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The impact of inconsistent human annotations on AI driven
clinical decision making
Aneeta Sylolypavan1, Derek Sleeman 2, Honghan Wu 1,3✉ and Malcolm Sim4

In supervised learning model development, domain experts are often used to provide the class labels (annotations). Annotation
inconsistencies commonly occur when even highly experienced clinical experts annotate the same phenomenon (e.g., medical
image, diagnostics, or prognostic status), due to inherent expert bias, judgments, and slips, among other factors. While their
existence is relatively well-known, the implications of such inconsistencies are largely understudied in real-world settings, when
supervised learning is applied on such ‘noisy’ labelled data. To shed light on these issues, we conducted extensive experiments and
analyses on three real-world Intensive Care Unit (ICU) datasets. Specifically, individual models were built from a common dataset,
annotated independently by 11 Glasgow Queen Elizabeth University Hospital ICU consultants, and model performance estimates
were compared through internal validation (Fleiss’ κ= 0.383 i.e., fair agreement). Further, broad external validation (on both static
and time series datasets) of these 11 classifiers was carried out on a HiRID external dataset, where the models’ classifications were
found to have low pairwise agreements (average Cohen’s κ= 0.255 i.e., minimal agreement). Moreover, they tend to disagree more
on making discharge decisions (Fleiss’ κ= 0.174) than predicting mortality (Fleiss’ κ= 0.267). Given these inconsistencies, further
analyses were conducted to evaluate the current best practices in obtaining gold-standard models and determining consensus. The
results suggest that: (a) there may not always be a “super expert” in acute clinical settings (using internal and external validation
model performances as a proxy); and (b) standard consensus seeking (such as majority vote) consistently leads to suboptimal
models. Further analysis, however, suggests that assessing annotation learnability and using only ‘learnable’ annotated datasets for
determining consensus achieves optimal models in most cases.

npj Digital Medicine            (2023) 6:26 ; https://doi.org/10.1038/s41746-023-00773-3

INTRODUCTION
Classical supervised machine learning assumes the labels of
training examples are all correct, ignoring the presence of class
noise and inaccuracies1. In healthcare, this assumption may not
hold even when highly experienced clinicians provide these
labels, due to the degree of noise, observer subjectivity and bias
involved. If neglected in the training of a Machine Learning
Decision-Support-System (ML-DSS), annotation inconsistencies
may result in an arbitrarily partial version of the ground truth,
and to subsequent unpredictable clinical consequences, including
erroneous classifications2–4.
Ideally, class labels are obtained via a knowledge acquisition

process, involving choosing the appropriate “gold-standard” to
base these ground truth class labels on, to build a Knowledge-
Based System (KBS). Within the healthcare and biomedical setting,
clinical domain experts are often used to provide these labels5.
However, in many clinical areas, these ground truths are hard to
find and define, due to the pathophysiological, diagnostic and
prognostic uncertainties inherent to medicine2,6.
Cognitive Psychology has shown experimentally that humans (&

hence experts) make “slips”, for example, due to cognitive
overload and due to biases. On the other hand, the field of
expert systems and KBS has assumed that for (most) disciplines
“slip-free” highly skilled experts exist, and the key task is how such
experts can be objectively or subjectively identified. However,
increasing evidence from the literature shows, on common sets of
(e.g., classification) tasks, groups of experts do often significantly
disagree with each other5,7,8. In 2021, Kahneman et al.9 published

a major contribution to this topic called Noise: a flaw in Human
Judgment, which convincingly makes the case that fellow experts
in many disciplines do differ. These authors9 make distinctions
between judgments and opinions where with the former, experts
are expected to provide a response from a (fixed) set of
alternatives, whereas opinions are much more open-ended. In
this paper, we deal with tasks that require the various experts to
make judgments.
There are four main sources of annotation inconsisten-

cies2,8,10–17: (a) Insufficient information to perform reliable
labelling (e.g., poor quality data or unclear guidelines); (b)
Insufficient domain expertise; (c) Human error (i.e., slips & noise);
(d) Subjectivity in the labelling task (i.e., judgment & bias). In this
study, where highly experienced clinical annotators were used
and the labelling task was well understood with 60 instances to
annotate, we believe the main source of inconsistency investi-
gated is the interrater variability resulting from observer bias,
judgment, and noise. Throughout this paper, we define ‘noise’ as
system noise, i.e. unwanted variability in judgments that should
ideally be identical9.
Kahneman et al.9 notes between-person noise (i.e., interrater

variability) in the medical profession is most common when
clinicians are required to make judgments, as opposed to
following a routine or largely mechanical diagnosis (i.e., consisting
of set tests or quantitative rules); Kahneman et al. outline a series
of examples. Jain et al.18. found that in diagnosing breast
proliferative lesions, agreement amongst pathologists only had a
‘fair’ agreement (Fleiss’ κ= 0.34). Regier et al.19 showed highly
trained specialist psychiatrists only agreed on a diagnosis of ‘major
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depressive disorder’ 4–15% of the time (Fleiss’ κ= 0.28)20. Halford
et al.21 showed minimal agreement among EEG experts for the
identification of periodic discharges in continuous ICU EEG
recordings (average pairwise Cohen’s κ= 0.38). Moor et al.22

describe the significant issues of disagreements on the definition
of sepsis - a leading causes of death in ICUs worldwide. Zhang
et al.23 investigate Emergency Department (ED) clinicians’ referrals
to inpatient teams and found for 39.4% of the admissions, patients
were admitted to a different inpatient team than that initially
referred to by the ED. Xia and Yetisgen-Yildiz24 showed almost no
agreement between clinical annotators identifying pneumonia
from chest x-ray reports (Cohen’s κ= 0.085), and that “medical
training alone is not sufficient for achieving high inter-annotator
agreement”. The presence of noise is clearly pervasive across a
variety of medical domains, including ICU settings.
Using such clinicians to establish the Knowledge Base results in

a ‘shifting’ ground truth, depending on which expert(s) are used.
Label noise in training data has been shown empirically to result
in4,11,25–28: decreased classification accuracy, increased complexity
of inferred models (e.g., increasing size of decision trees),
increased number of training samples needed, and a difficulty in
feature selection. To the best of our knowledge, this paper is one
of the first studies that investigates biases/inconsistencies among
a sizeable number (11) of clinicians in acute clinical decision-
making scenarios (ICU settings), using an external validation
dataset.
Frequently, two approaches are used to address class label

noise in ML development. The first involves utilising data
cleansing methods, where noisy labels are identified and
relabelled/removed before training. The second involves using
label noise-tolerant algorithms, where label noise is accounted for
during learning10,12,29. Moreover, applying these methods may
result in the loss of subtle and potentially important differences
between annotators’ class labels. (This latter issue is addressed in
the Further work section). There is some informative literature
discussing methods to improve the quality of clinical labels,
including establishing clear annotation guidelines24 and model-
ling annotation errors of the human experts30. However, most of
this literature considers image classification tasks – there is a lack
of empirical studies around improving the quality of symbolic
labels within medical annotation tasks.
The aim of this study is to assess the (in)consistency of human

annotations for AI model development and the impact on real-
world clinical decision-making in ICU settings. The overall class
label quality is strongly impacted by disagreements between
annotators. The focus of this study is on investigating the impact
and effective utilisation of experts’ disagreements (via their
annotations) in developing ML models rather than resolving the
deviation of their judgments for forming a “ground-truth”. We
conduct extensive experiments demonstrating how differences in
judgments between clinical expert annotators may lead to
classification models with varying performance (therefore varying

clinical utility), and how to obtain an optimal consensus from such
differences, to facilitate AI driven clinical decision-making.
Specifically, Sleeman et al.5,7 reported clinical experts sometimes
disagree when labelling the severity of an Intensive Care Unit (ICU)
patient on a five-point scale (A-E), based on the values of six
clinical variables. The current study addresses the question: ‘What
are the implications of these differences in judgment on the
resulting classifier model performance and real-world ICU clinical
decision-making?’ We therefore proposed the hypothesis that the
M classifiers, derived from datasets individually labelled by M
clinical experts, produce consistent classifications when applied to
a relevant external dataset. The objectives of this study are to: 1)
Build classifiers from the 11 individually annotated Queen
Elizabeth University Hospital (QEUH) ICU datasets. 2) Evaluate
the classifiers’ performances on real-world discharge outcomes
(discharged alive from ICU and died in ICU) in an external ICU
dataset: HiRID. 3) Assess various approaches for dealing with
annotation inconsistencies, as these frequently create sub-optimal
AI models.

RESULTS
This study focuses on a scenario of using AI technologies for
facilitating a clinical decision-making problem that ICU consultants
encounter on a day-to-day basis, as described below.

Clinical question
Can we use a five-point ICU Patient Scoring System (ICU-PSS) scale
(A-E) to address the question “How ill is the patient?”, where E
represents severe cardiovascular instability, and A represents a
relatively stable patient. Figure 1a provides a description of the
ICU-PSS scale and Supplementary Table 1 contains further details.
The training dataset was obtained from the Glasgow Queen

Elizabeth University Hospital (QEUH) ICU patient management
system. It contains 60 data instances described by six clinical
features: two drug variables (Adrenaline and Noradrenaline) and
four physiological parameters (FiO2, SpO2, mean arterial pressure
(MAP) and heart rate (HR)). Note, the six variables are those which
clinicians regularly use in the ICU to assess how ill a particular
patient is. Example annotations are shown in Fig. 1b. The QUEH
dataset may contain trauma and non-trauma ICU patient data.
Our main aim is to assess the (in)consistency of human

annotations for AI model development and the impact on real-
world clinical decision-making in ICU settings. This is broken down
into the following aspects.

i. Evaluation setup: (a) ML models are developed using the
QEUH annotated datasets; (b) external validation datasets
are prepared, and all model performance assessments are to
be conducted on these datasets.

ii. Consistency quantification: We choose Cohen’s κ scale31,32

and Fleiss’ κ33,34 to measure the extent to which annotators’

a

b

A Normal physiological parameters without use of drugs like adrenaline, only small 

amounts of fluids, and low levels of inspired oxygen

B Relatively stable (i.e., near normal physiological parameters) with low levels of 

support

C Either more stable than patients in category D or the same level of stability but on 

lower levels of support (e.g., fluids, drugs and inspired oxygen)

D Patient more stable than those in category E but is likely to be receiving considerable 

amounts of support (e.g., fluid boluses, drugs such as adrenaline, and possibly high 

levels of oxygen)

E physiological parameters (e.g., blood pressure and heart rate) having extreme values 

(low or high) and likely to be receiving high levels of support

PseudoID Timepoint Adrenaline Noradrenaline FiO2 SpO2 MAP HR Annotation

01 21/08/2017 08:00 0 0.6 0.3 98 70 56 C

02 16/07/2017 02:00 0 0 0.30 99 94 98 A

Fig. 1 Description of the QEUH annotated training data. a ICU-PSS annotation categories. b Example instances of a QEUH ICU annotated
dataset.
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AI models assign the same category to the same instance.
Higher values on these scales suggest stronger levels of
agreement. Cohen’s scale can be summarized as: 0.0–0.20
(None); 0.21–0.39 (Minimal); 0.40–0.59 (Weak); 0.60–0.79
(Moderate); 0.80–0.90 (Strong); > 0.90 (Almost Perfect).

iii. Impact on real-world decision-making: we chose two real
ICU decision-making scenarios, both of which are binary
classification tasks. First, whether a patient should be
discharged from ICU in the next hour; second, whether a
patient is going to die in ICU within the next hour. We
investigate two methods of external validation – one using
hourly snapshots of patient data (i.e., static data) and
another using time series data (i.e., temporal data).

iv. Evaluate current “best practices” of obtaining the gold-
standard: we evaluate (a) whether there is a “super expert”
whose judgment should be used as the gold-standard when
disagreements occur; (b) whether a consensus can be
obtained from all expert judgments to achieve the gold-
standard?

An overview of the experimental approach described above is
found in Fig. 2.

Quantifying the consistency of expert judgments
Recall that the central hypothesis for this study is: the M classifiers,
derived from the datasets individually labelled by M clinical
experts, produce identical classifications when applied to a
relevant external dataset.
Decision tree (DT) and random forest (RF) classifiers were built

from the QEUH annotated datasets, in part as both are popular
choices in clinical machine learning literature. DT was selected as
the resulting tree plots can be used to infer the decision-making
process of the learnt models, as well as compare the different
complexities between annotator models. RF was used to compare
whether more powerful models (compared to DT) would make the

inconsistency less significant – which we show in later subsections
is not the case.
11 classifiers were derived from each of the 11 consultants’

annotated datasets, which contained data for 6 clinical variables
(Adrenaline, Noradrenaline, FiO2, SpO2, MAP, HR) and the severity
class labels (A-E). The annotation labelling (A-E) across the 60
training instances differs across the 11 annotators, as shown in
Fig. 3a. Note, we tried class-balancing techniques to balance the
class labels within the annotated datasets prior to training,
however this did not result in a significant performance difference
(see Supplementary Table 2). Therefore, we decided to build
classifiers using the original annotated datasets. The 11 con-
sultants who annotated the QEUH datasets were randomly
assigned anonymous code names (C1-C11) following the annota-
tion exercise in the previous Sleeman et al.5 study. These code
names are referred to throughout this paper. Each consultant’s
corresponding RF classifier is referred to as Cn-RF, where n refers
consultants 1–11.
The trained models predict ICU-PSS labels (A-E) for a patient,

indicating their level of severity. A standard internal validation
experiment across multiple annotated datasets involves first
establishing a ground truth, most likely through taking a majority
vote across all annotators for each instance. Then each trained
consultant model would be run against this ground truth to
establish internal validation performance. We developed and
utilised a different method, more relevant to this study, where
each trained model was run against the original annotations it
learnt from – thus, these internal validation results indicate the
‘learnability’ of the original annotated datasets, i.e., how well the
associations between the attribute variables and provided
annotations can be learnt, and in turn how easily the annotator’s
decision-making can be reproduced. These internal validation F1
(micro) score ranges between 0.50 to 0.77 across the 11 RF
classifiers, as seen in Fig. 5a. The feature importance across the six
predictive variables differs across the classifiers, as shown in Fig. 4.

Queen Elizabeth 
University Hospital
Training Dataset

INTERNAL VALIDATION

K-fold cross validation      

Feature Importances

HIRID 

External Validation Dataset 
Investigation

MIMIC-III HIRID 

MODEL DEVELOPMENT

Decision Tree

Random Forest

EXPERIMENT 1

EXPERIMENT 2

Static & Temporal HIRID 
validation datasets

EXTERNAL VALIDATION Cohen’s κ, Fleiss’ κ

CONSISTENCY 
QUANTIFICATION

Super-expert

ANALYSIS OF CURRENT 
PRACTICES

Majority-Vote

Temporal HiRID 
validation dataset

INVESTIGATING 
PATTERNS OF CHANGE

NOVEL CONSENSUS 
SEEKING METHOD

Evaluate learnability 
before seeking 

consensus

External Validation Dataset 
Preparation 

Classify patient discharge 
status

Classify patient discharge 
status – compare performance 

on static vs time-series data

Static HIRID validation 
dataset

Fig. 2 Overview of the experimental approach, outlining the dataflow and key analytical steps. The left component (with three boxes)
illustrates the model derivation including dataset, models and internal validation methods. The top component with two green boxes
denotes the external validation dataset selection and preparation. The middle component (circled by a dashed line) shows the external
validation experiments. The right component (with four pink boxes) describes the external validation experiment details including
inconsistent measurements, consensus seeking methods and decision making considering changing patterns.
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With all the external validation experiments, the focus is on
predicting the two extreme clinical scenarios (discharged alive
from ICU or died in ICU). In this first external validation
experiment, the trained models were run on a HiRID test dataset,
to predict severity labels (A-E) on 2600 instances containing data
for the same 6 clinical variables (1300 of these instances
corresponds to patients who are discharged alive from that ICU,
and a further 1300 patients who died in that ICU). As our focus is a
binary (discharge status) classification task, we mapped the
multiclass A-E severity label classifications to binary discharged/
died classifications as follows:

● In the last hour before a patient is discharged (alive) from ICU,
their classification on the ICU-PSS scale is ‘A’.

● In the last hour before a patient dies in ICU, their classification
on the ICU-PSS scale is ‘E’.

Note, in the HiRID dataset, not all patients with an ‘A’
classification were discharged within the next hour. Similarly,
not all patients with an ‘E’ classification died within the following
hour; many patients upon arrival to ICU are extremely ill and are
often rated as an ‘E’.
The predicted labels across the 2600 HiRID test instances differ

across the annotators, as shown in Fig. 3b. It is clear from
reviewing this diagram that there is a great deal of variation in the
classifications of the experts’ models, with only a few models
having comparable labels. The corresponding pairwise inter-
annotator agreements (IAAs) for these A-E predicted labels, using
Cohen’s scale, range between −0.01 (Low/None) to 0.48 (Weak)
across the annotator models, and are shown in Fig. 3c. The
average pairwise Cohen’s κ score is 0.255 (Minimal agreement).
Fleiss’ κ for these predicted labels is 0.236 (Fair agreement). Note,
IAA is used as an abbreviation for “Inter-Annotator Agreement”
throughout this paper.
These results were obtained using the Random Forest

classifiers35, trained on the 11 consultants’ annotated datasets.
The corresponding classifiers obtained using the Decision Tree

algorithm25 gave comparable results, see ref. 36. Classifiers trained
using XGBoost and SVM also gave comparable results to the RF
models, as shown in Supplementary Fig. 3.

Investigating inter-annotator agreement across the ICU
discharge status classifications
Further, we consider the actual decisions which the classifiers from
the 11 QEUH consultants made concerning the HiRID validation
dataset which you will recall, contained 1300 instances which
correspond to the patient being discharged alive in the next hour
(i.e., ICU-PSS label ‘A’, as outlined in the mapping above) and 1300
instances where the patient died in the ICU within the following
hour (i.e., ICU-PSS label ‘E’). These results are summarised in Fig.
5a. Recall, the trained classifiers predict ICU-PSS classification
labels (A-E) for a patient, indicating their level of severity. In this
first external validation experiment, we treat the trained models as
predicting three classes: CL1= A, CL2= B/C/D, & CL3= E. The
external validation F1 scores reported in Fig. 5a are calculated
using the F1 micro average – computing a global average F1 score
by counting the sums of the True Positives, False Negatives, and
False Positives. F1 score37 is the harmonic mean of the precision
and sensitivity of the classifier, where a higher score indicates a
higher performing model.
Figure 5a reports the number of correctly classified “Discharged

Alive” and “Discharged Dead” labels across all 11 classifiers. These
results suggest that C10 is the ‘most reluctant’ to discharge
patients, with the lowest number of correct “Discharged Alive”
classifications, referring to the number of correctly predicted
admissions discharged alive within 1 h. In contrast, C2 and C4 are
the ‘most likely’ to discharge patients, with the highest number of
correct “Discharged Alive” cases.

Scenario 1: Patients discharged alive from ICU. Focusing only on
the instances where the patient was discharged alive, we observe
the average pairwise inter-annotator agreement (Cohen’s κ) is 0.21

aa b

c

Fig. 3 Distributions of the 11 consultants’ annotations on the training dataset and predicted labels on the external validation dataset.
a Annotation distributions across all consultants’ (C1-C11) labelled QEUH training datasets. b Predicted label distributions across the
consultants’ RF multiclass models, run on the HiRID validation dataset. c Pairwise Cohen’s κ values across all consultant pairs for the predicted
labels made by the multiclass RF models on the external HiRID validation dataset.
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(Minimal agreement). Fleiss’ κ for these predicted labels is 0.174
(Slight agreement).

Scenario 2: Patients died in ICU. Focusing now on the instances
where the patient died in ICU, we observe the average pairwise
inter-annotator agreement (Cohen’s κ) is 0.28 (Minimal agree-
ment). Fleiss’ κ for these predicted labels is 0.267 (Fair agreement).
This suggests clinical domain experts agree more when

predicting mortality, compared to making discharge decisions.
Note, due to the low number of ‘E’ labels across the annotated
datasets, limited insights and comparisons can be inferred for
these predicted “died” labels. In future related studies we will
acquire more class-balanced datasets to address this issue.
Figure 5b shows an example one consultant’s (C1) confusion

matrix plot, outlining the distribution of the RF predicted labels
when run on the HiRID validation dataset. Predicted labels 0–4
correspond to ICU-PSS labels A-E, respectively. True label= 0
corresponds to the patient being discharged alive from ICU within
the next hour (i.e., ICU-PSS label ‘A’); and true label= 4
corresponds to the patient having died in ICU within the following
next hour (i.e., ICU-PSS label ‘E’). This confusion matrix shows C1-
RF correctly classified the patient as ‘Discharged Alive’ for 337

cases, and correctly classified the patient as ‘Discharged Dead’ for
229 cases. The trained models were treated as predicting three
classes: CL1= A, CL2= B/C/D, & CL3= E.
As the QEUH training data consists of hourly snapshots of

patient physiological/pharmacological readings, we ran this
external validation experiment with a HiRID validation dataset
containing similarly static data. However, Fig. 5a shows the
external validation performance is significantly lower than the
internal validation performance. This could indicate that extreme
decision-making at ICUs (predicting discharge/death) may require
continuous monitoring (i.e., using time series data) – this is
explored further in the later subsection ‘Assessing Time Series
External Validation Methods’. Additionally, the annotation dis-
tributions shown in Fig. 3a suggest that human annotators may be
less likely to choose extreme label categories (i.e., A or E) when
presented with a multiclass labelling task, which in turn results in
poor performance when predicting these scenarios.
For the classifiers that had high internal validation perfor-

mance (C2-RF, C4-RF, C8-RF), we can infer that these consultants’
annotated datasets were highly learnable (recall, ‘learnability’
indicates how well the associations between the input variables
and provided annotations can be learnt, and in turn how easily
the annotator’s clinical rationale can be reproduced). Despite
having similarly high internal validation performance, consul-
tants C2 and C8 differ in their initial QEUH annotation
distributions and subsequent feature importance distributions,
as outlined in Fig. 3a and Fig. 4, resulting in differing
distributions in their predicted labels on the HiRID validation
dataset. As shown in Figs. 6a and 6b, the C2 QEUH annotated
dataset consists of 3.3% ‘C’ labels and 10.0% of ‘E’ labels,
whereas the C8 annotated dataset consists of 36.7% ‘C’ labels
and 1.7% ‘E’ labels. The inferred C2-RF classifier predicted labels
consists of 1.4% ‘C’ labels and 11.2% ‘E’ labels, whereas the
inferred C8-RF classifier predicted labels consists of 12.5% ‘C’
labels and 1.5% ‘E’ labels. Overall, the C2-RF and C8-RF classifiers
have minimal agreement across their classifications when run on
the HiRID dataset (pairwise Cohen’s κ= 0.27).

Annotator

Internal Val.

F1 micro

External Val. External Val.I

F1 micro ‘Discharged 

Alive’

‘Discharged 

Dead’

C1 0.567 0.218 337 229

C2 0.717 0.501 1064 239

C3 0.617 0.379 967 19

C4 0.700 0.425 1070 34

C5 0.583 0.198 308 207

C6 0.600 0.148 375 9

C7 0.550 0.346 900 0

C8 0.767 0.376 970 7

C9 0.517 0.350 556 354

C10 0.650 0.183 156 320

C11 0.500 0.208 329 213

I Correctly classified ‘Discharged Alive’ and ‘Discharged Dead’ labels

a b

Fig. 5 Comparison of internal and external validation performances of the RF models across all 11 consultants (C1-C11). a Internal and
external validation performances of the consultants’ RF models. For each classifier, the number of correctly classified “Discharged Alive” and
“Discharged Dead” labels on the HiRID external dataset are reported. b External validation confusion matrix plot for Consultant 1, showing the
HiRID dataset true labels and RF model predicted labels across the five classes (A-E): 0= ICU-PSS label ‘A’, 4= ICU-PSS label ‘E’.

QEUH Annotated 

Label
C2 (%) C4 (%) C8 (%)

A 55.1 46.7 40.0

B 20.0 28.3 16.7

C 3.3 13.3 36.7

D 11.7 6.7 5.0

E 10.0 5.0 1.7

HiRID Predicted 

Label
C2-RF (%) C4-RF (%) C8-RF (%)

A 71.0 72.0 72.0

B 6.0 13.5 13.5

C 1.4 12.5 12.5

D 10.3 0.4 0.4

E 11.2 1.5 1.5

ba

Fig. 6 QUEH annotations across the highly learnable expert-labelled datasets and resulting RF predicted label distributions. a Annotation
distributions across the QEUH labelled datasets for C2, C4 & C8. b Predicted label distributions generated by classifiers C2-RF, C4-RF & C8-RF
when run on the HiRID validation dataset.

Fig. 4 Feature importance distributions across the Random Forest
models, trained on the 11 consultants’ (C1–C11) QEUH annotated
datasets. The x-axis lists the 11 classifiers and the y-axis is the
importance value with a range from 0 to 1, where 1 denotes the
largest importance.
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Analysis of current practices on obtaining Gold-standard
In this subsection, we evaluate two types of best practices in
obtaining gold-standard from multiple domain experts:
(a) Super expert: use a more senior annotator’s labels or use

decisions from an adjudicator when disagreements happen; (b)
Majority-Vote: Seek consensus from all different judgments as the
ground-truth38–40.
Regarding the “super expert” assumption, we could not make

this assessment directly, as we do not know which annotators are
more senior, due to the anonymization of the dataset. To work
around this, we use the correlation between internal and external
model performances as a proxy indicator. This is because, if the
super-expert assumption holds, one could assume that models
with higher (or lower) performance internally are likely to have
higher (or lower) performances in external validations. Figure 5a
lists the internal and external validation results. The Pearson
correlation between the two results is 0.51, meaning they are not
strongly associated. The results of this analysis suggests that the
super-expert assumption, i.e., that the gold-standard can always
be provided by the most senior colleague, is not always true. We
observe that even the well performing models in internal
validation do not perform as well in external datasets (e.g., C4-
RF and C8-RF). In fact, the initial annotations of the QEUH dataset
shows similar levels of disagreement amongst the consultants as
shown on the HiRID validation dataset. As we show later, a
superior model can often be achieved by considering diverse
judgments in a selective majority-vote approach.
Additionally, we investigated taking a consensus of all experts’

annotations (a common practice). Figure 5a shows the varied
internal validation performance across the QEUH datasets,
indicating a difference in learnability across the 11 annotated
datasets. The models with higher internal validation performance
indicate easier learnability (e.g., C8), which potentially reflects
more consistent annotation rules and a simpler decision-making
process. Models with lower internal performance indicate a poorer
learnability, with potentially less consistent / more complex
classification rules (e.g., C7).
To assess the reliability of taking a consensus, we compared the

external validation performance of a consensus Majority Vote (MV)
model, built from the majority-vote labels across all 11 annotated
datasets, to a Top Majority Vote (TMV) model, built from the
majority-vote labels across the top-performing consultant models
(where internal validation F1 micro > 0.7). Figure 7 shows TMV (F1
micro= 0.438) performs significantly better than MV (F1 micro=
0.254). In fact, TMV outperforms almost all the consultant models.
This indicates it is important to assess learnability of each domain
expert’s judgments before creating a consensus, because poorly
learnable (expert) judgments often lead to poor performances.

Assessing Time-series external validation methods
After further discussion with ICU professionals, we established ICU
consultants’ clinical decision-making commonly considers the
trend in patient physiological and pharmacological parameters

across the period of time prior to assessment (e.g., across the
previous 5–10 h). We, therefore, incorporated a time-series
component into this second external validation experiment and
investigated how this impacts the performance of the QEUH
classifiers. We believe this experiment is a more clinically relevant
assessment of the expert models, as it provides the more realistic
task of classifying discharge status given patient parameter
readings over a period of time (rather than a single snapshot).
Within this second external validation experiment, we com-

pared the performance of DT classifiers, trained on the QEUH
annotated datasets, on both static and temporal HiRID datasets.
The static HiRID validation dataset contains 1064 records (of 1064
unique patients), where all data instances are readings within 1 h
before the patient is discharged alive (i.e., ICU-PSS label ‘A’) or
within 1 h before the patient died (i.e., ICU-PSS label ‘E’). The
temporal HiRID validation datasets contain 5320 records (across
the same 1064 unique patients), made up of five records per
patient – one reading for each of the 5 h before discharge/death.
To assess the performance of the trained DT classifiers on the

temporal validation datasets, for each patient timepoint the
weighted sum of the five (hourly) ICU-PSS predictions was
calculated, and a mean value was obtained (resulting in
1,064 severity classifications within the temporal datasets). These
A-E predicted labels were treated as a 1–5 ordinal scale, therefore
the weighted sum values were all in the range 1–5. Again, the
trained models were treated as predicting three classes: CL1= A,
CL2= B/C/D, & CL3= E. We explored two methods of mapping
the weighted sum values (1–5) to these three classes, with
differing cut-offs, as shown below. Further details are outlined in
the Methods section.

i. ‘Extreme’: CL1= 1, CL2= > 1–4, CL3= > 4.
ii. ‘Neutral’: CL1= ≤ 3, CL2= > 3-<4, CL3= ≥ 4.

Within this experiment, in addition to the MV and TMV
consensus models, an additional ‘Fuzzy Consensus’ (FC) model
was built. This FC model was built by combining the individual
models’ outputs by considering their outputs as confidence values
for the binary classification task on the temporal external
validation datasets (discharged alive vs died). We treated the
A-E predicted labels as predictions on a 1–5 ordinal scale (i.e.,
A= 1, B= 2, C= 3, D= 4, E= 5). In this scale, A represents
discharged alive within the next hour, and E represents died
within the following hour. Within this consensus method, all
predictions are captured and interpreted as ‘fuzzy’ labels41 in
calculating the overall discharge status prediction for each patient.
For each hourly prediction, per patient, the model outputs (1–5)
were averaged, but excluding any ‘3’ (i.e., ‘C’) predicted labels in
this calculation. ‘3’ is excluded as this confidence value sits directly
in the centre of the 1–5 scale and is therefore interpreted as
“uncertain”. Following this averaging calculation, for each patient
timepoint the weighted sum of the five (hourly) ICU-PSS
predictions was calculated, using both the ‘Extreme’ and ‘Neutral’
cut-offs outlined above. The results are shown in Fig. 8a. Further
details around the FC model calculation are found in the Methods
section. A ‘Top Fuzzy Consensus’ (TFC) model was also built from
the majority-vote labels across the top-performing consultant
models (where internal validation F1 micro > 0.7).
Figure 8a shows all annotator models perform better on the

temporal (neutral) validation dataset, compared to the temporal
(extreme) and static datasets. The models have higher perfor-
mance on the dataset generated with more neutral classification
mapping, compared to the more extreme mapping, as the
extreme mapping method excludes a much greater number of
patient datapoints from the CL1 and CL3 classes (recall, only CL1
and CL3 classes are present in the HiRID validation datasets). An
additional mapping was investigated using the following cut-offs:
CL1= ≤ 2, CL2= > 2-< 4, CL3= ≥ 4, see Supplementary Fig. 1 for
these results.

Fig. 7 Multiclass random forest QEUH models, run on the HiRID
external validation dataset. Majority Vote (MV) refers to a total
majority-vote consensus model. Top Majority Vote (TMV) was built
from the majority-vote labels across the top-performing consultant
models.
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As shown in Fig. 8a, we observe that the well performing
models in internal validation (C4-RF and C8-RF) do not perform as
well when run on the external temporal external datasets. The
Pearson correlation between the internal validation results and
temporal (extreme) external validation results is 0.64, meaning
they are not strongly associated. Similarly, the Pearson correlation
between the internal validation result and temporal (neutral)
external validation results is −0.51. This provides some further
evidence that the super-expert assumption may not always hold
in acute clinical settings.
Figure 8a shows the Top Majority-Vote model (TMV) performs

significantly better than the consensus Majority-Vote model (MV)
on the static validation dataset, as observed in the previous
experiment. TMV also performs significantly better than MV on the
temporal (extreme) dataset and slightly higher than MV on the
temporal (neutral) dataset. This further suggests the importance of
assessing learnability of domain experts’ judgments and excluding
the poorly learnable expert annotations before obtaining a
consensus as ground-truth. The Top Fuzzy Consensus (TFC) model
also performs well – indicating consensus is consistently improved
after selecting models based on the individual models’
learnability.
Figure 8b reports the number of correctly classified “Discharged

Alive” and “Discharged Dead” labels across all 11 classifiers, run on
the static and temporal HiRID validation datasets.

Scenario 1: Patients discharged alive from ICU. Focusing only on
the instances where the patient was discharged alive, we observe
the average pairwise IAA, i.e., Cohen’s κ, is 0.239 (Minimal
agreement) on the temporal (extreme) dataset, where Fleiss’ κ
for these predicted labels is 0.211 (Fair agreement). When run on

the temporal (neutral) dataset, average pairwise IAA is 0.284
(Minimal agreement) and Fleiss’ κ is 0.294 (Fair agreement).

Scenario 2: Patients died in ICU. Focusing now on the instances
where the patient died in ICU, we observe the average pairwise
IAA is 0.327 (Minimal agreement) on the temporal (extreme)
dataset, where Fleiss’ κ for these predicted labels is 0.326 (Fair
agreement). When run on the temporal (neutral) dataset, average
pairwise IAA is 0.587 (Weak agreement) and Fleiss’ κ is 0.579
(Moderate agreement). This further indicates that clinical domain
experts may agree more when predicting mortality, compared to
making discharge decisions.
We conducted additional analysis to investigate how

supervised-learning models perform on classifying patient dis-
charge status, after training on the predicted labels (A-E)
generated (by the DT classifiers) on the temporal HiRID dataset.
This involved training decision tree and logistic regression (LR)
models on each consultant’s DT classifier predicted labels (A-E)
across the five hours before discharge/death for each patient (i.e.,
5 predictor features), see Supplementary Fig. 2.
The odds ratio distributions indicate the difference in weight-

ings (i.e., importance) across the five hourly variables, in making
the patient discharge status classification (discharged alive or
died). The predictions at 5 h before discharge/death were most
important in the LR model discharge status classification across
most consultant models, as well as for MV and TMV. For a majority
of models, the predictions at 1 h before discharge/death were the
least important in making the final discharge status classification,
which is notable as this contradicts an intuitive hypothesis that
discharge predictions closer to time of discharge/death are
indicative of final discharge status.

a

b
Annotator Static External Val. Temporal (Extreme) External Val. Temporal (Neutral) External Val.

‘Discharged Alive’ ‘Discharged Dead’ ‘Discharged Alive’ ‘Discharged Dead’ ‘Discharged Alive’ ‘Discharged Dead’

C1 145 127 106 124 396 125

C2 287 127 261 106 379 106

C3 119 10 78 20 389 141

C4 305 0 260 0 394 63

C5 66 131 27 119 353 123

C6 159 84 123 88 369 118

C7 252 0 198 0 359 126

C8 329 0 296 0 386 66

C9 143 117 114 133 387 155

C10 87 131 43 126 352 131

C11 42 136 13 150 390 161

MV 71 131 59 128 290 183

TMV 287 127 261 113 321 159

c

Fig. 8 Additional analyses on a HiRID time-series validation dataset. a Comparison of external validation performance on static vs temporal
HiRID validation datasets. b Correctly classified ‘discharged alive’ and ‘discharged dead’ labels made on static and temporal HiRID external
validation datasets. c Odds ratio distributions of the Logistic Regression model trained on HiRID predicted labels 1–5 h before discharge/
death.
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DISCUSSION
This study focussed on assessing the disagreements between
clinical annotators and evaluating the impact of these disagree-
ments on the performance of resulting ML models, within ICU
settings. In particular, we evaluated current ‘best practices’ of
seeking consensus, and our results suggest these may not work
well in acute clinical settings. Our analysis points out a novel, more
reliable approach - evaluating learnability before seeking
consensus.
The varied label classifications shown in Fig. 3b and the low

pairwise agreement in Fig. 3c (average Cohen’s κ= 0.255 i.e.,
Minimal agreement) are sufficient to reject the central hypothesis
– concluding that the classifiers, derived from datasets individually
labelled by the 11 clinical experts, do not produce consistent
classifications when applied to a relevant external dataset. Further
analysis on two ICU decision-making scenarios showed incon-
sistency varies in different situations: these clinical domain experts
seem to have higher agreement on more critical situations like
predicting mortality.
A deep dive on assessing the current practices in obtaining

ground-truth makes two actionable suggestions: (a) super experts
(who are more reliable than everyone else) may not exist in acute
clinical settings, and diverse responses might be more reliable for
obtaining optimal models; (b) learnability (quantified as internal
validation performances) is a key metric to be assessed on domain
experts’ judgments, and avoiding poorly learnable judgments
might lead to better ground-truths, therefore better external
validation performances.
Further to point b), an approach to detect and exclude experts

who inconsistently apply their annotation rules is summarised as
follows: All experts are to annotate the same set of (training)
instances; from these annotated datasets a classifier would be
inferred for each expert. The ‘learnability’ of each classifier is
obtained through an appropriate method e.g., k-fold cross
validation, where the trained models are run on their original
annotations – this is a check for consistency of each expert’s
annotation rules. Then exclude all models that do not perform
above a predefined threshold (i.e., the models built from
annotated datasets with low learnability). The results shown in
Figs. 7, and 8a indicate that this method can be applied to utilise
disagreements between clinical annotators in generating higher
performing consensus models (i.e., TMV and TFC).
After excluding poorly learnable models, we observe there can

be significant differences in the classifications made by the
distinct expert models (e.g., C2-RF and C8-RF), as outlined in the
Results section. This agrees with the observation made by
Welinder et al.42 that some annotators tend to be more extreme
in their labelling, whereas others are more moderate. As classifiers
C2-RF and C8-RF were inferred from learnable annotated datasets
(indicated by good internal validation performance), this suggests
the differences in resulting predicted label distributions may stem
from differences in consultant judgments. Therefore, these may be
valid and clinically useful differences we may not want to ignore.
Current ML approaches to addressing label noise in training
datasets include data cleansing (i.e., removing the noisy labels) or
utilising noise-robust/noise-tolerant algorithms. Applying these
methods may result in losing the useful granular differences
between annotator judgments. Additionally, applying the
majority-vote or the top-majority-vote approach (described in
Results section) can result in a loss of subtle differences between
annotator judgments. This issue is to be addressed in the Further
work section.

Further work
Most of the classifiers built in this study have poor internal and
external validation performance, reflecting poor real-world deci-
sion-making. However, this poor performance could be due a

variety of reasons: small/unbalanced training dataset, selected
features are not the most predictive, the need to assess patients
on multiple timepoints, differences between ICU settings etc. A
similar study using a larger set of annotations, with more balanced
classes (and possibly more/different features), is needed to further
investigate the characteristics of this real-world non-random noise
and obtain more reliable results for the implications on model
performance, as well as the effectiveness of our proposed
consensus seeking method (i.e., evaluating learnability before
seeking consensus). This should include a very large cohort of
clinical annotators from a sizable number of UK ICUs, to provide a
diverse set of judgments, as well as multiple external validation
datasets from different countries, to assess how models perform
across different settings.
Using these larger annotated datasets, further analysis should

be conducted around the reasonings behind the inconsistencies
across annotators, e.g., bias, judgments, noise, limited feature
selection - as well as ways to resolve these. This should involve
analysing the way in which consultants disagree, including the
characteristics of easy cases (high agreement amongst annotators)
and hard cases (high disagreement amongst annotators). Addi-
tionally, studies aimed at reducing the levels of disagreements
between (clinical) experts by enhancing the description /
presentation of the labelling task(s) should be considered5.
Following the findings discussed, further research to detect and

investigate expert intra-annotator consistency is planned. Intra-
annotator consistency can be detected easily by including
repeated items in datasets to be annotated – following this,
inconsistent experts can be removed from further analyses.
Additionally, we will explore further whether removing the ‘poorly
learnable’ annotated datasets prior to training increases inter-
annotator agreement and produces better external validation
results, as well as more consistent decision-making. If found to be
true, this would verify that assessing learnability of individual
expert judgments is an important step in training ML models,
meaning current practices of seeking consensus directly from all
available expert judgments to obtain ‘gold-standard’ need to be
revised - as poorly learnable judgments may cause issues in
reaching a true gold-standard.
Additionally, in practice, people tend to trust highly experi-

enced (“super”) experts more, hence, their judgments play more
important roles in obtaining a ‘gold-standard’. Further investiga-
tion is needed to confirm whether ensemble models perform
better than individual experienced domain experts.
Moreover, in a further study, the annotation task could be

modified by requesting each consultant to assign a confidence
factor, between 0–1, to each of their annotations. Additionally, skill
level (based on years of experience or specialty) of each annotator
can be captured. These could then be used as weighting factors
during model training, reducing the effect of low confidence
labels and increasing the contribution of higher skilled experts in
calculating the consensus. Further, these confidence values will
facilitate analysis around easy/hard cases. Nettleton et al.41,43 have
conducted extensive experiments utilising weighting and con-
fidence factors in capturing responses.
If the ML decision-support system is thought to be a safety

critical one, then it is vital to include some further analyses to
establish which distinct expert classifier(s) to use. For example, run
each of the classifiers against a set of task-solution pairs pre-
specified by an expert panel and eliminate those classifiers /
experts who correctly solve less than a pre-defined percentage.
The effectiveness of such filters depends critically on the instances
chosen by the panel. This, however, is an appropriate approach to
use when working in (safety-critical) areas where the differences
between two (or more) classes are slight, but where the
consequences of a misclassification are high. This approach has
been used extensively in IBM’s Jeopardy System44 and earlier in
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the KRUST system45. (This step should be run as well as the
statistical / numerical ones discussed earlier.)
Figure 8c provides a very interesting insight, namely that the

predicted severity labels (A-E) at 5 h before discharge/death were
most important in the LR model discharge status classification
across most expert models, whereas the predictions 1 h before
discharge/death were least important – a somewhat counter-
intuitive finding. Further research is needed here, in collaboration
with ICU professionals, to investigate how the trends in
physiological readings across a period before discharge/death
can be used to inform discharge status predictions.

METHODS
Experiment design
This study is focussed on simulating a real-world ICU decision-
making scenario, where disagreements are fairly common and
unavoidable, and investigating the impact of these clinician
disagreements on resulting machine-learning models. To achieve
this aim, all aspects of the experimental approach (outlined in
Fig. 2) were carefully considered. The main factors are
discussed below.
The Queen Elizabeth University Hospital training dataset

consists of 60 instances of ICU patient data, across 6 descriptive
variables. As disagreements are common across clinicians (reasons
are multifactorial and summarised in the Introduction section), in
order to minimise the intra- and inter-inconsistency across
annotators, we selected a simple classification task consisting of
a limited set of features and data instances. The annotation task
selected for the basis of this research was therefore clinically
relevant, but more research focussed – allowing the clinicians’
decision-making process to be correctly captured.
The ICU PSS scale (developed in the period 2000–2005)46 allows

clinicians to make judgments of a patient’s status, at particular
points in time, on the basis of a limited number of six descriptors.
There are many situations in Medicine where decision / judgments
must be made based on partial information – it is this scenario
which this paper addresses. The ICU-PSS scale has five annotation
categories which, although categoric, can be viewed as con-
fidence scores of each annotator about the patient’s severity
status (where A=more stable likely to be discharged soon and
E= very unstable patient requiring significant pharmacological
support). This can A-E confidence scale can therefore be applied to
a binary external validation task, as discussed in the ‘Assessing
Time-series External Validation Methods’ subsection. Further, this
ICU-PSS scale is simpler and easier to understand compared to
alternative clinical scoring tools (e.g., SOFA47), resulting in a
simpler classification task which allows each clinician’s decision-
making/annotation rules to be better captured and compared.
The six clinical variables were selected, and the five-point

qualitative description of ICU patients (A-E) was developed, in
conjunction with several ICU specialists in a previous study. The
four basic physiological parameters (FiO2, SpO2, Mean arterial
pressure, Heart Rate) are used by clinicians as indicators of any
appreciable improvement or deterioration in patient condition.
The drug fields (Adrenaline and Noradrenaline) indicate the
amount of pharmacological support required by the patient. A
detailed description of these ICU-PSS categories is found in
Supplementary Table 1.
There are multiple noise-tolerant ML classification algo-

rithms10,12, that can address the issues of label noise during
learning. In this study, decision tree (DT) and random forest (RF)
classifiers were more appropriate selections, in part because both
widely used in clinical settings. More importantly, DT was selected
as the resulting tree plots can be used to infer the decision-
making process of the learnt models, as well as compare the
different annotation rules and complexities between annotator

models. RF was used to compare whether more powerful models
would make these inconsistencies less significant (which we have
shown is not the case).
To compare the consultants’ model performances external

model validation was carried using HiRID validation datasets. The
QEUH classifiers were built to predict judgments on a 5-point A-E
ICU-PSS scale. However, the HiRID validation datasets focused on a
binary classification task of predicting discharge/death in the next
hour (i.e., A or E values on the ICU-PSS scale). The HiRID database
does not contain ICU-PSS ground truth values, nor similar multi-
class severity ratings. Therefore, the ground truth discharge status
was selected as the validation classification task since the ICU-PSS
A-E is comparable to a confidence score for the patient discharge
status (where A= discharged alive within 1 h and E= died within
1 h). As the focus of this study is investigating the impact of
clinical annotator disagreements on model performance, rather
than on improving label quality/model performance, the differ-
ence between initial annotation task and model validation task
has minimal impact on experiment findings.

QEUH training dataset
The Glasgow Queen Elizabeth University Hospital training data is
de-identified. The 60 instances were randomly selected from a
pool of 80,291 hourly patient records obtained from the QEUH
patient management system (containing data from trauma and
non-trauma patients).
Note, no ground-truth severity or discharge status data for the

patients in this QEUH dataset was captured in the previous
Sleeman et al.5 study. This data could not be later retrieved due to
the anonymisation of the patients.

Class-balanced training datasets
We investigated class-balancing methods to balance the class
labels within the annotated datasets during training, through
adding the RandomForestClassifier parameter class_weight=
balanced. This did not result in a significant performance
difference, compared to using the original annotated datasets.
The internal and external validation results with this balanced
class weight condition are outlined in Supplementary Table 2.

Internal validation
Internal validation metrics were obtained through 5-fold cross
validation, utilising the full training dataset. Each trained model
was run against the original annotations it learnt from – thus,
these internal validation results indicate the ‘learnability’ of the
original annotated datasets, i.e., how well the associations
between the attribute variables and provided annotations can
be learnt, and in turn how easily the annotator’s decision-making
can be reproduced. Figure 5a shows the performance of the
optimal RF model for each of the 11 consultant annotators. These
models were optimised on F1 micro.
Feature importance distributions, shown in Fig. 4, were

obtained using the scikit learn feature_importances_property.
This is calculated as the normalised total reduction in node
impurity (gini or entropy) brought by the feature. For the models
with good internal validation performance (F1 micro > 0.7), the
differing feature importance distributions reflect the different
rationales and decision-making processes between annotators.
For certain annotators (C4), we can infer Noradrenaline is the most
important feature when deciding to annotate a label ‘A’
classification. For some (C2), FiO2 is most important when making
this classification. For others (C10), the rationale is more balanced
on Noradrenaline and FiO2.
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Investigations & Pre-processing of possible validation
datasets: MIMIC-III & HiRID
Broad external validation, using data from similar participants but
from a different hospital or country, is considered the gold-
standard for reliable estimates of model performance and
generalisability/transportability48–56. Two external ICU datasets
were investigated, namely:

1. HiRID (v1.1.1): a freely accessible critical care dataset
containing de-identified data for 33,000 ICU admissions to
the Bern University Hospital, Switzerland, between 2008 and
201657,58.

2. MIMIC-III (v1.4): a freely available database containing de-
identified data for 40,000 ICU patients of the Beth Israel
Deaconess Medical Centre, Boston, United States, between
2001 and 201258,59.

Both databases contain ICU patient data from a different
hospital and country, compared to the Glasgow QEUH training
data, thus satisfy the criteria for broad external validation. As the
classifiers extracted from the annotated datasets, produced by the
QEUH clinicians, contain certain descriptors it was vital to ensure
that these are present in the external datasets. Specifically, the
following checks were made on the HiRID and MIMIC-III datasets:

i. The datasets contained the same 6 descriptors, and the
units associated with each of these variables were either
identical or, at least known, so numerical scaling could be
applied, if necessary.

ii. Considerable amounts of effort was required to find all the
synonyms used in these two datasets for the 6 descriptors
used in the QEUH (annotated) datasets. Furthermore, as the
values reported for the two drug variables used in QEUH are
for continuous delivery and not for occasional boluses, it
was important to determine that the drug delivery modes
are equivalent.

iii. The QEUH datasets report information on an hourly basis,
whereas the reporting of data in the external datasets is
both more frequent and at irregular intervals, so consider-
able effort was expended to transform both the HiRID &
MIMIC-III datasets to “hourly” datasets, so these datasets
would be compatible with the classifiers derived for the
QEUH consultants. See the ‘Code Availability’ section for
details on accessing the complete HiRID pre-
processing steps.

Inter-annotator agreement metrics
Inter-annotator agreement (IAA), also called inter-rater reliability, is
a measure of the extent to which the annotators assign the same
category to the same instance. IAA represents the consistency of
annotations, as well as the reproducibility of the labelling task.
High consistency is favoured as this minimises errors due to
subjectivity and increases reliability in the training data.
There are multiple statistics used to measure IAA, including

Cohen’s κ, Fleiss’ κ and Krippendorff’s α. All three statistics were
calculated within Python 3.0 using: cohen_kappa_score from
sklearn.metrics60, fleiss_kappa from statsmodels.stats.inter_rater61,
simpledorff62.
Cohen’s κ measures the reliability between two annotators,

considering the possibility of the agreement occurring by chance.
Cohen’s scale can be summarized as: 0.0–0.20 (None); 0.21–0.39
(Minimal); 0.40–0.59 (Weak); 0.60–0.79 (Moderate); 0.80–0.90
(Strong); > 0.90 (Almost Perfect)32.
Fleiss’ κ is an extension of Cohen’s κ which considers the

consistency of annotator agreements, as opposed to absolute
agreements. It assesses the reliability of agreement across multiple
annotators. Fleiss’ scale can be summarized as: < 0 (Poor); 0.0–0.20

(Slight); 0.21–0.40 (Fair); 0.41–0.60 (Moderate); 0.61–0.80 (Sub-
stantial); 0.81–1.0 (Almost perfect)34.
Krippendorff’s α63 considers the consistency of annotator

agreements, as opposed to absolute agreements. It assesses the
reliability of agreement across multiple annotators.

Patient population compatibility
Systematic reviews on model validation studies have shown a lack
of well-conducted and clearly reported external validation
studies55,56. A detailed investigation of the compatibility between
the training and validation datasets, including patient populations,
is uncommon, yet necessary to improve the reliability of external
validation.
Within this study, to assess the patient population compatibility

between the training and validation datasets, Adrenaline/Nora-
drenaline administration was investigated. Adrenaline/Noradrena-
line is administered to patients whose cardiovascular system is
unstable and indicates a high severity patient status. Only 5.9% of
the MIMIC-III ICU admissions were administered Adrenaline/
Noradrenaline, compared to 31.5% of the HiRID ICU admissions.
This indicates the severity of ICU patients in the Bern University
Hospital, Switzerland, was higher than in the Beth Israel Deaconess
Medical Centre, US. Furthermore, 40% of the QEUH ICU training
instances were administered Adrenaline/Noradrenaline. This
indicates the ICU patient population within the training data has
higher severity conditions and therefore has good compatibility
with HiRID, whereas poor compatibility with MIMIC-III. So, we
decided to use HiRID as the validation dataset in this study. (Note,
because we are undertaking a study to predict whether patients
are discharged alive or die in the ICU, it is important to have a
significant number of both these events in the validation dataset).

External validation experiment 1: Preparation of the
validation dataset
This experiment tests the classifiers’ ability to classify patient
discharge outcomes (alive or dead), under the assumption that
the patient’s physiological/pharmacological status within the last
hour before discharge/death is a good indicator of their discharge
status. The “full” HiRID dataset which resulted from the pre-
processing discussed above has 2,022,313 instances sourced from
20,073 unique ICU admissions. Only time-points which are
recorded in the dataset as corresponding to discharged alive or
dead within the next hour, were eligible for selection. 1300
“Discharged Alive from ICU” and 1300 “Died in ICU” instances were
randomly selected as the validation dataset.
After discussion with ICU professionals, we established ‘dis-

charged alive from ICU’ usually indicates the patient is discharged
from ICU to a non-ICU hospital ward (rather than discharged from
the hospital). Data around discharge location or readmission to
ICU was not provided in the HiRID database. In our study,
discharge location does not impact our experimental approach or
findings, as the “Discharged Alive from ICU within 1 h’' cohort still
represents the most stable patients (i.e., ICU-PSS= A).

External validation experiment 2: Investigating time-series
validation datasets
In reality, ICU consultants consider the trend in patient
physiological and pharmacological parameters across the period
of time before making their assessment. To capture this real-world
ICU patient severity classification task more closely, we ran a
second external validation experiment on HiRID time series data
and compared the performance of the 11 DT classifiers (trained on
the QEUH annotated datasets) on static and temporal HiRID
validation datasets. All validation datasets contain the same 6
variables as in the training dataset (Adrenaline, Noradrenaline,
FiO2, SpO2, MAP, Heart Rate).
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To assess performance of the classifiers on the HiRID temporal
validation datasets, the weighted sum of the five (hourly) ICU-PSS
predictions per patient. The hourly weights were defined as
follows, giving more weighting to the readings closer to
discharge/death: (a) 5 h before discharge/death: 0.1, (b) 4 h before
discharge/death: 0.1, (c) 3 h before discharge/death 0.2, (d) 2 h
before discharge/death: 0.3, (e) 1 h before discharge/death: 0.3.
Note, time periods longer than 5 h were investigated for use in
this experiment, however these resulted in smaller validation
datasets – a period of 5 h provided an optimal balance between
enough time series datapoints per patient and validation
dataset size.
The A-E predicted labels were treated as a 1–5 ordinal scale,

therefore the weighted sum values were all in the range 1–5. The
trained models were treated as predicting three classes: CL1= A,
CL2= B/C/D, & CL3= E.
In the Results section, two methods of mapping the weighted

sum values (1–5) to these three classes were reported, with
differing cut-offs:

i. ‘Extreme’: CL1= 1, CL2= > 1–4, CL3= > 4.
ii. ‘Neutral’: CL1= ≤ 3, CL2= > 3-<4, CL3= ≥ 4.

We also investigated an additional ‘Extreme (2)’ cut-off with
weighted sum mapping shown below. These results are outlined
in Supplementary Fig. 1.
iii. ‘Extreme (2)’: CL1= ≤ 2, CL2= > 2-<4, CL3= ≥ 4.
In further analysis, DT and LR models were trained on the

predicted labels made by the 11 QEUH DT classifiers on the
temporal HiRID validation dataset, for each of the five hours
before discharge/death (i.e., combining ICU-PSS labels across five
consecutive hours). This is a simple but interpretable approach to
mimic the ICU doctors’ decision-making process, which consider
patterns of change across patient pharmacological/physiological
parameters, before making a discharge decision. More complex
models with non-linear kernels, such as SVM, may be used for this
analysis – however this would lose the interpretability of the
results, The DT and LR models were optimised on F1 micro and
evaluated via 5-fold cross validation, where the dependent
variable is actual discharge status (see Supplementary Fig. 2).
Within this second external validation experiment, in addition to

the MV and TMV consensus models, an additional ‘Fuzzy
Consensus’ (FC) model was built. This purpose of this building
FC model is to investigate combining the individual models’
outputs by considering their outputs as confidence values for
binary classification task on the external validation dataset
(discharged vs death). In this consensus method the all predictions
are captured and interpreted as ‘fuzzy’ labels, on an ordinal scale
of 1–5 (i.e., A-E), when calculating the overall discharge status
prediction for each patient. Figure 9 illustrates the scale used.
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