Skip to main content
. 2023 Feb 8;14:1105616. doi: 10.3389/fneur.2023.1105616

Table 2.

Performance of predictive models.

Models Datasets AUC Accuracy Precision Sensitivity Specificity
Clinic Radiomic Clinic + Radiomic Clinic Radiomic Clinic + Radiomic Clinic Radiomic Clinic + Radiomic Clinic Radiomic Clinic + Radiomic Clinic Radiomic Clinic + Radiomic
RF Training set 0.981 0.982 0.983 0.980 0.973 0.988 0.873 0.878 0.882 0.929 0.968 0.952 0.865 0.865 0.873
Testing set 0.721 0.746 0.879 0.787 0.787 0.863 0.428 0.556 0.778 0.500 0.417 0.583 0.851 0.926 0.963
XGB Training set 0.948 0.957 0.960 0.936 0.952 0.968 0.828 0.824 0.801 0.762 0.929 0.960 0.841 0.802 0.762
Testing set 0.765 0.711 0.761 0.727 0.757 0.727 0.429 0.444 0.308 0.500 0.333 0.667 0.852 0.907 0.667
LR Training set 0.778 0.734 0.796 0.746 0.706 0.698 0.717 0.682 0.977 0.865 0.698 0.992 0.659 0.675 0.976
Testing set 0.754 0.560 0.730 0.697 0.667 0.667 0.313 0.250 0.323 0.833 0.417 0.833 0.593 0.722 0.611
SVM Training set 0.989 0.500 0.979 0.710 0.500 0.968 0.944 0.632 0.984 0.944 0.952 0.992 0.944 0.444 0.984
Testing set 0.732 0.500 0.718 0.515 0.182 0.788 0.444 0.182 0.500 0.333 1.000 0.083 0.907 0.000 0.981
KNN Training set 0.905 0.797 0.868 0.968 0.746 0.940 0.935 0.632 0.867 0.794 0.952 0.825 0.944 0.444 0.873
Testing set 0.623 0.583 0.623 0.712 0.682 0.742 0.429 0.182 0.500 0.250 1.000 0.083 0.926 0.000 0.981

AUC, area under curve; RF, random forest; XGB, eXtreme gradient boosting; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors.