Table 2. Nested, 5-Fold Cross-Validation Statistics of Classification Models of AChE Inhibition at 1 μM Threshold for Seven Speciesa.
Human AChE Training Set: 1813 Active/4075 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.93 | 0.84 | 0.84 | 0.83 | 0.85 | 0.87 | 0.70 | 0.70 |
ADA | 0.91 | 0.80 | 0.81 | 0.80 | 0.82 | 0.85 | 0.64 | 0.64 |
BNB | 0.84 | 0.73 | 0.71 | 0.75 | 0.75 | 0.76 | 0.51 | 0.51 |
kNN | 0.92 | 0.84 | 0.81 | 0.87 | 0.85 | 0.84 | 0.71 | 0.71 |
LREG | 0.91 | 0.82 | 0.82 | 0.81 | 0.84 | 0.86 | 0.67 | 0.67 |
RF | 0.94 | 0.84 | 0.86 | 0.81 | 0.86 | 0.90 | 0.71 | 0.72 |
SVC | 0.94 | 0.86 | 0.86 | 0.85 | 0.87 | 0.89 | 0.74 | 0.74 |
XGB | 0.93 | 0.85 | 0.85 | 0.85 | 0.87 | 0.88 | 0.73 | 0.73 |
AttentiveFPc | 0.75 | 0.76 | 0.72 | 0.83 | 0.75 | 0.74 | 0.43 | 0.43 |
Eel AChE Training Set: 2084 Active/5459 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.90 | 0.79 | 0.76 | 0.82 | 0.83 | 0.84 | 0.65 | 0.66 |
ADA | 0.91 | 0.78 | 0.81 | 0.76 | 0.84 | 0.89 | 0.66 | 0.66 |
BNB | 0.85 | 0.71 | 0.74 | 0.69 | 0.79 | 0.85 | 0.55 | 0.55 |
kNN | 0.93 | 0.84 | 0.82 | 0.85 | 0.87 | 0.89 | 0.73 | 0.73 |
LREG | 0.91 | 0.80 | 0.81 | 0.80 | 0.85 | 0.88 | 0.68 | 0.68 |
RF | 0.94 | 0.84 | 0.86 | 0.81 | 0.88 | 0.92 | 0.74 | 0.74 |
SVC | 0.93 | 0.84 | 0.83 | 0.84 | 0.87 | 0.89 | 0.73 | 0.73 |
XGB | 0.93 | 0.83 | 0.84 | 0.82 | 0.87 | 0.90 | 0.73 | 0.73 |
AttentiveFPc | 0.86 | 0.82 | 0.83 | 0.82 | 0.87 | 0.76 | 0.53 | 0.53 |
Rat AChE Training Set: 687 Active/1406 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.95 | 0.87 | 0.85 | 0.90 | 0.87 | 0.85 | 0.74 | 0.75 |
ADA | 0.92 | 0.84 | 0.86 | 0.82 | 0.85 | 0.87 | 0.69 | 0.69 |
BNB | 0.87 | 0.80 | 0.82 | 0.78 | 0.81 | 0.84 | 0.62 | 0.62 |
kNN | 0.93 | 0.86 | 0.83 | 0.89 | 0.86 | 0.83 | 0.72 | 0.72 |
LREG | 0.94 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87 | 0.72 | 0.72 |
RF | 0.94 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.74 | 0.74 |
SVC | 0.93 | 0.87 | 0.85 | 0.88 | 0.87 | 0.86 | 0.73 | 0.73 |
XGB | 0.94 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.74 | 0.74 |
Mouse AChE Training Set: 145 Active/368 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.95 | 0.89 | 0.96 | 0.83 | 0.92 | 0.98 | 0.83 | 0.83 |
ADA | 0.93 | 0.84 | 0.86 | 0.83 | 0.88 | 0.91 | 0.74 | 0.75 |
BNB | 0.89 | 0.79 | 0.82 | 0.78 | 0.84 | 0.88 | 0.66 | 0.67 |
kNN | 0.90 | 0.85 | 0.82 | 0.90 | 0.88 | 0.86 | 0.75 | 0.76 |
LREG | 0.94 | 0.86 | 0.84 | 0.88 | 0.88 | 0.89 | 0.76 | 0.76 |
RF | 0.95 | 0.86 | 0.87 | 0.86 | 0.89 | 0.91 | 0.77 | 0.77 |
SVC | 0.93 | 0.87 | 0.84 | 0.91 | 0.89 | 0.88 | 0.78 | 0.78 |
XGB | 0.93 | 0.87 | 0.87 | 0.87 | 0.89 | 0.91 | 0.78 | 0.78 |
Cow AChE Training Set: 239 Active/457 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.94 | 0.85 | 0.89 | 0.81 | 0.85 | 0.89 | 0.70 | 0.70 |
ADA | 0.92 | 0.87 | 0.88 | 0.86 | 0.87 | 0.87 | 0.73 | 0.73 |
BNB | 0.93 | 0.87 | 0.89 | 0.85 | 0.87 | 0.89 | 0.73 | 0.74 |
kNN | 0.92 | 0.88 | 0.86 | 0.90 | 0.87 | 0.84 | 0.74 | 0.74 |
LREG | 0.94 | 0.89 | 0.90 | 0.88 | 0.89 | 0.89 | 0.77 | 0.77 |
RF | 0.94 | 0.88 | 0.91 | 0.85 | 0.88 | 0.90 | 0.76 | 0.76 |
SVC | 0.94 | 0.89 | 0.90 | 0.88 | 0.89 | 0.89 | 0.77 | 0.77 |
XGB | 0.93 | 0.88 | 0.89 | 0.88 | 0.88 | 0.88 | 0.75 | 0.76 |
Ray AChE Training Set: 156 Active/307 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 0.95 | 0.89 | 0.88 | 0.91 | 0.89 | 0.87 | 0.77 | 0.77 |
ADA | 0.93 | 0.87 | 0.92 | 0.83 | 0.88 | 0.93 | 0.75 | 0.76 |
BNB | 0.89 | 0.83 | 0.81 | 0.85 | 0.82 | 0.80 | 0.65 | 0.65 |
kNN | 0.92 | 0.88 | 0.92 | 0.85 | 0.89 | 0.92 | 0.77 | 0.78 |
LREG | 0.94 | 0.89 | 0.91 | 0.87 | 0.89 | 0.91 | 0.78 | 0.78 |
RF | 0.94 | 0.87 | 0.94 | 0.82 | 0.88 | 0.95 | 0.77 | 0.78 |
SVC | 0.95 | 0.89 | 0.92 | 0.86 | 0.89 | 0.93 | 0.79 | 0.79 |
XGB | 0.94 | 0.90 | 0.91 | 0.88 | 0.90 | 0.91 | 0.79 | 0.79 |
Mosquito AChE Training Set: 27 Active/72 Total Compounds | ||||||||
---|---|---|---|---|---|---|---|---|
model | AUC | F1 score | precision | recall | accuracy | specificity | Cohen’s kappa | MCC |
DLb | 1 | 0.67 | 1 | 0.50 | 0.80 | 1 | 0.55 | 0.61 |
ADA | 0.83 | 0.73 | 0.79 | 0.71 | 0.81 | 0.87 | 0.59 | 0.60 |
BNB | 0.85 | 0.56 | 0.61 | 0.55 | 0.71 | 0.78 | 0.33 | 0.35 |
kNN | 0.88 | 0.80 | 0.85 | 0.82 | 0.85 | 0.87 | 0.69 | 0.71 |
LREG | 0.86 | 0.77 | 0.86 | 0.75 | 0.82 | 0.89 | 0.65 | 0.67 |
RF | 0.88 | 0.81 | 0.88 | 0.78 | 0.85 | 0.91 | 0.70 | 0.72 |
SVC | 0.87 | 0.75 | 0.71 | 0.82 | 0.81 | 0.80 | 0.60 | 0.61 |
XGB | 0.82 | 0.70 | 0.83 | 0.64 | 0.79 | 0.89 | 0.55 | 0.58 |
DL = deep learning; ADA = AdaBoosted decision trees; BNB = Bernoulli naïve Bayes; kNN = K-nearest neighbors; LREG = LogisticRegression; RF = random forest; SVC = support vector classification; XGB = XGBoost.
Statistics for a 20% leave-out set.
Statistics for 5-fold cross-validation.