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Abstract: This paper discusses a hybrid grey wolf optimizer utilizing a clone selection algorithm
(pGWO-CSA) to overcome the disadvantages of a standard grey wolf optimizer (GWO), such as slow
convergence speed, low accuracy in the single-peak function, and easily falling into local optimum
in the multi-peak function and complex problems. The modifications of the proposed pGWO-CSA
could be classified into the following three aspects. Firstly, a nonlinear function is used instead of a
linear function for adjusting the iterative attenuation of the convergence factor to balance exploitation
and exploration automatically. Then, an optimal & wolf is designed which will not be affected by the
wolves B and J with poor fitness in the position updating strategy; the second-best p wolf is designed,
which will be affected by the low fitness value of the § wolf. Finally, the cloning and super-mutation
of the clonal selection algorithm (CSA) are introduced into GWO to enhance the ability to jump out
of the local optimum. In the experimental part, 15 benchmark functions are selected to perform the
function optimization tasks to reveal the performance of pPGWO-CSA further. Due to the statistical
analysis of the obtained experimental data, the pGWO-CSA is superior to these classical swarm
intelligence algorithms, GWO, and related variants. Furthermore, in order to verify the applicability
of the algorithm, it was applied to the robot path-planning problem and obtained excellent results.

Keywords: grey wolf optimizer; clonal selection algorithm; position-updating strategy; nonlinear
function; robot path planning

1. Introduction

The metaheuristic algorithm is an improvement of the heuristic algorithm combined
with a random algorithm and local search algorithm to implement optimization tasks. In
recent years, metaheuristic optimization has made some recent developments. Jiang X et al.
proposed optimal pathfinding with a beetle antennae search algorithm using ant colony
optimization initialization and different searching strategies [1]. Khan A H et al. proposed
BAS-ADAM: an ADAM-based approach to improving the performance of beetle anten-
nae search optimizer [2]. Ye et al. proposed a modified multi-objective cuckoo search
mechanism and applied this algorithm to the obstacle avoidance problem of multiple
uncrewed aerial vehicles (UAVs) for seeking a safe route by optimizing the coordinated
formation control of UAVs to ensure the horizontal airspeed, yaw angle, altitude, and
altitude rate are converged to the expected level within a given time for inverse kinematics
and optimization [3]. Khan et al. proposed using the social behavior of beetles to establish
a computational model for operational management [4]. As one of the latest metaheuristic
algorithms, grey wolf optimizer (GWO) is widely employed to settle real industrial issues
because GWO maintains a balance between exploitation and exploration through dynamic
parameters and has a strong ability to explore the rugged search space of the problem [5,6],
such as the selection problem [7-9], privacy protection issue [10], adaptive weight prob-
lem [11], smart home scheduling problem [12], prediction problem [13-15], classification
problem [16], and optimization problem [17-20].
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Although the theoretical analysis and industrial applications using GWO have gained
fruitful achievements, there still exist some shortcomings that hinder the further devel-
opments of GWO, such as slow convergence speed and low accuracy in the single-peak
function and easily falling into local optimum in the multi-peak function and complex prob-
lems. Recently, various GWO variants have been investigated to overcome the mentioned
shortages. Mittal et al. proposed a modified GWO (mGWO) to solve the balance problem
between the exploitation and exploration of GWO. The main contribution is to propose
an exponential function instead of a linear function to adjust the iterative attenuation of
parameter a. Experimental results proved that the mGWO improves the effectiveness,
efficiency, and stability of GWO [21]. Saxena et al. proposed a f-GWO to improve the
exploitation and exploration of GWO by embedding a (3-chaotic sequence into parame-
ter a through a normalized mapping method. Experimental results demonstrated that
-GWO had good exploitation and exploration performance [22]. Long et al. proposed the
exploration-enhanced GWO (EEGWO) to overcome GWO’s weakness of good exploitation
but poor exploration based on two modifications. Meanwhile, a random individual is used
to guide the search for new individual candidates. Furthermore, a nonlinear control param-
eter strategy is introduced to obtain a good exploitation effect and avoid poor exploration
effects. Experimental results illustrated that the proposed EEGWO algorithm significantly
improves the performance of GWO [23]. Gupta and Deep proposed an RW-GWO to im-
prove the search capability of GWO. The main contribution is to propose an improved
method based on a random walk. Experimental results showed that RW-GWO provides a
better lead in searching for grey wolf prey [24]. Teng et al. proposed a PSO_GWO to solve
the problem of slow convergence speed and low accuracy of the grey wolf optimization
algorithm. The main contribution can be divided into three aspects: firstly, a Tent chaotic
sequence is used to initialize individual positions; secondly, a nonlinear control parameter
is used; finally, particle swarm optimization (PSO) is combined with GWO. Experimental
results showed that PSO_GWO could better search the optimal global solution and have
better robustness [25]. Gupta et al. proposed SC-GWO to solve the balance problem of
exploitation and exploration. The main contribution is the combination of the sine and
cosine algorithm (SCA) and GWO. Experimental results showed that SC-GWO has good
robustness to problem scalability [26]. In order to improve the performance of GWO in
solving complex and multimodal functions, Yu et al. proposed an object-based learning
wolf optimizer (OGWO). Without increasing the computational complexity, the algorithm
integrates the opposing learning method into GWO in the form of a jump rate, which helps
the algorithm jump out of the local optimum [27]. To improve the iterative convergence
speed of GWO, Zhang et al. also improved the algorithm flow of GWO and proposed two
dynamic GWOs (DGWO1 and DGWO2) [28].

Although these GWO variants improve the convergence speed and accuracy in the
single-peak function and have the ability to jump out of local optimum in the multi-peak
function and complex problems, they still have the disadvantages of slow convergence
speed and low accuracy and easily falling into local optimum while solving some complex
problems. To overcome these shortages, an improved GWO is proposed in this paper by
combining it with a clonal selection algorithm (CSA) to improve the convergence speed,
accuracy, and jump out of the local optimum of standard GWO. The proposed algorithm is
called pPGWO-CSA. The core improvements could be classified into the following points:

Firstly, a nonlinear function is used instead of a linear function for adjusting the iterative
attenuation of the convergence factor to balance exploitation and exploration automatically.

Secondly, the pPGWO-CSA adopts a new position updating strategy, and the position
updating of « wolf is no longer affected by the wolves § and J with poor fitness. The
position updating of the  wolf is no longer affected by the low fitness value of the § wolf.

Finally, the pPGWO-CSA combines GWO with CSA and introduces the cloning and super-
mutation of the CSA into GWO to improve GWO's ability to jump out of local optimum.

In the experimental part, 15 benchmark functions are selected to perform the function
optimization tasks to reveal the performance of pGWO-CSA further. Firstly, pGWO-
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CSA is compared with other swarm intelligence algorithms, particle swarm optimization
(PSO) [29], differential evolution (DE) [30], and firefly algorithm (FA) [31]. Then pGWO-
CSA is compared with GWO [5] and its variants OGWO [27], DGWO1, and DGWO2 [28].
Due to the statistical analysis of the obtained experimental data, the pPGWO-CSA is superior
to these classical swarm intelligence algorithms, GWO, and related variants.

The rest sections are organized as follows. Section 2 introduces the GWO and CSA,
Section 3 introduces the improvement ideas and reasons for pPGWO-CSA in detail, Section 4
mainly introduces experimental tests, Section 5 introduces the robot path-planning problem,
and Section 6 is the summary of the whole paper.

2. GWO and CSA

This section mainly introduces the relevant concepts and algorithm ideas of GWO and
CSA to provide theoretical support for subsequent improvement research.

2.1. GWO

GWO is a swarm intelligence algorithm proposed by Mirjalili et al. in 2014, which is
inspired by the hunting behavior of grey wolves [5]. In nature, grey wolves like to live in
packs and have a very strict social hierarchy. There are four types of wolves in the pack,
ranked from highest to lowest in the social hierarchy: the « wolf, g wolf,  wolf, and w wolf.
The GWO is also based on the social hierarchy of grey wolves and their hunting behavior,
and its specific mathematical model is as follows.

(1) Surround the prey

In the process of hunting, in order to surround the prey;, it is necessary to calculate the
distance between the current grey wolf and the prey and then update the position according
to the distance. The behavior of grey wolves rounding up prey is defined as follows:

X(t+1) = Xp(t) —Ax D )

and
D = |C x Xp(t) — X(t)], @

where Formula (1) is the updating formula of the grey wolf’s position, and Formula (2) is
the calculation formula of the distance between the grey wolf individual and prey. Variable
t is the current iteration number, Xp(t) and X(t) are the current position vectors of the prey
and the grey wolf at iteration ¢, respectively. A and C are coefficient vectors calculated by
Formula (3) and Formula (4), respectively.

A=2xaxr—a, 3)
C=2x 1o, (4)
and ;
a=2-2x , @)
tmax

where 7 is the convergence factor, and a linearly decreases from 2 to 0 as the number of
iterations increases. 1 and r, are random vectors in [0, 1]. Formula (5) is the calculation
formula a and tnax indicates the maximum number of iterations.

(2) Hunting

In an abstract search space, the position of the optimal solution is uncertain. In order
to simulate the hunting behavior of grey wolves, «, B, and J wolves are assumed to have a
better understanding of the potential location of prey. « wolf is regarded as the optimal
solution, B wolf is regarded as the suboptimal solution, and 6 wolf is regarded as the third
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optimal solution. Other gray wolves update their positions based on &, B, and § wolves,
and the calculation formulas are as follows:

Dy = |Cy X Xo — X(1)]

D/3 = |C2 X X,B — X(t)
Ds = |C3 x X5 — X(t)|

, (6)

Xlzxa—A1XDa
X2:X’3—A2XD13, (7)
X3=X(5—A3><D5

and
X(t+1) = (X1 + X2+ X3)/3, 8)

where D, represents the distance between the current grey wolf and a wolf; Dg represents
the distance between the current grey wolf and  wolf; Ds represents the distance between
the current grey wolf and 6 wolf; and X, X B and X, represent the position vectors of a wolf,
B wolf, and ¢ wolf, respectively. X(t) is the current position of the grey wolf. C1, C, and C3
are random vectors, calculated by Formula (4). A1, A>, and A3 are determined by Formula
(3). Formula (7) represents the step length and direction of grey wolf individuals to «, 3,
and ¢ wolves, and Formula (8) is the position-updating formula of grey wolf individuals.

According to the description above, the algorithm flow chart of GWO is shown in

Figure 1.
( Start >

!

Initialize the grey wolf population

!

Calculate the fitness of grey wolves and
preserve the top three wolves a, B and 6
with the best fitness

L
Y

Output the

Reach the maximum number of iterations
best result

Update a, A, and C using Formulas (3), ( End >
(4), and (5)

v

Use Formulas (6), (7), (8) to update the
current grey wolf position

v

Calculate the fitness of all grey wolves

v

Update the fitness and location of a, B and
o

Figure 1. Flow chart of GWO algorithm.
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2.2.CSA

The CSA was proposed by De Castro and Von Zuben in 2002 according to the clonal
selection theory [32]. The CSA simulates the mechanism of immunological multiplication,
mutation, and selection and is widely used in many problems.

For the convenience of model design, the principle of the biological immune system
is simplified. All substances that do not belong to themselves are regarded as antigens.
When the immune system is stimulated by antigens, antibodies will be produced to bind
to antigens specifically. The stronger the association between antigen and antibody, the
higher the affinity. Then, the antibodies with high antigen affinity are selected to multiply
and differentiate between binding to the antigens, increase their antigen affinity through
super-mutation, and finally eliminate the antigens. In addition, some of the antibodies are
converted into memory cells in order to respond quickly to the same or similar antigens
in the future. In the CSA, the problem that needs to be solved is regarded as the antigen,
and the solution to the problem is regarded as the antibody. At the same time, the receptor-
editing mechanism is adopted to avoid falling into the local optimum. The flow chart of
CSA is shown in Figure 2.

Input population
number, related
parameter setting, etc

Initialization: Generate initial antibody
population

v
Calculate the affinity of antibodies and
antigens, namely the fitness value of the
antibody
v

Select m number of antibodies with
high affinity to the antigen

N
>

each the maximum number of iterations

\ 4
Output the optimal
antibody and its
fitness value

Clone the selected antibody

v

Super-mutation operation is performed
on cloned individuals

v

Assess the affinity of newly generated
antibodies

v

Select n number of antibodies with high
affinity to the next generation

v

Generate d number of antibodies
randomly and add into the population

End

Figure 2. Flow chart of CSA.
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The above is the introduction of the GWO and CSA. The proposed algorithm in
this paper is also inspired by GWO and CSA. The pPGWO-CSA proposed in this paper is
introduced in detail in Section 3 below.

3. The Proposed pGWO-CSA

In order to improve the convergence speed and accuracy in the single-peak function
and the ability to jump out of local optimum in the multi-peak function and complex
problems: Firstly, a nonlinear function is used instead of a linear function for adjusting
the iterative attenuation of convergence factor to balance exploitation and exploration
automatically; Secondly, the pPGWO-CSA adopts a new position-updating strategy, and
different position-updating strategies are used for a wolf, f wolf, and other wolves, so
that the position updating of « wolf and g wolf are not affected by the wolves with lower
fitness; Finally, the pPGWO-CSA combines GWO with CSA and introduce the cloning and
super-mutation of the CSA into GWO.

The detailed improvement strategy is as follows.

3.1. Replace Linear Function with Nonlinear Function

In GWO, a decreases from 2 to 0 as the number of iterations increases, and the range
of A decreases as a decreases. According to Formulas (6) and (7), when |A| < 1, the next
position of the grey wolf can be anywhere between the current position and the prey,
and the grey wolf approaches the prey guided by a, 8, and . When |A| > 1, the grey
wolf moves away from the current «, §, and J wolves and searches for the optimal global
value. Therefore, when |A| < 1, grey wolves approach their prey for exploitation. When
|A| > 1, grey wolves move away from their prey for exploration. In the original GWO, the
parameter a linearly decreases from 2 to 0, with half of the iterations devoted to exploitation
and half to exploration. In order to balance exploitation and exploration, the pGWO-CSA
adopts a nonlinear function instead of a linear function to adjust the iterative attenuation
of parameter a so as to enhance the exploration ability of the grey wolf at the early stage of
iteration. In pPGWO-CSA, parameter a is calculated by Formula (9).

a—cos(nx (tt )u)+1.0, 9)

where variable t is the current iteration number, tnax is the maximum iteration number,
and u is the coefficient, where the value in this paper is 2.

Iterative curves of parameter 4 in the original GWO and pGWO-CSA are shown in
Figure 3.

2.00 4 - —o— pGH0-CSA
= —4— o

0.50 4

0.25 1

0.00

0 100 200 300 400 500
Number of iterations

Figure 3. Iterative curve of parameter a.
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As can be seen from Figure 3, the convergence factor slowly decays in the early stage,
improving the global search ability, and rapidly decays in the later stage, accelerating
the search speed and optimizing the global exploration and local development ability of
the algorithm.

3.2. Improve the Grey Wolf Position Updating Strategy

In the original grey wolf algorithm, the positions of all grey wolves in each iteration
are updated by Formulas (6)—(8). In the position-updating strategy, the position updating
of the & wolf is affected by the f wolf and § wolf with poor fitness. The position updating
of the B wolf is affected by the § wolf with poor fitness.

Therefore, a new location updating strategy is proposed in this paper. In each iteration,
the fitness of grey wolves is calculated, and the top three wolves &, 5, and J with the best
fitness are saved and recorded. The specific location update formula is as follows.

X1 if « wolf
X'(t) = (X1+X2)/2 if B wolf , (10)
(X1 + X2+ X3)/3 otherwise

where Xj, X5, and X3 are determined by Formula (7). X'(t) represents the pre-update
position. On this basis, if the current « wolf and B wolf are close to the optimal solution,
« wolf and B wolf have a greater probability to update to the position with better fitness
so as to better guide wolves to hunt the prey and find the optimal solution. If & wolf
and S wolf are in the local optimum, other wolves still update their positions according
to Formulas (6)—(8) so that algorithm will not fall into the local optimum. Therefore, the
proposed improved method can not only improve the exploitation capability but also not
affect the exploration capability.

3.3. Combine GWO with CSA

GWO is combined with CSA by introducing the cloning and super-mutation of the
CSA into GWO, and the exploitation and exploration ability of GWO is improved. For each
grey wolf, a super-mutation coefficient (Sc) and a random number (r3) are introduced. The
wolf with good adaptability has a small coefficient of super-variance and a small probability
of variation, while the wolf with poor adaptability has a large probability of variation. If the
super-variation coefficient Sc of the current grey wolf is greater than the random number
13, the current grey wolf will be cloned, and then the cloned grey wolf will be mutated
through Formulas (6)—(8). If the mutated grey wolf has comparatively better adaptability, it
will replace the current grey wolf. The specific calculation formula is as follows.

Fitness; — FitnessSmin
= — -
Fitnessmax — Fitnessmin

+0.1 (11)

and "
X'(t), ifSc<r3
X(t+1) = {X” (t), otherwise’

where fitness; represents the fitness of the current grey wolf, fitnessyn represents the
fitness of the best wolf, and fitnessmax represents the fitness of the worst wolf. r3 is a
random number between [0, 1]. X'(t) is determined by Formula (10). X" (¢) represents the
best between X' () and X’(t) as the result of the variation of X(t) through Formulas (6)—(8).

(12)

3.4. Algorithm Flow Chart of pGWO-CSA

According to the improvement idea mentioned above, the algorithm flow chart of
pGWO-CSA is shown in Figure 4.
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Initialize the grey wolf population

v
Calculate the fitness of grey wolves and
preserve the top three wolves o, B and & with
the best fitness

<
<

A

Use Formulas (3), (4) and (5) to update a, A
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v

Use Formulas (10) to update the position

!

Calculate the fitness of all grey wolves

v
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!

Use Formulas (12) to update the position

!
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Reach the maximum number of
iterations

Output the best result

v

)

Figure 4. Flow chart of pGWO-CSA.

3.5. Time Complexity Analysis of the Algorithm

Assuming that the population size is N, the dimension of objective function F is Dim,
and the number of iterations is T, the time complexity of the pPGWO-CSA algorithm can be
calculated as follows.

First, the time complexity required to initialize the grey wolf populationis O(N x Dim),
the time complexity required to calculate the fitness of all grey wolves is O(N x F (Dim)),
and the time complexity required to preserve the location of the best three wolves is
O(3 x Dim).

Then, in each iteration, the time complexity required to complete all grey wolves
position updating is O(N x Dim), the time complexity required to update a, A, and
Cis O(1), and the time complexity required to calculate the fitness of all grey wolves
is O(N x F(Dim)). The time complexity of cloning and super-mutation is O(N1 x Dim),
where N1 is the number of wolves meeting the mutating condition, and the time complexity
of updating the fitness and location of «, §, and 6 is O(3 x Dim). The total iteration is T

’
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times. So, the total time complexity is O(T x N x Dim) + O(T) + O(T x N x F (Dim)) +

O(T x N x Dim) + O(T x 3 x Dim).

So, in the worst case, the time complexity of the whole algorithm is O(N x Dim) +
O(N x F(Dim)) + O(3 x Dim) + O(T x N x Dim) + O(T) + O(T x N x F(Dim)) + O(T x N
x Dim) + O(T x 3 x Dim)~O(T x N x (Dim + F(Dim))).

4. Experimental Test

In this section, 15 benchmark functions from F1-F15 are selected to test the perfor-
mance of pPGWO-CSA. Firstly, pPGWO-CSA is compared with other swarm intelligence
algorithms. Then pGWO-CSA is compared with GWO and its variants. Table 1 describes
these benchmark functions in detail. Section 4.1 will compare pGWO-CSA with other
swarm intelligence algorithms. Section 4.2 will compare pGWO-CSA with GWO and

its variants.

Table 1. Detailed description of the test functions F1-F15.

No. Function Dimension Interval fmin
Fl1 Fx) = ¥ 52 30, 50 [~100, 100] 0
i=1
2 d d 30, 50 10,10 0
Fx) = ¥ il + || ‘ (=10, 10]
i=1 i=1
F3 A R 30, 50 [—100, 100] 0
flx) = ; ( x]->
i=1\j=1
F4 f(x) =max;{|x; |,1 <i<n} 30, 50 [—100, 100] 0
d—1 2 .
F flx) = Zl [100(xi+1 —x%)" + (% — 1)2} 30,50 (=30, 30] 0
1=
d
Fo6 fx)= Y (jxi + 0.5])2 30, 50 [—100, 100] 0
i=1
d
F7 Flx) = Y i + random(0,1) 30, 50 [—1.28,1.28] 0
i=1
d
F8 Y : 30, 50 [—500, 500] —418.9829 x 5
fx) = & —xisin( /)
d
Fo f(x) _ ,Zl [xiZ ~10 COS(2HJCi) + 10] 30, 50 [75.12, 512] 0
1=
1 d
F10 f(x)=—=20exp| =024/ ¥ x| — 30, 50 [—32,32] 0
i=1
d
exp (% Y. cos(2I1x;) | +20+e
=1
d d
Fl1 () = gy 3 22— 11 Cos<%> 1 30, 50 [—600, 600] 0
i=1 i=1
F12 Flx) =y x? +2x%, | — 0.3 cos(37rx;) 30, 50 [—15,15] 0
=1 —0.4cos(4mx;q) +0.7
F13 F(x) = X [xsin(x;) + 0.1x;] 30, 50 [—10, 10] 0
Fld  py oy | (ais + 1085 0) 4 5 g —3)?) 30, 50 [—4, 5] 0
U (i — 2x47-1)" + 10(x4i_3 — x47)
d i a2 d 2
F15 flx) = {{Zl sin (xi)} - exr?(— Zl X >} 30, 50 [—10, 10] -1
1= 1=

d
-exp {— Y. sin? \/]x;]
i=1
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Among these benchmark functions, the first seven benchmark functions, F1-F7, are
simpler, while the last eight benchmark functions, F8-F15, are more complex. The dimen-
sion of these benchmark functions is 30 dimensions and 50 dimensions. The population
size of all algorithms is set to 30, the maximal iteration of all algorithms is set to 500, and all
experimental data are measured on the same computer to ensure a fair comparison between
different algorithms. In order to avoid the randomness of the algorithm, each algorithm in
this paper will be run on each test function 30 times. At the same time, the mean, standard
deviation, and minimum and maximum values of the running results are recorded.

4.1. Compare with Other Swarm Intelligence Algorithms

In the comparison between pGWO-CSA and other swarm intelligence algorithms,
PSO [29], DE [30], and FA [31] are selected to compare with pGWO-CSA. For each algorithm,
the function optimization task is performed on the test functions F1-F15 in 30 dimensions
and 50 dimensions, and the mean, standard deviation, and minimum and maximum
values of the running results are recorded. The main parameters of the PSO, DE, FA, and
pGWO-CSA are shown in Table 2.

Table 2. Main parameters of the four algorithms.

Algorithm The Main Parameters
PSO w=08,cl=152=15
DE CR=0.8,F=0.6
FA B0=1.0,v=0.000001, « = 0.6
pGWO-CSA a nonlinearly decreases from 2 to 0, u = 2

In 30 dimensions, the test results of these four algorithms on test function F1-F15 are
shown in Table 3. The convergence curves of these four algorithms on test function F1-F15
are recorded in Figures 5a, 6a, 7a, 8a, 9a, 10a, 11a, 12a, 13a, 14a, 15a, 16a, 17a, 18a and 19a.

F1 F1
106 4
104 4
107
1071
108
10-6
S 10°1s E]
T)“ T>“ 10—11 4
§ 19-22 §
f 107441 5 10-16 4
E] E]
- 10721 - 10-2
-36 =
1071 sewo-csh 107289/ — paHo-CsA
—*— PSO —+— PSO
107431 —e— DE 107311 —&— DE
——FA —-FA

0 100 200 300 400 500
Number of iterations

0 100 200 300 400 500
Number of iterations

(a) 30 dimensions (b) 50 dimensions
Figure 5. Convergence curve of test function F1.
Table 3. The experimental results under 30 dimensions.
Function Index PSO DE FA pGWO-CSA
mean 6.18 x 10710 2.35 x 107! 492 x 1071 5.97 x 1074
- std 1.97 x 1077 141 x 1071 6.87 x 1072 112 x 1074
min 549 x 10718 4.00 x 1072 3.08 x 107! 6.65 x 10~
max 1.09 x 1078 623 x 107! 6.09 x 10! 4.87 x 10743
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Table 3. Cont.

Function Inde
X PSO DE FA GWO-CS
mean 4.30 x 1077 348 x 1071 ; -
- 3.19 x 10° -
- st_d 1.70 x 10~° 1.13 x 1071 1 -1 Sl
min 8.23 x 10713 1.87 x 1071 2'6953X o 0 SR
max 952 x 107° 7.07 x 1071 3'5 y 100 D s
mean 1.12 x 1076 345 x 10° e 100 SOl
- st'd 5.03 x 1076 1.97 x 100 o 100 e
min 2.17 x 10716 6.70 x 1071 égé y 100 s
max 2.78 x 107> 8.94 x 100 1.1 y 101 Aot
mean 324 x 1073 2.09 x 10! 3 s 10—1 o
- st_d 528 x 1073 6.64 x 100 10 2 ot
min 8.06 x 1077 1.13 x 101 5;; . 10:1 e
max 2.34 x 102 423 x 10! 3'49 y 10—1 R
mean 2.82 x 10! 1.73 x 102 P 2 ol
- st.d 407 x 1071 9.13 x 10! . 102 2
min 2.75 x 10! 4.80 x 10! 2'211L y 101 ErA
max 2.89 x 10! 490 x 102 6'1 y 102 e
mean 4.81 x 100 211 x 101 5 o 10—1 P
F6 std 1.61 x 107! 1.21 x 1071 o 10 z 328 5 10
min 419 x 10° 3.27 x 1072 ggg y 10:1 e
max 5.05 x 10° 490 x 1071 5.62 y 10*1 ST
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In terms of the performance of the mean. Sort by the number of optimal values. The
pGWO-CSA ranked first with 13 optimal values. PSO and DE tied for second place with
one optimal value. FA ranked fourth with zero optimal values. Compared with PSO,
pGWO-CSA outperformed PSO in 14 out of 15 test functions, and PSO outperformed
pGWO-CSA only in test function F14. Compared with DE, pGWO-CSA outperformed DE
in 14 out of 15 test functions, and DE outperformed pGWO-CSA only in test function Fé6.
Compared with FA, pPGWO-CSA outperformed FA in all 15 test functions.

In terms of the performance of the standard deviation. Sort by the number of optimal
values. The pGWO-CSA ranked first with 11 optimal values. PSO ranked second with
three optimal values. FA ranked third with one optimal value. DE ranked fourth with
zero optimal values. Compared with PSO, pPGWO-CSA outperformed PSO in 11 out of
15 test functions, and PSO outperformed pGWO-CSA in test functions F5, F6, F8, and F14.
Compared with DE, pPGWO-CSA outperformed DE in 13 out of 15 test functions, and DE
outperformed pGWO-CSA in test functions F6 and F8. Compared with FA, pPGWO-CSA
outperformed FA in 14 out of 15 test functions, and FA outperformed pGWO-CSA only in
test function F6.
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In terms of the performance of the minimum. Sort by the number of optimal values.
The pGWO-CSA ranked first with 13 optimal values. PSO ranked second with four optimal
values. DE and FA tied for third place with zero optimal values. Compared with PSO,
pGWO-CSA outperformed PSO in 11 out of 15 test functions, and PSO outperformed
pGWO-CSA in test functions F7 and F14. In addition, the minimum values of pGWO-
CSA and PSO are the same on the test functions F9 and F12, and both pGWO-CSA and
PSO find the minimum values of the functions. Compared with DE and FA, pGWO-CSA
outperformed DE and FA in all 15 test functions.

In terms of the performance of the maximum. Sort by the number of optimal values.
The pGWO-CSA ranked first with 12 optimal values. DE ranked second with two optimal
values. PSO ranked third with one optimal value. FA ranked fourth with zero optimal
values. Compared with PSO, pGWO-CSA outperformed PSO in 14 out of 15 test functions,
and PSO only outperformed pGWO-CSA in test function F14. Compared with DE, pGWO-
CSA outperformed DE in 13 out of 15 test functions, and DE outperformed pGWO-CSA in
test functions F6 and F8. Compared with FA, pGWO-CSA outperformed FA in 14 out of
15 test functions, and FA outperformed pGWO-CSA only in test function Fé.

In addition, the pGWO-CSA can find theoretical optimal values on the test functions
F9, F11, and F12. In the test functions F1, F2, F3, F4, F10, F11, F13, and F15, pPGWO-CSA is
superior to PSO, DE, and FA in terms of the mean, standard deviation, and minimum and
maximum. Although PSO outperformed pGWO-CSA in the mean, standard deviation, and
minimum and maximum on test function F14, pGWO-CSA still outperformed DE and FA
on test function F14.

In 50 dimensions, the test results of these four algorithms on test function F1-F15 are
shown in Table 4. The convergence curves of these four algorithms on test function F1-F15
are recorded in Figures 5b, 6b, 7b, 8b, 9b, 10b, 11b, 12b, 13b, 14b, 15b, 16b, 17b, 18b and 19b.

Table 4. The experimental results under 50 dimensions.

Function  Index PSO DE FA pGWO-CSA
mean 131 x 1077 6.52 x 101 1.51 x 109 3.29 x 10731

- std 2.80 x 107 2.88 x 10! 1.84 x 10~} 3.21 x 103!
min 7.01 x 10715 2.19 x 10! 1.17 x 10° 2.68 x 10733

max 1.30 x 10~ 1.27 x 102 1.83 x 109 1.33 x 10730

mean 542 x 107° 8.15 x 10° 2.03 x 10! 7.23 x 10720

- std 241 x 107° 4.81 x 100 457 x 10! 478 x 10720
min 1.62 x 10710 3.68 x 10° 6.38 x 100 9.01 x 10~21

max 135 x 1074 3.09 x 10! 1.97 x 102 1.95 x 10719

mean 2.28 x 1074 1.28 x 10° 6.61 x 101 6.91 x 10730

3 std 1.05 x 1073 6.20 x 102 1.27 x 101 7.60 x 10730
min 2.86 x 10714 5.03 x 102 3.62 x 10! 1.26 x 10731

max 5.83 x 1073 3.34 x 103 8.97 x 101 258 x 10729

mean 1.10 x 1071 8.85 x 10! 3.77 x 10° 5.16 x 1077

” std 1.84 x 1071 9.30 x 10° 2.99 x 10° 401 x 1077
min 3.01 x 1077 5.04 x 10! 5.27 x 101 820 x 108

max 8.20 x 101 9.48 x 10! 1.05 x 10! 1.50 x 10~°

mean 4.86 x 10! 1.75 x 10* 3.93 x 102 4.70 x 10!

- std 342 x 101 1.18 x 104 4.15 x 102 6.79 x 101

min 478 x 10! 2.66 x 103 1.92 x 102 458 x 10!

max 4.89 x 10! 4.68 x 10* 2.39 x 103 4.86 x 10!

mean 9.62 x 100 7.36 x 101 1.53 x 10° 2.05 x 100

F6 std 2.75 x 1071 3.16 x 10! 1.83 x 1071 453 x 107!

min 8.96 x 100 2.28 x 10! 1.17 x 10° 1.18 x 10°

max 1.01 x 10t 1.44 x 102 1.86 x 109 2.76 x 10°

mean 2.81 x 1073 247 x 101 3.11 x 10° 261 x 1073

7 std 241 x 1073 541 x 1072 8.20 x 1071 1.89 x 1073
min 159 x 1074 1.21 x 1071 1.88 x 109 3.74 x 1074

max 1.11 x 1072 340 x 1071 498 x 10° 9.15 x 1073
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Table 4. Cont.

Function Index PSO DE FA pGWO-CSA
mean —3.77 x 103 —7.67 x 103 —6.65 x 10° —9.02 x 103
- std 4.48 x 102 6.35 x 102 3.09 x 103 1.25 x 103
min —5.46 x 103 —9.57 x 103 —1.25 x 10% —1.09 x 10*
max —3.25 x 103 —6.58 x 103 —2.90 x 103 —6.20 x 103
mean 552 x 1077 432 x 102 4.82 x 102 0.00 x 10°
F9 std 256 x 1070 1.33 x 101 4.13 x 10! 0.00 x 10°
min 6.39 x 10714 3.93 x 102 3.92 x 102 0.00 x 10°
max 1.43 x 1075 457 x 102 5.48 x 102 0.00 x 10°
mean 6.03 x 107° 1.17 x 101 1.99 x 101 2.69 x 10714
F10 std 2.68 x 1074 8.32 x 100 1.48 x 1071 5.08 x 10715
min 593 x 1077 2.48 x 10° 1.95 x 101 1.42 x 1014
max 1.50 x 1073 2.00 x 10! 2.02 x 10! 391 x 10714
mean 1.26 x 107° 1.63 x 109 7.43 x 1072 0.00 x 10°
F11 std 348 x 10° 2.85 x 1071 1.16 x 1072 0.00 x 10°
min 0.00 x 100 1.26 x 100 544 x 1072 0.00 x 10°
max 1.40 x 105 2.64 x 10° 1.02 x 1071 0.00 x 10°
mean 496 x 10~? 3.43 x 10! 3.57 x 10! 0.00 x 10°
12 std 1.19 x 1078 435 x 10° 2.15 x 10° 0.00 x 10°
min 0.00 x 100 2.53 x 10! 3.16 x 10! 0.00 x 10°
max 542 x 108 426 x 10! 3.99 x 10! 0.00 x 10°
mean 3.43 x 106 2.33 x 10! 3.10 x 10! 267 x 10715
F13 std 1.23 x 107> 6.15 x 100 3.39 x 100 1.38 x 10~ 14
min 1.42 x 1071 1.34 x 101 247 x 10! 6.62 x 10~20
max 6.55 x 107° 3.63 x 10! 4.05 x 10! 7.72 x 10714
mean 450 x 1077 1.41 x 102 449 x 10! 9.82 x 10
- std 1.70 x 10 7.07 x 101 1.10 x 101 250 x 107°
min 498 x 10716 343 x 10! 3.05 x 10! 1.06 x 10~7
max 9.18 x 10° 3.35 x 102 7.79 x 101 142 x 1074
mean 399 x 1016 3.16 x 10718 248 x 10=20 224 x 10723
Fl5 std 2.58 x 10716 3.12 x 10718 457 x 10720 6.01 x 10~23
min 3.36 x 10717 2.09 x 10719 1.85 x 102! 224 x 1074
max 124 x 10715 1.49 x 1017 237 x 10719 3.26 x 10~22

In terms of the performance of the mean. Sort by the number of optimal values. The
pGWO-CSA ranked first with 13 optimal values. PSO and FA tied for second place with
one optimal value. DE ranked fourth with zero optimal values. Compared with PSO,
pGWO-CSA outperformed PSO in 14 out of 15 test functions, and PSO outperformed
PGWO-CSA only in test function F14. Compared with DE, pPGWO-CSA outperformed DE
in all 15 test functions. Compared with FA, pGWO-CSA outperformed FA in 14 out of
15 test functions, and FA outperformed pGWO-CSA only in test function Fé.

In terms of the performance of the standard deviation. Sort by the number of optimal
values. The pGWO-CSA ranked first with 11 optimal values. PSO ranked second with
three optimal values. FA ranked third with one optimal value. DE ranked fourth with
zero optimal values. Compared with PSO, pPGWO-CSA outperformed PSO in 11 out of
15 test functions, and PSO outperformed pGWO-CSA in test functions F5, F6, F8, and
F14. Compared with DE, pGWO-CSA outperformed DE in 14 out of 15 test functions, and
DE outperformed pGWO-CSA only in test function F8. Compared with FA, pGWO-CSA
outperformed FA in 14 out of 15 test functions, and FA outperformed pGWO-CSA only in
test function Fé.

In terms of the performance of the minimum. Sort by the number of optimal values.
The pGWO-CSA ranked first with 11 optimal values. PSO ranked second with four optimal
values. FA ranked third with two optimal values. DE ranked fourth with zero optimal
values. Compared with PSO, pGWO-CSA outperformed PSO in 11 out of 15 test functions,
and PSO outperformed pGWO-CSA in test functions F7 and F14. In addition, the minimum
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value of pGWO-CSA and PSO are the same on the test functions F9 and F12, and both
pGWO-CSA and PSO find the minimum values of the functions. Compared with DE,
pGWO-CSA outperformed DE in all 15 test functions. Compared with FA, pGWO-CSA
outperformed FA in 13 out of 15 test functions, and FA outperformed pGWO-CSA in test
functions F6 and F8.

In terms of the performance of the maximum. Sort by the number of optimal values.
The pGWO-CSA ranked first with 12 optimal values. PSO, DE, and FA are tied for second
place with one optimal value. Compared with PSO, pGWO-CSA outperformed PSO in
14 out of 15 test functions, and PSO only outperformed pGWO-CSA in test function F14.
Compared with DE, pGWO-CSA outperformed DE in 14 out of 15 test functions, and
DE only outperformed pGWO-CSA in test function F8. Compared with FA, pGWO-CSA
outperformed FA in 14 out of 15 test functions, and FA outperformed pGWO-CSA only in
test function F6.

In addition, pGWO-CSA can find theoretical optimal values on the test functions F9,
F11, and F12. In the test functions F1, F2, F3, F4, F9, F10, F13, and F15, pGWO-CSA is
superior to PSO, DE, and FA in terms of the mean, standard deviation, and minimum and
maximum. Although pGWO-CSA is not as good as FA on test function F6 and as good as
PSO on test function F14, pPGWO-CSA still outperformed the other two swarm intelligence
algorithms on these two functions.

Based on the above data and analysis, pPGWO-CSA has faster convergence speed,
higher accuracy, and better ability to jump out of local optimum compared with other
swarm intelligence algorithms in either 30 or 50 dimensions. In order to further verify the
performance of pGWO-CSA, we will next compare pGWO-CSA with GWO and its variants.

4.2. Compare with GWO and Its Variants

In order to further verify the performance of pPGWO-CSA, pGWO-CSA is compared
with GWO [5] and its variants OGWO [27], DGWO1, and DGWO?2 [28] on the test functions
F1-F15 in 30 dimensions and 50 dimensions. The main parameters of pPGWO-CSA, GWO,
OGWO, DGWO1, and DGWO?2 are shown in Table 5.

Table 5. Main parameters of the five algorithms.

Algorithm The Main Parameters
GWO a linearly decreases from 2 to 0
OGWO a nonlinearly decreases from 2 to 0, u =2
DGWO1 a linearly decreases from 2 to 0
DGWO2 a linearly decreases from 2 to 0
pGWO-CSA a nonlinearly decreases from 2 to 0, u =2

In 30 dimensions, the test results of these five algorithms on test function F1-F15 are
shown in Table 6, with the optimal values highlighted in bold. The convergence curves of
these five algorithms on test function F1-F15 are recorded in Figures 20a, 21a, 22a, 23a, 24a,
25a, 26a, 27a, 28a, 29a, 30a, 31a, 32a, 33a and 34a.
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Table 6. The experimental results under 30 dimensions.

Function Index GWO OGWO DGWO1 DGWO2 pGWO-CSA
mean 1.03x 1077 299 x 10~40 8.07 x 1072 249 x 1062 597 x 10~%
Al std 125 x107%  7.79 x 104 1.14 x 10720 5.68 x 10762 1.12 x 1074
min 263x107% 125x10°% 3.28 x 10722 1.61 x 10795 6.65 x 10~%
max 566 x 1072 3.96 x 107% 594 x 10720 2.84 x 10761 487 x 1074
mean 8.66 x 1077 338 x 1073 1.16 x 10712 248 x 10-% 3.66 x 10~%
- std 590 x 107  6.77 x 1072 7.36 x 10713 3.84 x 107% 351 x 107%
min 239 x10°Y 653 x 107% 1.72 x 10713 1.59 x 10736 398 x 10728
max 245 x 1071 295 x 10722 3.06 x 10712 2.03 x 10734 1.54 x 10726
mean 1.75 x 10726 2.08 x 10738 6.58 x 10-20 4.60 x 10760 2.24 x 107%2
- std 261 x107% 719 x 10738 432 x 10720 2.36 x 107% 8.92 x 1042
min 437 x 1078 661 x 107% 841 x 1072 6.87 x 10765 359 x 1074
max 133 x 1072 387 x107¥ 1.73 x 10~ 1.32 x 10758 5.00 x 10~4!
mean 121 x107% 144 x 1071 3.02 x 107> 2.76 x 10714 1.08 x 10~ 11
F4 std 1.47 x 10~ 357 x 1071 1.83 x 107> 6.15 x 10714 121 x 1071
min 9.64 x 108 6.57 x 10716 5.36 x 1076 1.27 x 10716 1.00 x 10712
max 6.12 x 107 1.64 x 10710 7.48 x 1075 319 x 10713 494 x 10711
mean 2.72 x 10! 2.69 x 10! 2.68 x 101 2.70 x 101 2.67 x 10
. std 6.10 x 107! 5.60 x 107! 7.98 x 1071 7.49 x 1071 518 x 107!
min 2.60 x 101 2.62 x 101 2.59 x 10! 2.61 x 101 2.59 x 10!
max 2.87 x 10! 2.80 x 10! 2.86 x 10! 2.85 x 101 2.80 x 101
mean 7.83 x 1071 6.53 x 1071 5.27 x 1071 598 x 107! 420 x 1071
Fé std 410 x 1071 343 x 107! 3.30 x 107! 259 x 107! 328 x 1071
min 8.81 x 1073 432 x 1074 6.32 x 107> 246 x 1071 3.14 x 10°°
max 1.66 x 10° 1.49 x 10° 1.26 x 10° 1.00 x 10° 1.50 x 10°
mean 1.64 x 1073 1.67 x 104 2.06 x 1073 1.60 x 1073 1.38 x 1073
7 std 6.39 x 10~* 1.38 x 10~* 8.83 x 10~ 7.95 x 1074 8.15 x 10~
min 6.23 x 107* 1.25 x 107° 540 x 1074 423 x 1074 3.62 x 1074
max 3.20 x 1073 488 x 1074 467 x 1073 3.83 x 1073 3.67 x 1073
mean —5.71 x 10° —4.10 x 10° —5.85 x 10° —5.74 x 10% —6.13 x 10°
P8 std 9.10 x 102 1.38 x 10° 8.53 x 102 8.88 x 102 7.70 x 10%
min —6.73 x 10° —7.63 x 10° —7.37 x 10° —6.84 x 10° —7.55 x 10°
max —3.42 x 103 —2.82 x 103 —3.60 x 103 —3.15 x 10° —4.68 x 10°
mean 3.51 x 10° 1.44 x 1071 7.76 x 100 431 x 1071 0.00 x 109
9 std 8.96 x 100 7.75 x 1071 2.26 x 101 1.50 x 10° 0.00 x 109
min 0.00 x 109 0.00 x 10° 3.73 x 10714 0.00 x 10° 0.00 x 10°
max 4.67 x 10 432 x 10° 1.28 x 102 6.51 x 10° 0.00 x 10°
mean 990 x 107 864 x 10715 1.55 x 1011 245 x 10714 8.17 x 10715
Fl0 std 126 x 107 3.96 x 10715 8.32 x 10712 404 x 10715 262 x 10715
min 675 x 10714 355 x 1015 4,68 x 10712 142 x 10714 355 x 10715
max 128 x 10~13 1.78 x 1014 4.06 x 10711 2.84 x 10714 142 x 10714
mean 3.72 x 1073 1.12 x 1073 2.73 x 1073 7.71 x 1073 0.00 x 109
Fl1 st_d 7.49 x 1073 434 x 1073 6.32 x 1073 1.30 x 1072 0.00 x 10°
min 0.00 x 100 0.00 x 100 0.00 x 10° 0.00 x 10° 0.00 x 10°
max 2.79 x 1072 2.14 x 1072 2.19 x 1072 492 x 1072 0.00 x 10°
mean 0.00 x 109 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10°
F1 std 0.00 x 109 0.00 x 100 0.00 x 10° 0.00 x 10° 0.00 x 10°
min 0.00 x 100 0.00 x 100 0.00 x 10° 0.00 x 10° 0.00 x 10°
max 0.00 x 100 0.00 x 100 0.00 x 10° 0.00 x 10° 0.00 x 10°
mean 5.30 x 10* 5.69 x 107> 1.07 x 1073 3.09 x 107 1.28 x 1072
F13 std 711 x 1074 1.83 x 1074 8.13 x 104 1.01 x 1074 3.86 x 1072
min 266 x 1077 179 x 107 6.06 x 10712 3.18 x 10°% 1.70 x 10~%7
max 2.46 x 1073 8.65 x 107 2.67 x 103 5.46 x 10~* 1.68 x 10~22
mean 2.00 x 10~ 9.68 x 1076 2.69 x 107> 323 x 10°° 5.36 x 107¢
Fl4 std 1.93 x 107> 1.79 x 107> 2.25 x 107> 5.40 x 10~® 7.72 x 1076
min 7.40 x 1077 1.79 x 107 462 x 1076 423 x 1078 2.86 x 108
max 7.44 x 107> 9.70 x 10~ 1.01 x 10~* 2.79 x 1073 2.89 x 1073
mean 980 x 1071 912 x 1012 9.65 x 10716 2.82 x 10715 1.75 x 10716
Fi5 std 496 x 10716 1.64 x 10711 440 x 10716 1.07 x 1014 599 x 1016
min 487 x 1071 376 x 10715 441 x 10716 3.12 x 10716 2.30 x 10717
max 311 x 1071 683 x 1071 297 x 10~ 6.05 x 10714 339 x 10715
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Figure 20. Convergence curve of test function F1.
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Figure 21. Convergence curve of test function F2.
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Figure 23. Convergence curve of test function F4.

Figure 24. Convergence curve of test function F5.
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Figure 25. Convergence curve of test function F6.
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Figure 26. Convergence curve of test function F7.
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Figure 27. Convergence curve of test function F8.
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Figure 29. Convergence curve of test function F10.
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Figure 30. Convergence curve of test function F11.
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Figure 32. Convergence curve of test function F12.
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Figure 33. Convergence curve of test function F14.
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In 50 dimensions, the test results of these five algorithms on test function F1-F15 are
shown in Table 7. The convergence curves of these five algorithms on test function F1-F15
are recorded in Figures 20b, 21b, 22b, 23b, 24b, 25b, 26b, 27b, 28b, 29b, 30b, 31b, 32b, 33b

and 34b.

Table 7. The experimental results under 50 dimensions.

Function Index GWO OGWO DGWO1 DGWO2 pPGWO-CSA
mean 784 x 10720  119x107% 154 x 10" 858 x 10°¥ 329 x 10731
- std 807 x1072 426 x 1072 132 x107* 198 x 1046 321 x 10731
min 805x10721 115x107% 3.03x10°P 511x10% 2.68 x 1073
max 311x107® 213 x1072 768 x1071* 872 x 104 1.33 x 10730
mean 220x 10712 115x 1077  502x107° 820x107% 723 x 10720
m std 130 x 10712 279 x 10717 285x107° 932x10°% 478 x 10720
min 472 x 10718 266 x107Y 157 x 1077 722 x 10728 9.01 x 1072
max 673 x 10712 150 x 107 158 x 1078 441 x 1072 1.95 x 10719
mean 122 x 10718 352x1072% 531 x107® 193 x 107% 6.91 x 1030
3 std 137 x 10718 116 x107% 855x 1071 381 x10~% 7.60 x 1030
min 1.07 x 107 130 x 1073 351 x 10714 3.01 x 10748 1.26 x 10731
max 630 x 10718 616 x 107 424 x 10712 198 x 10°# 258 x 1072
mean 449 x107* 367 x10% 511 x10% 148 x107? 516 x 1077
F4 std 316 x107* 979 x 1078 540x10% 237 x107? 401 x 1077
min 715 x 107> 284 %1072 155x10° 1.79 x 1071 8.20 x 108
max 133 x 1073  401x1077 293x10"2 1.07 x 1078 1.50 x 10~°
mean 475 x 10! 471 x 10! 4.71 x 10! 4.71 x 101 4.70 x 10!
- std 865x107!  693x1071  738x107! 692 x 1071 6.79 x 1071
min 4.60 x 10 4.61 x 10 4.61 x 10 4.61 x 10 458 x 10!
max 4.87 x 10! 4.85 x 101 4.86 x 101 4.85 x 101 4.86 x 10!
mean 2.66 x 10° 2.28 x 10° 2.05 x 10° 2.71 x 100 2.05 x 100
6 std 541 x 107! 524 x 1071 612 x 1071 458 x 107! 453 x 1071
min 1.25 x 10° 1.38 x 10° 6.89 x 107! 1.75 x 10° 1.18 x 10°
max 4.00 x 10° 3.50 x 10° 3.25 x 10° 3.95 x 10° 2.76 x 100
mean 352x107% 227 x107% 475x107°% 275x 1073 2.61 x 1073
7 std 180 x 1073 270 x107* 220x 10  1.03x 1073 1.89 x 1073
min 832x107* 165x10° 164x10°% 1.02x107° 3.74 x 10°*
max 812x107% 142x103 121 x102 490 x 1073 9.15 x 1073
mean —879 x 10° —5.64 x 103 —8.46 x 10> —8.91 x 10° —9.21 x 10°
T8 std 1.49 x 103 2.17 x 103 1.96 x 103 9.69 x 102 9.61 x 102
min —1.09 x 10+ —1.05 x 10* —1.08 x 10* —1.10 x 10* —1.13 x 10*
max —419 x10° —395x 10> —382x10° —7.33x10° —7.62 x 10°
mean 454 x 10° 471 x 1075 9.85 x 10° 9.88 x 107! 0.00 x 10°
F9 std 5.08 x 10° 254 x 107+ 6.01 x 10° 2.86 x 100 0.00 x 10°
min 249 x 10714 0.00 x 10° 842 x 10~ 1 0.00 x 10° 0.00 x 10°
max 1.94 x 10! 1.41 x 1073 2.57 x 10! 1.38 x 10! 0.00 x 10°
mean 377 x10°1 214 x 1071  155x1078 394 x 1014 2.69 x 10~
F10 std 250 x 1071 172 x 10714 543 x107° 280 x 1071 5.08 x 10~
min 118 x 10711 355 x 1071 564 x107° 320x 10714 142 x 10714
max 131 x 10710 675 x 107 287 x10°% 426 x 1071 391 x 10714
mean 356 x 1073 237 x10% 347 x10°% 283 x10°° 0.00 x 10°
F11 std 735%x 1073  732x1073 844 x10°  650x 1073 0.00 x 10°
min 0.00 x 100 0.00 x 109 633 x 1075 0.00 x 10° 0.00 x 10°
max 231x1072  312x10"2 358 x1072  2.15x 1072 0.00 x 109
mean 0.00 x 10° 0.00 x 10° 1.75 x 107 0.00 x 10° 0.00 x 10°
12 std 0.00 x 10° 0.00 x 10° 131 x 107 0.00 x 10° 0.00 x 10°
min 0.00 x 109 0.00 x 100 477 x 1071 0.00 x 10° 0.00 x 10°
max 0.00 x 109 0.00 x 10° 551 x10"  0.00 x 10° 0.00 x 10°
mean 799 x 107*  210x107* 2.00x 1073  1.00 x 10~* 2,67 x 10715
13 std 917 x107* 457 x107% 123 x1073 239 x10°* 1.38 x 10714
min 183 x 10712 786 x1072 217x10"° 697 x 10~28 6.62 x 10720
max 335x107%  194x10° 481 x10° 1.02x1073 772 x 10714
mean 355x107° 137 x107° 699x10° 578 x10°° 9.82 x 10°°
Fl4 std 321x107°  1.09x107° 469x107° 670 x10°° 250 x 1073
min 1.46 x 107 420x 1077 940x10"® 463 x 10°8 1.06 x 1077
max 124 x107%  378x107° 215x107% 239 x 1075 1.42 x 1074




Biomimetics 2023, 8, 84 27 of 34

Table 7. Cont.

Function Index GWO OGWO DGWO1 DGWO2 pGWO-CSA
mean 114 x 1072 950 x 10718 562x1078 552x 102 224 x 1078

F15 std 282 %1072 207 x107Y7  632x1072 549 x 1075 6.01 x 1072
min 208x1073 182 x1072 180 x1072 1.83x10 5 224 x 1072

max 1.60 x 10721 8.02x 1077 320x 1072 2.82x 102 3.26 x 1072

In terms of the performance of the mean. Sort by the number of optimal values. The
pGWO-CSA ranked first with nine optimal values. DGWO2 ranked second with six optimal
values. OGWO ranked third with two optimal values. DGWO1 and GWO tied for fourth
place with one optimal value. Compared with GWO, pGWO-CSA outperformed GWO in
14 out of 15 test functions. Compared with OGWO, pGWO-CSA outperformed OGWO in
13 out of 15 test functions, and OGWO outperformed pGWO-CSA only in test function F7.
Compared with DGWO1, pGWO-CSA outperformed DGWOL in 14 out of 15 test functions.
Compared with DGWO?2, pGWO-CSA outperformed DGWO2 in 9 out of 15 test functions,
and DGWO2 outperformed pGWO-CSA only in test functions F1, F2, F3, F4, and F14.

In terms of the performance of the standard deviation. Sort by the number of optimal
values. The pGWO-CSA and DGWO?2 tied for first place with seven optimal values.
DGWO1 and OGWO tied for third place with two optimal values. GWO ranked fifth
with one optimal value. Compared with GWO, pGWO-CSA outperformed GWO in 11
out of 15 test functions, and GWO only outperformed pGWO-CSA in test functions F7
and F15. Compared with OGWO, pGWO-CSA outperformed OGWO in 13 out of 15 test
functions, and OGWO only outperformed pGWO-CSA in test function F7. Compared with
DGWO1, pGWO-CSA outperformed DGWOL in 13 out of 15 test functions, and DGWO1
only outperformed pGWO-CSA in test function F15. Compared with DGWO2, pGWO-CSA
outperformed DGWO?2 in seven out of fifteen test functions, and DGWO2 outperformed
pGWO-CSA in test functions F1, F2, F3, F4, F6, F7, and F14.

In terms of the performance of the minimum. Sort by the number of optimal values.
The pGWO-CSA and DGWO?2 tied for first place with eight optimal values. OGWO
ranked third with six optimal values. DGWO1 and GWO tied for fourth place with three
optimal values. Compared with GWO, pGWO-CSA outperformed GWO in 12 out of 15 test
functions. Compared with OGWO, pGWO-CSA outperformed OGWO in eight out of
fifteen test functions, and OGWO outperformed pGWO-CSA only in test functions F4, F7,
and F8. Compared with DGWO1, pGWO-CSA outperformed DGWOL1 in 12 out of 15 test
functions. Compared with DGWO2, pGWO-CSA outperformed DGWO?2 in seven out of
fifteen test functions, and DGWO2 outperformed pGWO-CSA only in test functions F1, F2,
F3, F4, and F13.

In terms of the performance of the maximum. Sort by the number of optimal values.
The pGWO-CSA and DGWOR2 tied for first place with seven optimal values. OGWO ranked
third with three optimal values. DGWO1 ranked fourth with two optimal values. GWO
ranked fifth with one optimal value. Compared with GWO, pGWO-CSA outperformed
GWO in 12 out of 15 test functions, and GWO outperformed pGWO-CSA only in test
functions F7 and F15. Compared with OGWO, pGWO-CSA outperformed OGWO in 11 out
of 15 test functions, and OGWO outperformed pGWO-CSA only in test functions F6 and F7.
Compared with DGWO1, pGWO-CSA outperformed DGWOL1 in 12 out of 15 test functions,
and DGWOT1 outperformed pGWO-CSA only in test functions F6 and F15. Compared with
DGWO?2, pGWO-CSA outperformed DGWQO?2 in eight out of fifteen test functions, and
DGWO2 outperformed pGWO-CSA only in test functions F1, F2, F3, F4, F6, and F14.

In addition, pGWO-CSA can find theoretical optimal values on the test functions F9,
F11, and F12. In the test functions F5, F9, F10, F11, and F12, pPGWO-CSA is the optimal
value among the five algorithms in terms of the mean, standard deviation, and minimum
and maximum. Although DGWO?2 outperformed pGWO-CSA in the performance of
the first four test functions, F1, F2, F3, and F4, pGWO-CSA still outperformed the other
three algorithms.
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In terms of the performance of the mean. Sort by the number of optimal values.
The pGWO-CSA ranked first with eight optimal values. DGWO2 ranked second with six
optimal values. OGWO ranked third with three optimal values. DGWO1 and GWO tied
for fourth place with one optimal value. Compared with GWO, pGWO-CSA outperformed
GWO in 14 out of 15 test functions. Compared with OGWO, pPGWO-CSA outperformed
OGWO in 11 out of 15 test functions, and OGWO outperformed pGWO-CSA only in test
functions F3, F7, and F10. Compared with DGWO1, pGWO-CSA outperformed DGWOL1 in
14 out of 15 test functions. Compared with DGWO2, pGWO-CSA outperformed DGWO2
in nine out of fifteen test functions, and DGWO2 outperformed pGWO-CSA only in test
functions F1, F2, F3, F4, and F14.

In terms of the performance of the standard deviation. Sort by the number of optimal
values. The pGWO-CSA ranked first with eight optimal values. DGWO2 ranked second
with seven optimal values. OGWO ranked third with two optimal values. GWO ranked
fourth with one optimal value. DGWOL ranked fifth with zero optimal values. Compared
with GWO, pGWO-CSA outperformed GWO in 13 out of 15 test functions, and GWO
only outperformed pGWO-CSA in test function F7. Compared with OGWO, pGWO-CSA
outperformed OGWO in 11 out of 15 test functions, and OGWO only outperformed pGWO-
CSA in test functions F3, F7, and F14. Compared with DGWO1, pGWO-CSA outperformed
DGWOL in all 15 test functions. Compared with DGWO2, pGWO-CSA outperformed
DGWO?2 in seven out of fifteen test functions, and DGWO?2 outperformed pGWO-CSA in
test functions F1, F2, F3, F4, F7, F10, and F14.

In terms of the performance of the minimum. Sort by the number of optimal values.
DGWO2 ranked first with eight optimal values. The pGWO-CSA and OGWO tied for sec-
ond place with six optimal values. GWO ranked fourth with two optimal values. DGWO1
ranked fifth with one optimal value. Compared with GWO, pGWO-CSA outperformed
GWO in 13 out of 15 test functions. Compared with OGWO, pGWO-CSA outperformed
OGWO in six out of fifteen test functions, and OGWO outperformed pGWO-CSA in test
functions F1, F3, F4, F7, F10, and F13. Compared with DGWO1, pGWO-CSA outperformed
DGWOL1 in 14 out of 15 test functions, and DGWO1 outperformed pGWO-CSA only in test
function F6. Compared with DGWO2, pPGWO-CSA outperformed DGWO2 in six out of
fifteen test functions, and DGWO2 outperformed pGWO-CSA in test functions F1, F2, F3,
F4, F13, and F14.

In terms of the performance of the maximum. Sort by the number of optimal values.
DGWO?2 ranked first with eight optimal values. The pPGWO-CSA ranked second with
seven optimal values. OGWO ranked third with three optimal values. GWO ranked
fourth with one optimal value. DGWOL1 ranked fifth with zero optimal values. Compared
with GWO, pGWO-CSA outperformed GWO in 12 out of 15 test functions, and GWO
outperformed pGWO-CSA only in test functions F7 and F14. Compared with OGWO,
pGWO-CSA outperformed OGWO in 10 out of 15 test functions, and OGWO outperformed
pGWO-CSA only in test functions F4, F5, F7, and F14. Compared with DGWO1, pGWO-
CSA outperformed DGWOL1 in 13 out of 15 test functions, and DGWO1 outperformed
pGWO-CSA only in test function F15. Compared with DGWO2, pPGWO-CSA outperformed
DGWO?2 in six out of fifteen test functions, and DGWO?2 outperformed pGWO-CSA in test
functions F1, F2, F3, F4, F5, F7, F14, and F15.

In addition, pGWO-CSA can find theoretical optimal values on the test functions F9,
F11, and F12. In the test functions F8, F9, F11, and F12, pGWO-CSA is the optimal value
among the five algorithms in terms of the mean, standard deviation, and minimum and
maximum. It is not difficult to find from Tables 6 and 7 that DGWO?2 performs better
than pGWO-CSA in the first four test functions, F1-F4, in both the 30 dimensions and
the 50 dimensions. As can be seen from Table 1, the first four test functions are simple
single-peak functions, indicating that DGWO1 performs better than pGWO-CSA in simple
single-peak functions. However, compared with the other three algorithms, pGWO-CSA
still performs better on the test functions F1-F4.
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By comparison, it is not difficult to find that pPGWO-CSA performs better than the
previous seven test functions, F1-F7, in the following eight test functions, F8-F15, whether
in the 30 dimensions or the 50 dimensions. It can be seen that pGWO-CSA performs better
in more complex functions, which is largely due to the super-mutation operation carried
out by pPGWO-CSA, which helps pGWO-CSA better jump out of local optimum.

Based on the above data and analysis, pPGWO-CSA has faster convergence speed,
higher accuracy, and better ability to jump out of the local optimum compared with GWO
and its variants in either 30 or 50 dimensions. In order to further reveal the performance of
pGWO-CSA, the Wilcoxon test is performed in Section 4.3 based on the experimental data
in Sections 4.1 and 4.2.

4.3. Wilcoxon Test

In order to further reveal the performance of pPGWO-CSA, according to the exper-
imental data in Sections 4.1 and 4.2, the Wilcoxon test is conducted on the mean of the
30 running results of each algorithm. The statistical results are shown in Table 8. In the
Wilcoxon test, '+” means that the proposed algorithm is inferior to the selected algorithm,

‘—’means that the proposed algorithm is superior to the selected algorithm, and ‘=" means

that the two algorithms get the same result.

Table 8. The results of the Wilcoxon test.

Function Dimension PSO DE FA GWO OGWO DGWO1 DGWO2
F1 o - - - - - - '
P2 o - B - B - B '
F3 o - - B B - - '
F4 . - - - - . - '
F5 o - B - B - B -
Fé o - * R B - ; B
F7 . - - - - : - -
F8 o - B B B - B B
F . - B B B - B B
F10 38 B B B _ . _ _
Fi1 o - - B B - B B
F12 gg B - - _ _ - B
F13 28 B B B _ B _ _
Fl4 . : - - - - - :
F15 o - B B B - B B

2 1 1 0 4 0 10
28 29 29 28 24 28 18
0 0 0 2 2 2 2

It can be seen from Table 8 that the number of ‘+” of each algorithm is small, indicating
that the seven algorithms compared with pGWO-CSA only outperform pGWO-CSA in
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a few test functions, and the number of ‘—’ of each algorithm exceeds 15, indicating that
pGWO-CSA outperformed other algorithms in most test functions. The results show that
pGWO-CSA is superior to other swarm intelligence algorithms, GWO, and its variants.

5. Robot Path-Planning Problem

With the development of artificial intelligence, robots have been widely used in various
fields [33-35]. Among them, robot path planning is an important research problem. To
further verify the applicability and superiority of the proposed algorithm, it is applied to
the robot path-planning problem.

5.1. Robot Path-Planning Problem Description

The robot path-planning problem mainly includes two aspects: environment mod-
eling and evaluation function. Environment modeling is to transform the environmental
information of the robot into a form that can be recognized and expressed by a computer.
The evaluation function is used to measure the path quality and is regarded as the objective
function to be optimized by the algorithm.

5.1.1. Environment Modeling

The environment model of the robot path-planning problem is shown in Figure 35.
The starting point is located at (0,0) and marked with a black star, the endpoint is located at
(10,10) and marked with a blue triangle, and the obstacles are marked with a green circle.
The mathematical expression of the obstacles is shown in Formula (13).

(x — a)2 +(y— b)2 =12, (13)

where 2 and b represent the center coordinates of the obstacle, and r represents the radius
of the circle.

10 | - Start v
¥ End

| ‘

6..

4-

2_ ‘ ‘

04 %

0 2 4 6 8 10

Figure 35. Environment modeling.
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5.1.2. Evaluation Function

Suppose the robot finds some path points from start to end: (xo, yo), (x1, Y1), - - - , (Xn, Yn),
and the coordinate of the path point; is (x;, y;). A complete path formed by connecting
these path points is a feasible solution to the robot path-planning problem. In order to
reduce the optimization dimension of the problem and smooth the path curve, the spline
interpolation method is used to construct the path curve. In order to evaluate the quality of
the path, this paper considers the length of the path and the risk of the path. The evaluation
function is shown in Formula (14).

fit = wl X fitje, + w2 X fit,ig, (14)

where w1l and w2 are weight parameters and wl + w2 = 1.0. fit;,, represents the fitness
value of the length of the path, which is calculated by Formula (15); fit,;x represents the
fitness value of the risk of the path, which is calculated by Formula (16).

fitlen =), \/(xi —xi 1)+ (i —yi1) (15)
i=1

where 7 is the total number of path points, and (x;, y;) represents the coordinate of the
path point;.

2 2
a; —xj)" + (bi —y;
fitrise = x Y Y1 max 0,1—\/(1 ])r, (b = v)) , (16)
1

where c is the penalty coefficient, k is the total number of obstacles, (a;, b;) is the coordinates
of the center of obstacle i, and r; is the radius.

According to Formulas (14)-(16), when the fitness value of fit),, is small, then the
length of the path is short. When the fitness value of fit,;s is small, the risk of the path is
low. Therefore, the smaller the fit, the higher the quality of the path.

5.2. The Experimental Results

In order to verify the applicability and superiority of pPGWO-CSA in robot path-
planning problems, PSO, DE, FA, GWO, and its variants are compared with pPGWO-CSA.
The parameters of all algorithms are exactly the same as in Section 4. In order to avoid the
randomness of the algorithm, each algorithm will be run 10 times, and then the minimum,
maximum, and mean of the results will be recorded. The path planned by pPGWO-CSA is
shown in Figure 36, and the experimental results of all algorithms are shown in Table 9.

Table 9. Experimental results.

PSO DE FA GWO OGWO DGWO1 DGWO2  pGWO-CSA
min 881 x10° 756 x100 717x100 757 x10° 757 x10° 756 x 10°  8.36 x 10° 7.16 x 10°
max 1.03 x 10! 9.44 x 100 1.34 x 10! 9.27 x 100 8.74 x 100 9.22 x 100 1.01 x 10! 8.51 x 109
mean 997 x 100 846 x 109 1.08 x 10!  830x10° 810x10° 813 x10°  9.51 x 10° 7.94 x 10°

According to the experimental data, pPGWO-CSA is the optimal value of all algo-
rithms in the performance of the minimum, maximum, and mean. The applicability and
superiority of pPGWO-CSA are further verified.
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Figure 36. The path of pGWO-CSA.

6. Conclusions

Aiming at the defects of the GWO, such as low convergence accuracy and easy pre-
cocity when dealing with complex problems, this paper proposes pPGWO-CSA to settle
these drawbacks. Firstly, the pGWO-CSA uses a nonlinear function instead of a linear
function to adjust the iterative attenuation of the convergence factor to balance exploitation
and exploration. Secondly, pGWO-CSA improves GWO'’s position-updating strategy, and
finally, pPGWO-CSA is mixed with the CSA. The improved pGWO-CSA improves the con-
vergence speed, precision, and ability to jump out of the local optimum. The experimental
results show that the pGWO-CSA has obvious accuracy advantages. Compared with GWO
and its variants participating in the experiment, the pPGWO-CSA shows good stability in
both 30 and 50 dimensions and is suitable for the optimization of complex and variable
problems. Finally, the proposed algorithm is applied to the robot path-planning problem,
which further verifies the applicability and superiority of the proposed algorithm.
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