Table 2.
Models | Datasets | AUC | Accuracy | Precision | Sensitivity | Specificity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinic | Radiomic | Clinic + Radiomic | Clinic | Radiomic | Clinic + Radiomic | Clinic | Radiomic | Clinic + Radiomic | Clinic | Radiomic | Clinic + Radiomic | Clinic | Radiomic | Clinic + Radiomic | ||
RF | Training set | 0.981 | 0.982 | 0.983 | 0.980 | 0.973 | 0.988 | 0.873 | 0.878 | 0.882 | 0.929 | 0.968 | 0.952 | 0.865 | 0.865 | 0.873 |
Testing set | 0.721 | 0.746 | 0.879 | 0.787 | 0.787 | 0.863 | 0.428 | 0.556 | 0.778 | 0.500 | 0.417 | 0.583 | 0.851 | 0.926 | 0.963 | |
XGB | Training set | 0.948 | 0.957 | 0.960 | 0.936 | 0.952 | 0.968 | 0.828 | 0.824 | 0.801 | 0.762 | 0.929 | 0.960 | 0.841 | 0.802 | 0.762 |
Testing set | 0.765 | 0.711 | 0.761 | 0.727 | 0.757 | 0.727 | 0.429 | 0.444 | 0.308 | 0.500 | 0.333 | 0.667 | 0.852 | 0.907 | 0.667 | |
LR | Training set | 0.778 | 0.734 | 0.796 | 0.746 | 0.706 | 0.698 | 0.717 | 0.682 | 0.977 | 0.865 | 0.698 | 0.992 | 0.659 | 0.675 | 0.976 |
Testing set | 0.754 | 0.560 | 0.730 | 0.697 | 0.667 | 0.667 | 0.313 | 0.250 | 0.323 | 0.833 | 0.417 | 0.833 | 0.593 | 0.722 | 0.611 | |
SVM | Training set | 0.989 | 0.500 | 0.979 | 0.710 | 0.500 | 0.968 | 0.944 | 0.632 | 0.984 | 0.944 | 0.952 | 0.992 | 0.944 | 0.444 | 0.984 |
Testing set | 0.732 | 0.500 | 0.718 | 0.515 | 0.182 | 0.788 | 0.444 | 0.182 | 0.500 | 0.333 | 1.000 | 0.083 | 0.907 | 0.000 | 0.981 | |
KNN | Training set | 0.905 | 0.797 | 0.868 | 0.968 | 0.746 | 0.940 | 0.935 | 0.632 | 0.867 | 0.794 | 0.952 | 0.825 | 0.944 | 0.444 | 0.873 |
Testing set | 0.623 | 0.583 | 0.623 | 0.712 | 0.682 | 0.742 | 0.429 | 0.182 | 0.500 | 0.250 | 1.000 | 0.083 | 0.926 | 0.000 | 0.981 |
AUC, area under curve; RF, random forest; XGB, eXtreme gradient boosting; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors.