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Abstract
Problem of research  Candida spp. biofilms are complex microbial communities that have been associated with increasing 
resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm 
formation have been investigated.
Aim of study  The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm 
strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces.
Remarkable methodology  Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then 
treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg/mL) for 
evaluation of both biofilm removal and anti-biofilm activity.
Remarkable results  All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was 
displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm 
formation at all concentrations used when compared to no treatment (p < 0.05).
Significance of the study  In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against 
Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to 
evaluate a natural product as antifungal for Candida species.
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Abbreviations
ATCC​	� Anatomical Therapeutic Chemical 

Code
BHI	� Brains heart infusion
ESI	� Electrospray ionization

ESI-FT-ICR MS	� Cyclotron analyzer coupled to a Fourier 
transform

ICMBio	� Instituto Chico Mendes de Con-
servação da Biodiversidade

Sisgen	� Sistema Nacional de Gestão do 
Patrimônio Genético

Introduction

Infections by Candida species, such as Candida albicans, 
C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis, 
are increasingly frequent [1–3]. They often occur due to host 
immunosuppression and/or virulence factors expressed by 
these yeasts, which contribute to their ability to colonize, 
penetrate, and invade tissues [4]. Such strains have also the 
ability to form biofilm.

According to Costerton (1999), biofilm consists of 
cells that attach to surfaces aggregate in a hydrated poly-
meric matrix of their own synthesis to form biofilms [5]. 
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Importantly, biofilms may hinder the penetration of most 
antifungal agents, thereby leading to a poor response to 
treatment and drug resistance [6–9]. The formation and 
development of distinct phases of biofilm (adhesion/
colonization, maturation, and dispersion) are mediated 
by regulatory genetic alterations and complex molecular 
events [10].

Because they consist in a matrix of microorganisms, 
biofilms can be considered a defense strategy of pathogens, 
affecting either biotic or abiotic surfaces such as medical 
devices (e.g., catheters, bladder probes) [11–13].

Moreover, biofilms have been increasingly linked to both 
mucosal infections such as candidiasis, which is facilitated 
by virulent factors from Candida species, including their 
capacity to form biofilms and the transition to filamentous 
or hyphal form [14].

In this context, natural products with ability to inhibit 
or disrupt biofilms have been investigated as a potential 
source of novel antifungals [15, 16]. Al-Sokari and Sheikha 
(2015) evidenced that crude extracts of Ruta graveolens 
L have good inhibition zone against Escherichia coli and 
Pseudomonas aeruginosa. Latex of Ficus carica Linn plants 
showed that it is a good inhibitor for Candida albicans [17].

Khan and Ahmad had studied the inhibitory effect of 
essential oil of Cymbopogan citratus and Syzygium aromati-
cum on the biofilm of drug-resistant Candida from clinical 
origin. C. citratus was capable to inhibit the biofilm forma-
tion of approximately 88% in C. albicans 04 and 82% in C. 
albicans SC5314 and S. aromaticum inhibited 52% and 57% 
biofilm in above-mentioned test strains at the same concen-
tration [18].

Açaí (Euterpe oleracea Mart.) is a native plant from 
Amazonian region, and it has been used despite of its high 
antioxidant activity as antimicrobial. Euterpe genus includes 
over 28 species distributed throughout the Amazon region 
in Latin America, where E. oleracea, E. precatoria, and E. 
edulis are the most frequent species.

The phytochemical composition of the fruit known as 
“açaí berry” has been well characterized. It includes phe-
nolic acids, anthocyanins (e.g., cyanidin-3-rutinoside and 
cyanidin-O-glucoside), proanthocyanidins, lignans (e.g., 
aryltetrahydronaphthalene, dihydrobenzofuran, furofuran, 
8-O-4′-neolignan, and tetrahydrofuran), and polyphenolic 
constituents (e.g., epicatechin, the catechin homoorientin, 
orientin, isovitexin, and taxifolin deoxyhexose) [19].

Hence, the present study was aimed at investigating 
in vitro whether the treatment with E. oleracea Mart. extract 
would have the ability to inhibit or disrupt biofilms from 
C. albicans, C. parapsilosis, and C. tropicalis formed on 
abiotic surfaces.

It is important to study natural products as antifungal 
agents, considering the remarkable resistance of Candida 
species to imidazoles.

This is relevant to have alternative treatments because 
the increasing incidence of drug-resistant pathogens and the 
toxicity of existing antifungal compounds have increased 
interest in the antifungal properties of natural products. Fur-
thermore, most of the available antifungals are either inef-
fective against Candida biofilms or exhibit their inhibitory 
activity at high concentrations.

Methods

Microbial strain identification

Commercially available strains of C. albicans (ATCC 
10,231), C. tropicalis (ATCC 1369), and C. parapsilosis 
(ATCC 22,019) were obtained from Plast Labor (Rio de 
Janeiro, RJ, Brazil) and kept under refrigeration until use. 
Field experiments have been approved by the Brazilian Min-
istry of the Environment, Instituto Chico Mendes de Con-
servação da Biodiversidade—ICMBio (approval number: 
57805–1).

The strains were kept on Sabouraud Dextrose Agar with 
4% chloramphenicol. The fungal suspension for the experi-
ments was prepared from 24 h colonies diluted in 0.85% 
saline according to the 0.5 MacFarland scale (1–5 × 106 
cells/mL).

Preparation of E. oleracea Mart. extract

The fruits of E. oleracea Mart. used in this study were col-
lected from Juçara Park, located in São Luís, MA, Brazil 
(latitude: 02° 31′ 47″ S, longitude: 44° 18′ 10″ W, altitude: 
24 m). Approval was obtained through the Sistema Nacional 
de Gestão do Patrimônio Genético e do Conhecimento 
Tradicional Associado (SisGen, protocol A91B0BA). The 
extract was prepared using a protocol previously utilized 
with some adaptations [20]. Briefly, fruits were thawed and 
washed three times with distilled water, then soaked in warm 
water for 1 h. Subsequently, 365 g of whole fruit extract 
was grinded and mixed with 400 mL of ethyl alcohol p.a. 
For 10 days, the mix was shaken for 2 h/day, followed by 
vacuum filtration. The solvent was removed by rotary evapo-
ration, lyophilized, aliquoted, and then refrigerated until use. 
After the maceration period, the extract was concentrated 
in rotoevaporator, lyophilized, and sent for identification of 
chemical compounds through mass spectrometry analysis.

Mass spectrometry analysis

Mass spectrometry analysis was performed using an elec-
trospray ionization (ESI) source and a cyclotron analyzer 
coupled to a Fourier transform (ESI-FT-ICR MS). Samples 
were diluted with 0.1% acetic acid for positive analysis, 



31Brazilian Journal of Microbiology (2023) 54:29–36	

1 3

and the resulting solution was then infused directly into 
the SOLARIX 9.4 T mass spectrometer (Bruker Daltonics, 
Bremen, Germany), operating in a range of 100–1000 m/z. 
The general conditions for EIS analysis were gas pressure 
of 0.3 psi, capillary voltage of 4.5 kV, and 220 °C for the 
ion transfer capillary temperature. The ESI ( +)—FT—ICR 
MS spectra were acquired and processed using the Compass 
Data Analysis software (Bruker Daltonics).

Evaluation of biofilm formation

Biofilm formation was evaluated in 96-well polystyrene 
microplates as previously described [21]. First, Candida 
spp. strains were cultivated in Sabouraud Dextrose Agar and 
incubated at 37 °C for 24 h. Next, isolates were diluted in 
saline solution to match the 0.5 McFarland turbidity stand-
ard, corresponding to 1 × 106 to 5 × 106 cells per mL [22]. 
The wells of microplates were filled sequentially in tripli-
cates. In the negative control group, only 200 μL of BHI 
with 6% glucose were added. In the remaining wells, 180 
μL of BHI with 6% glucose plus 20 μL of the suspension 
of each Candida species in saline solution was added. The 
microplates were incubated (37 °C, 24 h) and, subsequently, 
washed three times with sterile distilled water, and received 
200 μL of crystal violet dye each well for 5 min. They were 
then washed three times with sterile distilled water, and 
lastly, 200 μL of sterile distilled water was added to each 
well for spectrophotometric analysis at 570 nm wavelength 
absorbance.

Adhesion and antibiofilm activity of E. oleracea 
Mart. extract on Candida spp.

Biofilms in 96-well polystyrene microplates were formed by 
inoculum of C. albicans, C. parapsilosis and C. tropicalis 
(100 μL), incubated for 1 h and 30 min at 37 °C, which cor-
responds to adhesion phase of yeasts to the abiotic surface 
[21].

Subsequently, the medium was aspirated, the wells were 
washed three times with PBS 1X and 200 μL of different 
concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 
1000 μg/mL) diluted in BHI with 6% glucose were added. 
The wells were washed with sterile PBS 1X 3 times, fixed 
with PA ethanol for 2 min and stained with 1% violet crystal 
solution for 5 min and again washed with sterile 1X PBS 5 
times to remove excess dye.

After this step, 200 μL of sterile 1X PBS was added to 
each well and the reading was performed on the Epoch 
microplate reader with a wavelength of 570 nm. In columns 
A1, A2, and A3 the positive control was inoculated adding 
only the culture medium.

Biofilm removal activity of E. oleracea Mart. extract 
on Candida spp. biofilms

To analyze in vitro biofilm removal activity of E. oleracea 
Mart. extract on biofilms formed by C. albicans, C. parap-
silosis, and C. tropicalis on abiotic surfaces of microplates 
(TPP) after 72 h, different concentrations (7.8, 15.6, 31.2, 
62.5, 125, 250, 500, and 1000 μg/mL) of E. oleracea Mart. 
extract (200 μL) were added in each well over the mature 
biofilm [21].

Subsequently, the wells were washed with sterile 1X PBS 
3 times, fixed with PA ethanol for 2 min and stained with 1% 
violet crystal solution for 5 min and again washed 5 times 
with 1X PBS to remove excess dye. After this step, 200 μL 
of sterile 1X PBS was added to each well and the reading 
was performed on the Epoch microplate reader with a wave-
length of 570 nm.

Antibiofilm activity of E. oleracea Mart. extract 
in coverslips

The biofilm evaluation in coverslips was performed using 
protocols previously reported with some adaptations 
[23–25]. C. albicans, C. tropicalis, and C. parapsilopsis 
yeasts were grown in a 24-well plate containing 13 cm round 
glass coverslip in 1-mL 0.85% saline.

The fungal samples were seeded in Sabouraud Dextrose 
Agar and incubated at 37 °C for 24 h. Next, isolates were 
diluted in saline solution to match the 0.5 McFarland turbid-
ity standard, corresponding to 1 × 106 to 5 × 106 cells per 
mL [22]. In each well, 100 μL of the fungal suspension was 
added and placed to adhere for 6 h. The wells were subse-
quently washed three times with 0.85% saline solution and 
then 1 mL of each concentration of the extract (7.8, 15.6, 
31.2, 62.5, 125, 250, 500, and 1000 μg/mL) was added, and 
plates were incubated for 48 h.

Next, the plates were incubated at 37 °C for 48 h in a 
BOD oven. After that, the coverslips were gently removed, 
washed with PBS 1X 3 times, dried at room temperature, 
fixed with PA ethanol, stained with 1% violet crystal solu-
tion. The coverslips were glued with mesh onto the sur-
face of a glass slide and analyzed under the Ninkon optical 
microscope.

Cells adhered to the coverslip were counted and classified 
according to cell arrangement patterns adhered to glass cov-
erslips as: diffuse pattern, when yeast cells adhered to entire 
surface of the glass coverslip without forming cell groups; 
localized adhesion, when involving groups of yeast that 
adhered to localized regions of the coverslip; aggregative, 
which is characterized by yeast clumps arranged as “stacked 
bricks” or “grape clusters” that attached to the glass slide 
surface. The formation of filaments or pseudohyphae along 
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the surface of the coverslip characterized the filamentous or 
pseudohyphal pattern.

Statistical analysis

Data were presented as means ± standard deviations or as 
medians and interquatile ranges. Normality of variables was 
analyzed using the Shapiro–Wilk test. Comparisons were 
performed using the Kruskal–Wallis or Wilcoxon tests. A 
p value ≤ 0.05 was considered to be statistically significant. 
Statistical analyzes were performed using STATA (Stata-
Corp, Release 14; College Station, TX, USA).

Results

Figure 1 displays the chemical characterization of crude 
ethanolic extract of açaí berry fruit by mass spectrometry 
analysis using the positive method. The extract was shown 
to be rich in polyphenols, and the compounds identified are 
exhibited in Table 1.

Further, Candida spp. used in this study had the ability 
to form biofilms on abiotic surfaces. Higher biomass for-
mation on abiotic surfaces was observed in C. tropicalis 
(2.397 ± 0.23) and C. parapsilosis (1.176 ± 0.37) biofilms, 

whereas lower biomass was shown for C. albicans biofilm 
(0.53 ± 0.07).

A variation in biomass formed between Candida species 
was observed, where C. tropicalis was the most adherent, 
thereby producing more biofilm. Table 2 shows the absorb-
ance before and after the addition of E. oleracea Mart. 
extract to surfaces containing biofilms formed by each Can-
dida species analyzed. It was found a statistically significant 
difference between the median absorbance measured before 
and after treatment with E. oleracea Mart. extract for all 
Candida species evaluated (p < 0.001).

Fig. 1   Mass spectrometry from 
Euterpe oleracea Mart extract

Table 1   Compounds isolated 
from Euterpe oleracea Mart 
extract

m/z Compounds

291,08,652 Epicatechin
338,34,154 Erucamide
381,07,924 N-(3-methoxy-5-nitrophenyl)-2-(5-methyl-3,4-dinitro-1H-pyrazol-1-yl) acetamide
391,28,411 Not identidied
579,15,031 Procyanidin B3
633,20,235 (4-Acetoxy-5-((2-((4.5-dihyroxytetrahydro-2H-pyran-2-yl) oxy)-4.5-dilydroxytet-

rahydro-2H-pyran-3-yl) oxy)-3-hydroxytetrahydrofuran-2-yl) methyl (E)-3-(4-
hydroxy-3-methoxyphenyl) acrylate

723,19,485 Not identified

Table 2   Median absorbance (570 nm) of Candida albicans, Candida 
parapsilosis, and Candida tropicalis species during biofilm forma-
tion, pre- and postuse of E. oleracea Mart extract

*Interquartile range (p25– p75)
**Wilcoxon test for paired samples

Strains Absorbance p value**

Pre (n = 72) Post (n = 72)

Median [IQR*] Median [IQR*]

C. albicans 0.773 [0.625–1.072] 0.058[0.049–0.081]  < 0.001
C. parapsilosis 1.504 [1.113–1.680] 0.049[0.047–0.053]  < 0.001
C. tropicalis 2.500 [2.332–2.587] 0.125 [0.056–0.333]  < 0.001
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Since the treatment with E. oleracea Mart. extract 
decreased Candida spp. biomass formation, we further 
tested different concentrations of the extract. Table 3 dis-
plays significant differences in medians from before and after 
the addition of the extract at all concentrations (p < 0.05). 
Therefore, regardless of concentration, antibiofilm activ-
ity of açaí berry extract was maintained. Finally, when the 
removal activity of E. oleracea Mart. extract at the different 
concentrations was analyzed, there was a statistically signifi-
cant difference between the values obtained for C. albicans, 
C. parapsilosis, and C. tropicalis (Table 4).

These findings corroborate with those obtained for the 
antibiofilm activity of E. oleracea Mart. extract on glass 
surface, which was found to prevent biofilm formation. Iso-
lated cells (4 to 6 cells isolated per field) and 99% absence 

of biofilm (Fig. 2a and b) and 39 isolated cells and absence 
of biofilm at concentrations of 250, 500, and 1000 μg/mL 
(Fig. 2c) were observed, preventing biofilm development on 
glass coverslips. At concentrations of 31.2 to 125 μg/mL, 
there was also no biofilm formation; however, the presence 
of aggregative arrangements was observed (Fig. 2j–u). Nota-
bly, concentrations 7.8 (a–c*) and 15.6 (v–z) μg/mL were 
not able to prevent biofilm formation.

Discussion

In the current study, the ability of C. albicans, C. parapsi-
losis, and C. tropicalis to form biofilms on abiotic surfaces 
was demonstrated, and the biomass produced varied accord-
ing to each species. C. tropicalis adhered more easily to the 
abiotic material and was thus associated with greater biofilm 
formation.

The increasing incidence of drug-resistant pathogens and 
the toxicity of existing antifungal compounds have increased 
the interest from antifungal properties of natural products 
[26]. Several studies have been conducted using natural 
products to evaluate interference in C. albicans biofilm and 
anticandidal activity on planktonic and biofilm cultures of 
the C. parapsilosis complex [27, 28].

Most of the available antifungals are either ineffective 
against Candida biofilms or exhibit activity at very high 
concentrations [29, 30]. Plants are rich sources of bioactive 
molecules exhibiting various biological and pharmaceutical 
properties. Various phytochemicals are known to possess 
strong antimicrobial/antifungal activities [31]. Use of these 
phytochemicals against biofilms could be an excellent strat-
egy [32, 33].

Cannas et al. (2014) evidenced a considerable activity of 
essential oil of Myrtus communis L. against C. albicans and 
C. parapsilosis after 24–48 h [34].

Borges et al. [35] demonstrated an increased adhesion of 
C. parapsilosis, which formed biofilm in copper fragments 
after 6 and 24 h of incubation, corroborating to our find-
ings. In addition, açaí berry extract, in contact with abiotic 
surfaces containing biofilms formed by C. albicans, C. par-
apsilosis, and C. tropicalis, presented with a biofilm removal 
effect, whereby medians from before and after the treatment 
with the extract varied significantly in this study.

Several plant extracts, essential oils, and phytomolecules 
have been found to inhibit biofilm formation by Candida 
spp. [36]. Nair et al. [37] analyzed several phytochemicals 
and identified plumbagin (5-hydroxy-2-methyl-1,4-naphtho-
quinone), a phytochemical of Plumbago species, as a potent 
antifungal agent against C. albicans, with a low minimum 
inhibitory concentration that was effective at preventing 
and dispersing biofilms in catheters formed by C. albicans. 
Therefore, in vivo and in vivo evaluation as well as clinical 

Table 3   Absorbance for different concentrations of E. oleracea Mart 
extract, pre- and postuse, on biofilms of C. albicans, C. parapsilosis, 
and C. tropicalis on abiotic surfaces

*Interquartile range (p25– p75)
**Wilcoxon test for paired samples

Concentration 
(μg/mL)

Absorbance p 
value**

Pre (n = 72) Post (n = 72)

Median [IIQ*] Median [IIQ]

7.8 1.341[0.765–2.538] 0.047 [0.046–0.055] 0.019
15.6 1.112 [0.812–2.489] 0.051 [0.049–0.323] 0.007
31.2 1.614 [0.964–2.379] 0.077 [0.053–0.146] 0.007
62.5 1.631[1.123–2.511] 0.085[0.049–0.253] 0.007
125 0.709 [0.518–1.969] 0.058 [0.047–0.386] 0.007
250 1.644 [1.274–1.664] 0.052 [0.049–0.066] 0.007
500 1.688[0.843–2.479] 0.053 [0.050–0.063] 0.007
1000 1.579 [1.462–2.462] 0.055 [0.053–0.086] 0.007

Table 4   Evaluation of the removal activity in C. albicans, C. parap-
silosis, and C. tropicalis specimens in relation to the concentration of 
E. oleracea Mart extract

*Kruskal–Wallis test

Concentration 
(μg/mL)

Removal activity

C. albicans C. parapsilosis C. tropicalis

Mean ± SD Mean ± SD Mean ± SD

7.8 0.607 ± 0.096 0.154 ± 0.021 0.440 ± 0.204
15.6 0.504 ± 0.064 0.373 ± 0.213 0.665 ± 0.282
31.2 0.656 ± 0.058 0.196 ± 0.007 0.658 ± 0.168
62.5 0.844 ± 0.161 0.344 ± 0.254 0.805 ± 0.101
125 0.715 ± 0.140 0.497 ± 0.073 0.589 ± 0.065
250 0.962 ± 0.549 0.471 ± 0.060 0.807 ± 0.110
500 0.251 ± 0.112 0.660 ± 0.074 0.648 ± 0.068
1000 1.275 ± 0.279 1.083 ± 0.005 1.640 ± 0.093
p value* 0.016 0.010 0.034
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trials is required to further investigate the use of phytochem-
icals as candidate molecules for anti-biofilm drugs.

Polyphenols and flavonoids are the main chemical com-
pounds from açaí. Polyphenols display excellent biofilm 
inhibitory activities in C. albicans. Studies showed that cur-
cumin, pyrogallol and pyrocatechol possess anti-Candida bio-
film activity [38]. Epigallocatechin-3-gallate extracted from 
green tea prevented biofilm formation by C. albicans [39].

Epigallocatechin-3-gallate (ECGC) has antifungal activ-
ity against human-pathogenic yeasts like Candida albicans. 
Although the mechanistic effects of EGCG are not fully 
understood, there are results indicating that EGCG binds 
to lipid membranes and affects the folic acid metabolism 
of bacteria and fungi by inhibiting the cytoplasmic enzyme 
dihydrofolate reductase [40].

In the current study, data from before and after the addition 
of açaí berry extract on biofilms of C. albicans, C. parapsi-
losis, and C. tropicalis on abiotic surfaces demonstrated a 
significant difference in biofilm formation at both the lowest 
(7.8 μg/mL) and the highest (1000 μg/mL) concentrations of 
the extract. It is worth mentioning that anti-biofilm activity 
of E. oleracea Mart. extract was maintained at all concen-
trations tested, suggesting that even at low doses, açaí berry 
extract shows an antifungal effect against Candida spp. bio-
film. Nadaf et al. [41] observed that Hymenocallis littoralis 
leaf extract at concentrations of up to 70 μg/mL presented 
with anti-biofilm properties, reducing biomass production by 
C. albicans through interaction with active site residues of 
adhesin proteins.

The pathogenicity of Candida species through various 
virulence factors, such as adhesion to host surfaces, forma-
tion of biofilms and secretion of hydrolytic enzymes has 
been demonstrated [10]. The apparent increase in the emer-
gence of C. glabrata, C. tropicalis, and C. parapsilosis spe-
cies can be attributed to better identification methods and has 
also been associated with clinical impairment, interventions 
performed, and pharmacological therapy. Although studies 
to identify virulence factors, particularly in C. albicans, are 
frequent, relatively little is known regarding non-albicans 
Candida species. Millot et al. [42] analyzed several lichen 
extracts towards identifying their potential activity against 
C. albicans biofilm, eleven of which were found to inhibit 
biofilm maturation by C. albicans.

In relation to the dosage of E. oleracea Mart. extract uti-
lized, the greatest inhibitory action on biofilm formation in 
the species analyzed in this study was obtained at a con-
centration of 250 μg/mL. Dias-Souza et al. [43] evaluated 
the effects of different doses of E. oleracea Mart. against 
Staphylococcus aureus biofilm and found a minimum 

biofilm eradication concentration of 250 μg/mL. This indi-
cates that low concentrations are required to obtain an anti-
biofilm activity of açaí berry extract against Candida spp. 
biomass production.

Conclusion

In summary, an extract obtained from E. oleracea Mart. 
presented with both anti-biofilm activity and removal effect 
against Candida albicans, C. parapsilosis, and C. tropicalis 
biofilms, even when low concentrations were used. These 
results are important for the development of a new antifungal 
from a natural product. Further in vitro investigation is required 
to determine which compounds from açaí berry extract are 
responsible for the actions observed in the present study before 
developing in vivo analysis and clinical trials in this regard.
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