harness), and 
also received an orange neck collar (17 g) with an alpha-
numeric code and matching white leg ring. Thirty-one 
Greenland geese and 50 midcontinent geese were fitted with 
Cellular Tracking Technologies (CTT) neck collars (CTT 
LLC, Rio Grande, NJ, USA; model BT 3.0 [54 g] and BT 3.5 
[45 g]), and 14 Greenland geese and 7 midcontinent geese 
were fitted with Ornitela neck collars (Vilnius, Lithuania, 
model OrniTrack-N38; 38 g). Different CTT models were 
deployed sequentially, and prior to Ornitela devices. Green-
land CTT devices were mounted to orange collars, while the 
Ornitela and midcontinent CTT collars were brown or gray. 
Devices were deployed across several captures, which aver-
aged 15.5 birds per capture and ranged from 1 to 50, with 
an average of 4.1 midcontinent collars deployed per catch 
and 3.1 Greenland collars deployed per catch. Geese were 
sexed via cloacal examination. In 2012 and 2013, only males 
received tracking devices, otherwise adult females were cho-
sen (with one exception in midcontinent birds). Ideally, our 
analysis would have included only female geese, but we con-
sidered males as proxies for assessing incubation indirectly 
because long-term pair bonds are common in geese (Black 
1996) and males are known to guard incubating females (i.e., 
we anticipate males are relatively stationary when guard-
ing an incubating female compared to males not associated 
with an incubating female; Dittami et al. 1977; Madsen et al. 
1989; Samelius and Alisauskas 2006). We attempted to fit 
only one individual of a pair or family group with a tracking 
device to maximize independence of data, given that white-
fronted goose families migrate together (Weegman et al. 
2016c). GPS fixes were recorded at 1 point per day (e-obs 
devices), every 2 h (Greenland CTT devices), every 30 min 
(all midcontinent), or every 15 min (Greenland Ornitela).

Twenty-five Greenland (from 2012, 2013 and 2018; 15 
backpacks, all males; 10 neck collars, all female) and 10 
midcontinent individuals (from 2017 and 2018, 1 male and 

9 females) had sufficient data to be included in the analysis 
(i.e., > 75% of expected daily accelerometer bursts through 
June, and not more than three days without a location out 
of every 3 days through July). Only 1 year of tracking was 
included in analyses for all birds and was generally the year 
following initial capture. Twenty of 31 Greenland geese fit-
ted with neck collar transmitters with uniquely identifiable 
codes in 2017 and 2018 were resighted alive during regular 
surveys of Greenland white-fronted geese (i.e., Fox et al. 
2020) or targeted searches ≥ 1 year after initial capture, and 
an additional 6 were seen > 6 months but < 1 year after cap-
ture, though tags were not transmitting data at these times. 
Based on estimated resight rates of Greenland white-fronted 
geese of approximately 0.86 at Wexford and 0.60 elsewhere 
throughout their range (Weegman et al. 2016a), we assumed 
low sample sizes were due to transmitter failure rather than 
collar-induced mortality. We were unsuccessful in relocat-
ing midcontinent geese due to an extensive wintering range, 
large flock sizes, and cryptic collar color.

Processing and classification of ACC data

ACC data were recorded at 10 (CTT and Ornitela units) 
or 10.5 Hz (e-obs units) for a duration of 3 s, yielding ~ 30 
points per axis, every 6 min. Prior to classification, we cali-
brated all devices according to manufacturer specifications. 
We used two CTT (BT 3.0 and BT 3.5), and six Ornitela 
units to calibrate devices according to manufacturer-specific 
specifications, to ensure a consistent baseline across units 
for converting ACC data from millivolts to gravitational 
acceleration (g).

Classification of data from e-obs devices is described in 
Weegman et al. (2017a). For collared geese, we filmed birds 
for behavioral classification between 1 day and 6 months 
post-tagging, collecting 54 h of video footage of wild Green-
land white-fronted geese in Iceland and Ireland, encompass-
ing nine CTT and nine Ornitela units, with filming occurring 
over 32 different days. We obtained 65.5 h of footage from 
two captive birds at Texas A&M-Kingsville, Texas, USA, 
which we rotated through three collars: Ornitela unit N38, 
CTT BT 3.0, and CTT BT 3.5. To increase the likelihood of 
capturing acceleration bursts on film, we increased the rate 
of ACC collection in two CTT devices deployed in Iceland 
from every 6 min to every 2 min for five days and collected 
approximately 6 h of footage from these birds, and ACC 
duty cycles for devices on captive birds were increased to 
every minute.

We documented goose behavior using the ‘JWatcher’ 
program (Blumstein et  al. 2006), classifying behaviors 
as feeding, stationary, and walking, though we later com-
bined feeding and walking, as geese do not regularly walk 
long distances during migration unless feeding (Weegman 
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et al. 2017a), and to maintain consistency with e-obs units. 
Flight bursts were obtained from observed migration peri-
ods, based on GPS tracks for all device types, and station-
ary bursts were taken from video observations but supple-
mented with periods of overnight roosting for Ornitela and 
CTT units (Weegman et al. 2017a). All flight and station-
ary bursts based on GPS behavior were visually checked to 
ensure conformity with known ACC traces for each behavior 
(i.e., either extreme oscillation or stable line). Undoubtedly, 
geese exhibit more than three behaviors, but we assumed 
that maintenance behaviors such as preening would not be 
captured frequently enough by accelerometers to be classi-
fied, as Fox and Ridgill (1985) observed preening compris-
ing < 5% of daily activity in geese.

We compared 37 min of video classifications between 
observers (SAC and JAV) to determine inter-observer reli-
ability (Kaufman and Rosenthal 2009) and accepted that 
observers were classifying behaviors equally because > 95% 
of the video was assigned the same behavior. ACC bursts 
were extracted and assigned a behavior according to video 
time. Each burst was plotted and visually checked to ensure 
only 1 behavior was present during the 3-s burst, and the 
signature appeared reasonable for the behavior (e.g., bursts 
that were labeled ‘feeding’ but appeared as a straight line 
were removed, n = 89 bursts removed), as there may have 
been error introduced by reaction time while videos were 
being scored. We identified 797 flight bursts, 106 feeding 
bursts, 892 stationary bursts and 75 walking bursts from 
Ornitela units and 569 flight bursts, 90 feeding bursts, 1381 
stationary bursts and 199 walking bursts from CTT units. 
Due to variation in number of bursts per behavior, 150 bursts 
of each behavior were randomly selected to be included in 
the tag-specific training sets so as not to artificially inflate 
overall accuracy. Because they were housed in a planted 
wheat field (i.e., with considerable bare dirt between rows 
of wheat), captive birds did not display feeding behavior 
representative of wild grazing, so all feeding bursts came 
from wild Greenland white-fronted geese.

We calculated a total of 37 summary measures to describe 
the acceleration behavior in each burst, based on metrics 
used in the AcceleRater web tool (Resheff et al. 2014). We 
tested five machine learning algorithms for behavior clas-
sification: K-nearest neighbors, classification and regression 
trees, random forest, linear discriminant analysis and sup-
port vector machines (Nathan et al. 2012). We split train-
ing data into 70% training and 30% test sets to test each 
of the five methods (e.g., Glass et al. 2020). We calculated 
the mean overall accuracy for each model from tenfold 
cross validation to select the best model (Nishizawa et al., 
2013; Olden et al. 2008). Random forest and support vector 
machine algorithms both exceeded 95% overall accuracy. We 
selected the random forest algorithm to classify data from all 
tags, as this algorithm has been used to successfully classify 

behaviors from a variety of taxa (e.g., Fehlmann et al. 2017; 
Lush et al. 2016; Pagano et al. 2017; Tatler et al. 2018). Tag- 
and behavior-specific accuracy and performance metrics are 
shown in Table S1.

We used overall dynamic body acceleration (ODBA) as a 
proxy for energy expenditure from ACC data (Wilson et al. 
2019). To increase consistency between devices, we used 
quantile mapping, a technique common in climate modeling 
for correcting bias (Piani et al., 2010; Reiter et al. 2018) 
using the package ‘qmap’ version 1.0–4 (Gudmundsson 
et al. 2012). Due to manufacturer settings, Ornitela ACC 
data were bounded, meaning that recorded values were 
forced between a minimum and maximum (i.e., − 2048 to 
2047 mV). Therefore, we opted to stretch Ornitela and e-obs 
values to match CTT. We visually assessed the plots of the 
empirical cumulative density function of the CTT, Ornitela, 
and transformed Ornitela data and selected the empirical 
quantiles over smoothing splines as the most appropriate 
mapping function.

Defining migration period and reproductive 
deferral

We considered the spring migration period to start no ear-
lier than 14 days prior to wintering area departure of each 
GPS-tracked goose to incorporate preparations for depar-
ture; however, some geese were tagged < 14 days prior to 
departure from wintering areas (n = 5 for Greenland, n = 2 
for midcontinent). We defined the end of the spring migra-
tion period for each goose as the end of the 14-day period 
after departure of the last major staging area defined in the 
literature (Prairie Pothole Region spanning Alberta to Mani-
toba and South Dakota for midcontinent geese, and west 
Iceland for Greenland geese; Fig. 1; Ely et al. 2013; Fox 
et al. 2014; Weegman et al. 2017b), because geese often 
stage in the Arctic or sub-Arctic prior to nest site selection 
(Fox and Bergersen 2005). Geese use these staging areas 
consistently and in large numbers to rebuild nutrient stores, 
generally for > 1 week just before moving to breeding areas 
(Fox et al. 2002; Anderson and Haukos 2003; Hübner 2006).

We classified geese as having attempted or deferred 
reproduction based on retrospective analysis of patterns 
in GPS and ACC data, following the methods described 
in Schreven et al. (2021), which can identify incubation 
events as short as 3 days and used median daily ODBA 
and standard deviation in latitudinal movements between 
1 May and 31 July. Two midcontinent geese failed to trans-
mit ACC data after the first week of June, so we followed 
the procedures for identifying incubation from only the 
GPS signals, which persisted through July. Reproductive 
outcomes (i.e., success or failure) of 15 male Greenland 
geese with backpack devices (2012–2013) were confirmed 
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by resighting marked individuals associating (or not) with 
young on wintering areas (i.e., 5–8 months post-hatch; 
Weegman 2014; Weegman et al. 2017a).

Weather covariates

GPS points from neck collars were thinned to one per day 
in the late afternoon, at approximately 1600 h local time 
(i.e., mean deviation from 1600 h was 39 min), to match 
frequency of backpack devices, using the package ‘ade-
habitatLT’ version 0.3.23 (Calenge 2006; Calenge et al. 
2009). We interpolated missing GPS coordinates dur-
ing spring migration (n = 35 across 13 individuals with 
e-obs backpack devices; Supplementary File 1: Figure S1) 
using the ‘move’ package version 3.2.0 (Kranstauber et al. 
2019). The maximum number of consecutive missing loca-
tions was ≤ 3 days, so we expected that these missing loca-
tions would not negatively impact results, as the analyses 
were predominately based on fine-scale ACC data, and 
weather patterns are likely large enough to account for 
small imprecision in interpolated locations.

Minimum temperature (°C) data were extracted for each 
once-daily GPS goose location from the National Cent-
ers for Environmental Prediction (NCEP)/Department 
of Energy Reanalysis II data set (2.5 × 2.5-degree spa-
tial resolution; Kanamitsu et al. 2002) using the package 
‘RNCEP’ version 1.0.1 (Kemp et al. 2012) in Program R 
version 4.0.2 (R Core Team 2020). The ‘RNCEP’ pack-
age provided four interpolated values (corresponding to 
approximately 0400, 1000, 1600 and 2200 h local time) at 
each location, which were averaged to obtain a daily value. 
We downloaded daily precipitation data from the Global 
Precipitation Climatology Project (GPCP) Version 1.3 
(1-degree spatial resolution; Huffman et al. 2001; Adler 
et  al. 2017) and extracted values using the R package 
‘raster’ (Hijmans 2022). Precipitation data were missing 
across much of the raster for 6 April 2013, and we inter-
polated these values by averaging the values of the day 
before and day after. Daily temperature and precipitation 
were not strongly correlated (r = 0.15, 95% CI 0.12, 0.18).

Statistical analyses

We developed Bayesian hierarchical models and imple-
mented them in JAGS using the package ‘jagsUI’ version 
1.5.0 (Plummer 2003; Kellner 2018) in Program R version 
4.0.2 (R Core Team 2020). Convergence was confirmed 
via the Gelman-Rubin statistic (Brooks and Gelman 1998) 
and visual inspection of traceplots. Continuous variables 
were standardized to have a mean of 0 and standard devia-
tion of 1. We log-transformed ODBA to meet normality 
assumptions.

Impact of daily conditions on ODBA and PTF

We modeled the relationship between lnODBA and weather 
conditions (minimum temperature and precipitation) using 
a dynamic linear model. Dynamic linear models are a form 
of state space models for time series with coefficients that 
evolve over time according to a temporal process such as 
a random walk autoregression model. The daily effects of 
each weather covariate on lnODBA were estimated for each 
individual (i.e., one model per goose yielded estimates for 
each day of that bird’s migration). A linear regression model 
with dynamic coefficients was used to model daily effects 
of weather covariates on median daily lnODBA. For each 
individual i, the model was specified as:

where  PRCPt and  MTEMPt were precipitation and mini-
mum temperature, respectively, for day t. �0,i represented the 
intercept and had a vague normal prior with mean = 0 and 
variance = 100. �1,it and �2,it were the slope parameters for 
the effects of covariates on day t. The priors for the effect 
on the first day, �1,i1 and �2,i1 were normal with mean = 0 
and variance = 100. The expected value of each day for each 
individual was represented by �it , and the observation vari-
ance was represented by 1∕�i . We used a gamma prior with 
shape = 0.1 and rate = 1 for the observation precision �i . The 
dynamic evolution of the regression coefficients �1,it and �2,it 
was modeled independently as:

where we assumed a random walk—and therefore imposing 
strong autocorrelation between the estimates—by fixing �k 
to 1 for all k, and where �k,i was process precision for covari-
ate k, which had a gamma prior distribution with shape = 0.1 
and rate = 1. We sampled three Markov Chain Monte Carlo 
(MCMC) chains, each with 120,000 iterations and a burn-in 
of 80,000, yielding 120,000 posterior samples.

We used the same approach for the effects of weather on 
proportion of time feeding, but replaced the linear model 
with a binomial generalized linear model, with the response 
consisting of the number of bursts classified as feeding and 
the total number of bursts such that:

The priors for the effect on the first day, �1,i1 and �2,i1 were 
normal with mean = 0 and variance = 2.25. All other aspects 
of the model were the same as for lnODBA. We chose a 

ODBAit ∼ Normal(�it, 1∕�i)

�it = �0,i + �1,it × PRCPit + �2,it ×MTEMPit

�k,it = Normal(�k × �k,i(t−1), 1∕�k,i)

PTFit ∼ Binomial(yit, nit)

logit(yit) = �0,i + �1,it × PRCPit + �2,it ×MTEMPit
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smaller prior variance for the models using the logit link. 
When the covariates are standardized, it is unlikely to 
observe logistic regression coefficients on the order of 5, 
because that corresponds to a change in the probability of 
0.5 (i.e., a probability of 0.01–0.5 for a coefficient of 5; Gel-
man et al 2008). Therefore, we chose the variance such that 
the prior puts small mass on coefficient values greater than 
5 in absolute value.

Influence of ODBA and PTF on probability of reproductive 
deferral

We used a stochastic antecedent model (Ogle et al. 2015) 
to quantify the extent to which daily and cumulative 
lnODBA and PTF during spring migration explained vari-
ation in the probability of an individual deferring repro-
duction. These stochastic antecedent models include an 
antecedent variable as a cumulative measure of covariate 
values (i.e., lnODBA or PTF) weighted by the importance 
of each day (Ogle et al. 2015). If the antecedent variable 
explained substantial variation in the probability of breed-
ing deferral, then a larger weight for one day would indi-
cate that specific day significantly affected probability of 
deferral more than other days during spring migration. 
This may reveal time-lags in effects (e.g., if lnODBA or 
PTF during staging was more important than lnODBA or 
PTF on breeding areas in the days leading up to incuba-
tion; Ogle et al. 2015). We used a logistic regression for 
the likelihood of breeding deferral given the antecedent 
effects over a span of 54 days, which was the shortest-dura-
tion migration. Due to the calculation of daily weights, we 
were unable to include differing-length migrations, and 
instead used the last 54 days of migration for each goose, 
though days did not necessarily match calendar dates. We 
included only geese with neck collars (n = 20) to allow 
for an unbiased comparison between populations. The 
approach can be mathematically described as:

where Yi was the binary response variable (1 for defer; 0 for 
attempt) for individual i, βk represented slope parameters for 
k = 1, 2, 3, which were the realized effects of the anteced-
ent variable, Greenland or midcontinent population, and the 
interaction between these, on probability of deferral. The 
antecedent variable for individual i is noted as antXi and 
population of each individual is represented by popi (mid-
continent = 0, Greenland = 1). A vague normal prior was 
used for βk with mean = 0 and variance = 2.5. Following 
Ogle et al. (2015), antecedent variables were calculated as:

Yi ∼ Bernoulli(pi)

logit
(

pi
)

= � + �1 × antXi + �2 × popi + �3 × antXi × popi

where D indicated the duration of migration period in days, 
Xi(t) was the daily value of PTF or lnODBA for individual 
i, and wX(t) was the daily weight. A Dirichlet prior was used 
for weights (specified via the gamma distribution in JAGS 
with rate and shape = 1). MCMC chains each had 5000 itera-
tions and burn-in 2500 samples, yielding 7500 total poste-
rior samples over three chains. The daily and cumulative 
weights estimated from the stochastic antecedent models 
were examined to determine temporal variation in impor-
tance of lnODBA and PTF.

Results

Migration duration varied substantially between populations. 
While Greenland geese did not depart winter quarters in 
Ireland and Scotland until early April, midcontinent birds 
began moving north as early as late February or early March 
(Fig. 1, inset). Based on movement and lnODBA charac-
teristics of collared birds, 3 out of 10 Greenland birds with 
collars deferred nesting, and 4 of 10 midcontinent birds 
deferred (Supplementary File 1: Table S1). Two out of 15 
Greenland geese with backpack devices were confirmed as 
having successfully raised young. Median daily lnODBA 
ranged from − 4.4 to 0.35 for Greenland geese with col-
lars, − 4.5 to 0.51 for Greenland geese with backpacks, and 
− 4.3 to 0.44 for midcontinent birds. Daily proportion of 
time feeding ranged from 0.017 to 0.85 for Greenland col-
lars, 0.017–0.85 for Greenland backpacks, and 0.018–0.94 
for midcontinent geese.

Minimum temperature appeared to be more variable 
between years for midcontinent geese (Fig. 2). The aver-
age minimum temperature for Greenland geese was overall 
slightly lower than midcontinent geese (− 0.1 C vs. 1.4 C; 
range − 32.2 to 10.6 vs. − 19.3 to 22.8), and Greenland 
geese experienced slightly more precipitation on average 
(1.9 mm vs. 1.3 mm), though individual events may have 
been greater for midcontinent geese than Greenland geese 
(53 mm vs. 25.2 mm maximum).

Quantifying weather effects on PTF and ODBA

Time-varying coefficients of the weather variables appeared 
to have stronger effects on PTF than lnODBA as there are 
more periods of time where the proportion of samples 
for the coefficients are close to 1 or 0 (Fig. 3), indicating 
greater certainty in the positive or negative effect. A major-
ity of midcontinent geese showed a period of strong posi-
tive effects (i.e., > 80% posterior samples greater than 0) of 

antX
i
=

D
∑

t=1

X
i
(t) × w

X
(t)
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precipitation on both response variables, PTF and lnODBA, 
at the beginning of migration, and in a positive effect of 
minimum temperature on lnODBA during March and April. 
Many Greenland geese showed a pattern of high-certainty 
positive effects of minimum temperature in both PTF and 
lnODBA in early May similar to midcontinent birds. Green-
land geese did not show a consistent pattern in the effects of 
precipitation on lnODBA or PTF, though there was a small 
pattern of negative effects of precipitation on PTF in Green-
land birds in 2012 that was not present in 2013 or 2018. The 
effects on PTF appear to be overall stronger than the effects 
on lnODBA.

Antecedent effect of PTF and ODBA on probability 
of deferral

The interaction of population and antecedent lnODBA (the 
sum of daily lnODBA multiplied by daily weight), but not 
antecedent PTF, explained moderate variation in prob-
ability of breeding deferral (Fig. 4, Supplementary File 1: 
Table S2). The odds of deferring reproduction in midcon-
tinent geese decreased by a factor of 0.84 for each standard 
deviation increase in lnODBA, and increased by a factor of 
0.32 for Greenland geese. The odds of deferring reproduc-
tion in midcontinent geese decreased by a factor of 0.72 
with each standard deviation increase in PTF, and the odds 
of deferring decreased by a factor of 1.2 in Greenland geese. 
The probability of deferral for midcontinent geese with aver-
age PTF was 41.9% (95% CRI: 17.7%, 69.7%), while the 

probability of deferral for Greenland geese with average PTF 
was 27.9% (95% CRI: 6.4%, 67.0%; Fig. 4b). The models 
did not detect any differentially important time points for 
antecedent lnODBA or PTF, and all daily weights for both 
models were close to 0.02, which is equal to 1 divided by 
54, the total number of days in the model (Supplementary 
File 1: Figure S2).

Discussion

We used a combination of GPS and ACC data to assess daily 
relationships and the cumulative effect of animal decision-
making on subsequent productivity, measured as the prob-
ability of breeding deferral. Many Greenland geese spent 
more time foraging when the day was warmer, approxi-
mately the last 1–2 weeks prior to leaving Iceland (Fig. 3). 
This pattern was most prominent in male geese from 2012 
to 2013, though there did not appear to be differences in 
birds that successfully reproduced and those that did not. 
Temperature was expected to be linked to forage quality in 
spring (van Wijk et al. 2012), so this positive association 
could be a result of increased plant growth providing greater 
opportunities for geese to feed prior to migration from Ice-
land to Greenland. Previous work has shown that increased 
temperatures earlier in the year are positively correlated with 
increased accumulation of fat storage prior to departure from 
Ireland (Fox and Walsh 2012).

Fig. 2  Time series of a precipitation and b minimum temperature 
encountered by 35 white-fronted geese in 2012–2013 (n = 15) and 
2017–2018 (n = 20) in the midcontinent North American (red) and 

Greenland (blue) populations of white-fronted geese. Lines reflect 
conditions experienced by individual geese throughout migration, and 
darker lines indicate similar conditions between individuals



377Oecologia (2023) 201:369–383 

1 3

Fig. 3  Daily effects of precipitation (mm) and minimum tempera-
ture (°C) on a energy expenditure and b proportion of time feeding 
for white-fronted geese. Each cell represents the posterior distribution 
of time-varying regression coefficients estimated via a random walk 
autoregressive process. Proportion of posterior samples greater or 
less than 0 is used to indicate strength of effect (e.g., stronger positive 
effect shown in red and stronger negative effect shown in blue). Indi-

vidual identification codes on the y-axis include sex, year tagged, and 
population of each goose. Symbols on the right side of each plot indi-
cate reproductive outcome; filled symbols represented reproductive 
success (geese tagged in 2012 or 2013) and attempted reproduction 
(geese tagged in 2017 or 2018), while open symbols indicate failure 
or deferral
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Similarly, midcontinent geese showed a positive asso-
ciation of energy expenditure and, to an extent, time for-
aging with precipitation in the early weeks of the spring 
migration period. The increased precipitation could be 
linked to ideal growing seasons of crops such as winter 
wheat (Stone and Schlegel 2006) that we speculate the 
geese could have been exploiting. While there appears to 
be variation between individuals in the effects of time-
varying coefficients, we did not observe patterns that 
consistently varied across reproductive status. However, 
light-bellied brent geese (Branta bernicla hrota) follow 
an almost identical migratory route to Greenland white-
fronted geese, but migrate further west to North America, 
with documented effects of weather conditions on repro-
ductive success (Harrison et al. 2013; Cleasby et al. 2017). 
Thus, further investigation into a broader suite of weather 
conditions may reveal different patterns in daily and cumu-
lative effects on energy expenditure and reproductive suc-
cess. We reiterate that our study captured only a small 
portion of potential conditions, as circumstances can vary 
greatly among years (e.g., Dickey et al. 2008).

Habitats used by individuals of the two populations dur-
ing spring stopovers can be quite different, and we expected 
that this would be reflected in differences in ODBA and 
PTF between populations. Greenland geese feed primarily 
on grass in hay meadows and limited waste grain in Iceland 
(Boyd et al. 1998; Fox and Walsh 2012), while midcontinent 
geese feed extensively on waste grain (Krapu et al. 1995; 
Ely et al. 2013). Geese tend to feed longer on grasses than 
agricultural grains, and while most grasses are higher in pro-
tein, they are lower in lipid content compared to agricultural 
grains (Ely and Raveling 2011). However, we found that 
greater overall time foraging during spring migration was 
associated with a lower probability of breeding deferral in 
both populations, highlighting the need for future research 
about habitat use throughout migration and nutrient quality 

of foods consumed by white-fronted geese in Europe and 
North America.

Our results indicated that the strength and direction of 
the relationship between antecedent time spent foraging and 
probability of deferral was similar between populations, but 
the strength of relationships between probability of deferral 
and energy expenditure were different between populations. 
As predicted, more time foraging lowered the probability of 
breeding deferral. This likely indicates that more time spent 
foraging is related to greater resource reserves for breeding 
once geese arrive in the Arctic. We hypothesize that the 
negative relationship in probability of deferral and energy 
expenditure could be from geese meeting their energetic 
requirements and loafing in Iceland until moving to Green-
land (Fox et al. 2012), and any birds that are still moving and 
foraging heavily have likely not acquired sufficient resources 
to breed. The increase in energy expenditure associated with 
higher deferral rates in midcontinent geese could be a result 
of disturbance preventing geese from obtaining necessary 
resources due to increased flight during stopovers (Béchet 
et al. 2004). Alternatively, the increased energy expenditure 
could be a result of difference in space use at stopovers, as 
other species show substantial individual variation in flight 
distance to foraging sites (Clausen et al. 2013). Midcontinent 
geese have been observed moving approximately 20 km per 
day between roost and feeding sites (Pearse et al. 2013). 
Consistently longer flight distances from roost sites to forag-
ing areas could indicate poor decision making in individuals 
that could lead to subsequent reproductive failure due to a 
negative energy balance.

Our analyses did not identify any important time peri-
ods in which birds that deferred reproduction differed from 
those who attempted (or those that were successful vs failed 
in 2012–2013). While we emphasize the limitations in our 
ability to discern early failure (i.e., ≤ 3 days) from deferred 
breeding, which may be the result of different mechanisms, 

Fig. 4  Predicted probability 
of deferring reproduction in 
Greenland (blue) and North 
American midcontinent (red) 
populations of greater white-
fronted geese explained by a 
antecedent energy expenditure 
and b antecedent proportion 
of time feeding. Shading rep-
resents 95% credible intervals. 
X-axis values have been scaled 
and centered
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we observed breeding deferral in fewer than half of the geese 
in both populations, which was lower than expected for the 
Greenland geese given the declining population, though 
out of the males fitted with backpack devices, only 2 out 
of 15 returned to wintering areas with offspring. Therefore, 
we interpret our results to indicate that despite parental 
preparation, young are not surviving to be recruited into 
the population by the time geese return to wintering areas. 
Goslings are vulnerable to a variety of predators (Anthony 
et al. 1991; Bowman et al. 2004) and harsh weather (Fon-
dell et al. 2008). Additionally, warming climates and early 
onset of spring can lead to increased mortality of offspring 
due to a mismatch between gosling growth and peak food 
quality, regardless of parent abilities to refuel after arriv-
ing in the Arctic (Lameris et al. 2018). Given the mismatch 
between the number of geese attempting reproduction and 
geese returning to wintering areas with offspring, we sug-
gest investigation into rates of nest failure and brood loss 
in Greenland white-fronted geese to explain differences in 
productivity between these two populations.

Our study provides an initial example of blending tempo-
rally frequent ACC data with GPS data for birds of contrast-
ing migration routes to uniquely quantify how individuals 
respond to their environment and the implications of indi-
vidual behavioral patterns on reproduction. Inferences from 
tracking studies are commonly limited because of the rela-
tively low number of individuals tagged. Yet, advances in 
miniaturized tracking technologies such as accelerometers 
allows for a substantial amount of information to be col-
lected from each individual. The method demonstrated in 
this paper may increase our capacity to link animal behav-
ior and individual reproductive output, as new methods are 
being derived for identifying reproductive events remotely 
(e.g., Schreven et al. 2021; Ozsanlav-Harris et al. 2022), 
with environmental conditions (Valletta et al. 2017) and con-
sequences of climate change (e.g., Lameris et al. 2018). Fur-
ther, these methods could be used in the context of varying 
landscapes to better understand linkages among behavior, 
environmental conditions, and reproductive success, allow-
ing practitioners to pinpoint critical periods of the annual 
cycle to ascribe priority areas for improved conservation 
efforts.
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