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Abstract 

Background  Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many 
personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been con‑
sidered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested 
to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at 
clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage.

Methods  C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated 
by various measurements including complete blood count, histological analysis and TCS quantification. Single cell 
RNA sequencing (scRNA-seq) was then carried out on TCS- or mock-treated mouse livers to delineate the TCS-induced 
hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential 
gene expression, transcription factor (TF) regulatory network, pseudotime trajectory, and cellular communication, 
to systematically dissect the molecular and cellular events after TCS exposure. To verify the TCS-induced liver fibrosis, 
the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson’s 
trichrome and Sirius red staining. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used 
as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic 
technologies.

Results  We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated 
in the liver. The scRNA-seq performed on the livers of the TCS-treated and control group profiled the gene expres‑
sions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells 
(HSCs) were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated prolifera‑
tion of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the 
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proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition, 
other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics 
in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, 
and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor 
pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interaction-medi‑
ated cellular communication in promoting liver fibrosis.

Conclusions  TCS modulates the cellular activities and fates of several specific cell types (including hepatocytes, HSCs, 
endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor 
interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis. 
Overall, we provide the first comprehensive single-cell atlas of mouse livers in response to TCS and delineate the key 
cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.

Keywords  Triclosan, scRNA-seq, Liver fibrogenesis, Hepatic stellate cell

Background
Triclosan (TCS) is an antimicrobial agent that has been 
widely used worldwide for approximately 50 years since 
its first introduction in hospital settings [1, 2]. Although 
TCS has been banned from use in consumer antiseptic 
soap and hand sanitizer products by the US Food and 
Drug Administration (FDA) [3], it remains present in 
many readily accessible consumer products for daily use, 
such as toothpaste, mouthwash, shampoo, deodorant and 
cosmetics [4]. TCS is commonly added at a concentra-
tion of 3.5–17.0  mmol/L (i.e., 0.1–0.5%) [5]. Depending 
on the exposure route, TCS is absorbed into the human 
body through the skin or oral mucosa, and is detectable 
in human urine, nails, blood and breast milk [6, 7]. A 
recent study in China has reported detectable TCS in the 
urine and nails of 69–80% of participants [8]. The levels 
of TCS in the human body differ depending on the expo-
sure sites, concentration/amount of exposure and type 
of exposure. Exposure to TCS-containing toothpaste for 
14 d has been found to increase the TCS plasma con-
centration from 0.009–0.81 to 26–296  ng/g [9]. Use of 
15 ml mouthwash containing as little as 0.03% TCS twice 
daily has been found to result in a plasma concentration 
of TCS plateauing at 74.5–94.2  ng/ml within as little as 
2 d [10]. In humans, the liver is the main organ of TCS 
accumulation and metabolism [11]. TCS present at low 
levels is quickly detoxified by glucuronidation and sul-
fonation through catalysis by glucuronosyltransferases 
and sulfotransferases [12]. The potential risks of TCS on 
human health have drawn the public’s attention, and have 
been a subject of active debate and study in recent years 
[4, 13–15].

Long-term exposure to TCS may potentially cause 
various disorders, including gut microbiome impairment 
[16], induction of colonic inflammation and colitis-asso-
ciated colon tumorigenesis [17], neurobehavioral toxicity 
[18, 19] and increased incidence of bone diseases [20]. 

The hepatotoxicity of long-term exposure of TCS has also 
been reported, thus promoting not only nonalcoholic ste-
atohepatitis (NASH) but also liver tumorigenesis [21, 22]. 
TCS-induced hepatotoxicity has been attributed to the 
activation of constitutive androstane receptor and per-
oxisome proliferator activated receptor α (PPARα), and 
the promotion of liver fibrogenesis [23, 24]. Months-long 
TCS exposure has been found to impair lipid homeosta-
sis and accelerate liver damage in mice [25]. However, the 
underlying cellular and molecular mechanisms of hepa-
totoxicity induced by TCS exposure, particularly at the 
initiation stage, remain largely unknown.

In contrast to traditional bulk RNA sequencing, single 
cell RNA sequencing (scRNA-seq) can unveil the tran-
scriptional heterogeneity of cells and tissues with high 
accuracy and reproducibility [26]. This technique has 
been used in deciphering the toxicity profiling of many 
hazardous substances in humans and other animals [27, 
28]. In addition, scRNA-seq has been used in studies of 
liver diseases, including liver cirrhosis [29], NASH [30] 
and hepatocellular carcinoma [31]. The cellular landscape 
of the liver has also been recently described by scRNA-
seq [32].

In this study, a relatively short-term TCS exposure 
mouse model was established. To explore the poten-
tial hepatotoxicity mechanism of TCS at the single cell 
level, we used scRNA-seq to comprehensively profile the 
changes in gene expression and the modulation of differ-
ent cell types in the liver of these mice.

Methods
Animals and drug treatment
All animal experimental procedures were approved by 
the Animal Care and Use Committee at Shenzhen Peo-
ple’s Hospital (No. AUP-210901-DLY-0001-01). Eighteen 
male C57BL/6 mice (5 weeks old) were purchased from 
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GemPharmatech (Guangdong, China) and maintained 
for 7 d for adaption. The mice were randomly divided 
into three groups (control, TCS-100 and TCS-200, with 
6 mice per group), which were treated with corn oil, 
100  mg/(kg·d) or 200  mg/(kg·d) TCS, respectively, for 
14 d via intragastric administration. TCS was dissolved 
in corn oil at a concentration of 20 mg/ml or 40 mg/ml. 
Afterward, the mice were anesthetized, and blood sam-
ples were collected for routine testing, and serum and 
biochemical analyses. The mice were perfused with PBS 
followed by organ weighing and collection. The liver tis-
sues were dissected to perform scRNA-seq and histo-
logical analysis, and the remaining tissues were frozen in 
liquid nitrogen and stored at − 80 °C.

Measurement of TCS concentration
The metabolites in serum and liver tissue samples were 
extracted with methanol. TCS standards were prepared 
at gradient concentrations of 5, 10, 50, 100, 500 and 
1000 ng/ml. All the standards and extracted samples were 
measured in triplicate by liquid chromatography tandem-
mass spectrometry (LC–MS/MS). The areas under the 
curve of the extracted ion chromatogram of TCS were 
integrated to represent the level of TCS. The standard 
curve was plotted with the different concentrations of 
TCS standards, and TCS concentrations in serum or liver 
samples were calculated.

Histological analysis
For histological analysis, a portion of the liver was fixed 
in 4% paraformaldehyde and embedded in paraffin. After 
tissues were cut into sections, histological changes were 
evaluated with hematoxylin and eosin (H&E) staining. 
For evaluation of the hepatic collagen content and assess-
ment of the degree of fibrosis, the paraffin-embedded 
liver sections were also stained with Masson’s trichrome 
and Sirius red.

Cell culture and treatment
LX-2 (Procell, China) and MIHA (Syngene, China) cells 
were cultured in DMEM with 10% fetal bovine serum 
and 1% penicillin/streptomycin in a 5% CO2 incubator 
at 37 °C. For RNA interference experiments, 100 nmol/L 
siRNA was transfected into cells with Lipofectamine 3000 
(Thermo, USA). Cell viability was determined by cell 
counting kit-8 (CCK-8) reagent according to the manu-
facturer’s instructions at the appropriate time points as 
specified in the paper. LX-2 cells were also treated with 
10 or 20 μmol/L TCS for 24 h, then subjected to immu-
nological analysis. In addition, BGB324 (MedChemEx-
press, USA) and recombinant growth arrest specific 6 
(rGAS6) protein (MedChemExpress, USA) were used to 
treat LX-2 cells under the indicated conditions.

Western blotting
For western blotting, a portion of frozen liver was dis-
sected and ground in liquid nitrogen. The proteins were 
extracted with RIPA lysis buffer (#P0013B, Beyotime, 
China) supplemented with 1× Protease Inhibitor Cock-
tail (#P8849, Sigma, USA). Protein concentrations were 
determined by Pierce™ BCA Protein Assay Kit (#23225, 
Thermo, USA). Equal amounts of proteins from differ-
ent mice liver samples were separated by SDS-PAGE 
and transferred to PVDF membranes. The membranes 
were then blocked with 5% skim milk in TBST for 1  h 
and incubated with primary antibodies overnight at 
4  °C. The antibodies included anti-alpha smooth muscle 
actin (α-SMA) [1:1000; #19245s, Cell Signaling Technol-
ogy (CST), USA], anti-phospho-Akt (Thr308) (1:1000; 
#13038S, CST, USA), anti-pan-Akt (1:1000; #4691T, CST, 
USA) and anti-GAPDH (1:50,000; #60004-1-Ig, Protein-
tech, China), and corresponding secondary antibody was 
incubated with membrane for 1  h after washed thrice 
with TBST. The protein bands were then washed thrice 
with TBST and visualized with Clarity Western ECL Sub-
strate (#170-5061, Bio-Rad, USA) by using G:BOX Chemi 
XX9 (Syngene, UK) and semi-quantitative analysis was 
performed by ImageJ (National Institutes of Health, 
USA).

Immunofluorescence
The frozen mouse liver tissue embedded in O.C.T. 
(#4583, SAKURA, Japan) was cut into 10  μm thick sec-
tions. The sections were fixed with acetone/methanol 
(4:1) for 10  min at − 20  °C, washed with TBS twice and 
blocked with 4% donkey serum for 1 h at room temper-
ature (RT). Sections were then incubated with the indi-
cated primary antibodies, including rabbit anti-collagen I 
(1:100; #PAB13488, Abnova, Taiwan, China), rabbit anti-
GAS6 (1:200; #13795-1-AP, Proteintech, China), rabbit 
anti-integrin subunit beta 1 (ITGB1) (1:200; #26918-1-
AP, Proteintech, China), rat anti-CD68 (1:100; #14-0681-
82, eBioscience, USA), rabbit anti-desmin (DES) (1:200; 
#16520-1-AP, Proteintech, China) and rabbit anti-lym-
phatic vessel endothelial hyaluronan receptor 1 (LYVE1) 
(1:100; #ab281587, Abcam, UK) at RT for 1 h. After being 
washed with TBST thrice, the sections were then incu-
bated with corresponding Donkey anti-Rat/Rabbit Alexa 
Fluor 488/594-conjugated secondary antibodies (1:1000; 
#A-21206-21209, Thermo, USA) for 1 h at RT. Finally, the 
sections were counterstained and mounted with DAPI, 
and observed with fluorescence microscopy.

Preparation of single cell suspension
Samples from the mice from control and TCS-200 
groups were subjected to scRNA-seq analysis. Briefly, 
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three liver samples from each group were dissected and 
cut into small pieces, followed by dissociation using the 
Liver Dissociation Kit for mouse (Miltenyi Biotec, Ger-
many). The dissociated cell solution was then filtered 
through a 70-μm cell strainer (Greiner, Germany) and 
rinsed with 15 ml DMEM. The cells were pelleted by cen-
trifugation at 300 g for 10 min, followed by resuspending 
with 1 ml PBS. Subsequently, 10 ml of 1× Red Blood Cell 
Lysis Solution (Miltenyi Biotec, Germany) was added to 
lyse red blood cells. Samples were then washed with PBS 
twice to obtain single-cell suspensions.

scRNA‑seq and data preprocessing
The single-cell suspensions were used for scRNA-seq 
library construction with the Single Cell 3′ Reagent Kit 
v3.1 (10× Genomics) according to the manufacturer’s 
instructions. The constructed libraries were sequenced 
on the Illumina HiseqXTEN platform.

The Cell Ranger Software Suite (v6.1.1) was used to 
perform sample de-multiplexing, barcode processing and 
single-cell 3′ unique molecular identifier (UMI) count-
ing with the mm10 reference mouse genome obtained 
from Ensembl. Specifically, Spliced Transcripts Align-
ment to a Reference (STAR) was used for FASTQ align-
ment. Cell barcodes were then automatically determined 
on the basis of the distribution of the UMI count. Finally, 
the gene-barcode matrix of all six samples was inte-
grated with Seurat (v4.0.3)  to remove batch effects. 
Quality control was first performed independently to 
identify appropriate thresholds for each individual sam-
ple. Gene-barcode matrices for each sample generated 
by Cell Ranger were loaded into R  (https://​www.r-​proje​
ct.​org/) as a Seurat object for filtering, data normaliza-
tion, dimension reduction, clustering and differentially 
expressed gene (DEGs) analysis. Genes were excluded if 
they were detectable in fewer than three cells. The fol-
lowing criteria were then applied to each cell: gene num-
ber between 200 and 5000; UMI count between 500 and 
20,000; and mitochondrial gene percentage below 0.15 or 
0.25. After filtering, a total of 76,209 cells (37,841 for the 
control group and 38,368 for TCS-200 group) remained 
for further analysis.

Next, SCTransform was used to normalize each sam-
ple and select highly variable genes. To further ensure 
that clustering would not be influenced by batch effects 
associated with mouse conditions, we performed the 
data integration method implemented by Seurat for 
SCTransform-normalized data. Especially, the Prep-
SCTIntegration function was run to identify anchors, 
and the normalization method parameter was set to the 
value SCT when running FindIntegrationAnchors and 
IntegrateData, to obtain integrated data including six 
samples.

The integrated gene-barcode matrix was analyzed with 
PCA by using the top 3000 variable genes, and a shared 
nearest neighbor graph was constructed on the basis of 
the Euclidean distance in the low-dimensional subspace 
spanned by the selected significant principal compo-
nents (dims = 1:40). Cells were clustered at an appropri-
ate resolution (resolution = 0.1), then visualized with the 
two-dimensional uniform manifold approximation and 
projection for dimension reduction (UMAP) algorithm. 
DEG analysis for each cluster was performed with the 
Wilcoxon rank-sum test. Cell types were identified with 
various known markers. For different cell types, cells 
were grouped on the basis of known markers and ana-
lyzed with Seurat in a similar manner.

Differential gene expression and gene functional 
enrichment analysis
DEG analysis for each cell type was performed by the 
Wilcoxon rank-sum test with the Seurat function Find-
AllMarkers. We firstly filtered out the cell types that were 
either missing or accounted for fewer than 25% of the 
cells in the comparison groups. Differential expression 
analysis was performed to generate a set of differential 
genes (|log2 fold change|> 0.25, adjusted P value < 0.05). 
Visualization of markers was performed by violin plots 
or heatmap using the R packages MySeuratWrappers 
(v0.1.0) and pheatmap (v1.0.12).

For DEGs, gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analy-
ses were performed with the R package clusterProfiler 
(v4.0.2) [33]. Multiple hypothesis testing correction was 
performed with the Benjamini–Hochberg procedure. 
Pathway analysis was performed by R package gene set 
variation analysis (GSVA) (v1.40.0) [34] with MSigDB 
Hallmark gene sets, and the differential gene sets were 
calculated with the R package limma (v3.48.1). Results 
with adjusted P value < 0.05 were further visualized with 
the R package ggplot2 (v3.3.5).

Transcription factor (TF) regulatory network analysis
TF regulons were identified with pySCENIC (v0.11.2) 
[35], a computational method to predict critical regula-
tors and identify cell state from scRNA-seq data. The 
gene co-expression network was first generated with 
the gradient boosting machine via the grn function. 
Cis-regulatory motif analysis was performed with pre-
computed databases from cisTargetDB via the ctx func-
tion. The AUCell algorithm was used to score the activity 
of different regulons via the aucell function. To identify 
the cell-type specific regulons, we calculated the regu-
lon specificity score (RSS) of each cell type via the func-
tion regulon_specificity_scores and visualized the results 
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with the R package pheatmap. Finally, the specific regu-
lons including TF and target genes were imported into 
Cytoscape (v3.6.1) [36] for visualization.

Cell trajectory analysis
Cell trajectory analysis for hepatocytes, hepatic stellate 
cells (HSCs), B cells and macrophages was performed 
with the R package monocle (v2.20.0) [37]. DEGs in each 
subtype were input as variable genes. Then dimensional-
ity reduction was applied to the data with the Reversed 
Graph Embedding algorithm. Finally, cell ordering was 
performed with manifold learning via the function order-
Cells and visualized via the function plot_cell_trajectory. 
Furthermore, branches that appeared in the trajectory 
were analyzed with branched expression analysis mod-
eling (BEAM) to discover DEGs between branches via 
the function BEAM and were visualized via the function 
plot_genes_branched_heatmap.

RNA velocity‑based estimation of cellular transition 
probability
RNA velocity analysis was performed with velocyto 
(v0.17) [38] with the default pipeline based on a steady-
state model, and the future mRNA abundance of each 
gene from the ratio of spliced and unspliced mRNA 
levels was predicted and used as input data for scVelo 
(v0.2.4) [39]. This procedure enabled estimation of RNA 
velocity with a dynamic model to learn the full tran-
scriptional dynamics of splicing kinetics. The unspliced/
spliced phase trajectory was visualized via the function 
velocity_embedding_stream with UMAP coordinates of 
endothelial cells (Endos) from the Seurat package as the 
embedding coordinates for plotting.

Cell–cell communication inference
Cellular communication analysis was performed with 
cellphonedb (v2.1.4) [40], on the basis of the ligand-
receptor interactions in different cell types. First, the R 
package biomaRt (v2.48.3) was used to transform gene 
names from mouse to human. Then the normalized genes 
expression matrix and cell type meta information served 
as the input for cellphonedb. The function method statis-
tical_analysis was used to calculate the counts of ligand-
receptor pairs of different cell types. The function echartr 
in the R package recharts (v0.2-1) was used to perform 
data visualization. We manually selected ligand-receptor 
pairs on the basis of P value < 0.05 and the mean expres-
sion of the average level in the present clusters.

Label‑free proteomics measurement and data analysis
LX-2 and MIHA cells were treated with 10 μmol/L TCS 
for 24  h. The cells were then collected and the pro-
teins were extracted with 8  mol/L urea in 1% sodium 

deoxycholate (SDC, w/v) buffer. Proteins were reduced 
and alkylated with DL-Dithiothreitol (DTT) and 
Iodoacetamide (IAA). After digesting with trypsin, the 
resulting peptides were desalted and subsequently ana-
lyzed in data-independent acquisition (DIA) mode with 
LC–MS/MS. The data were analyzed with DIA-NN soft-
ware. The R package limma (v3.50.3) was used to identify 
significantly differentially expressed proteins (DEPs) with 
fold change ≥ 1.2 and adjusted P value < 0.05, and the 
results were visualized with volcano plots and heatmaps. 
The biological processes enrichment analysis of DEPs 
was performed with the GO database.

Metabolomic data analysis
LX-2 and MIHA cells were treated with TCS as described 
above, and the metabolites were then extracted and 
analyzed with LC–MS/MS. Raw files were input into 
Compound Discoverer 3.1 software to perform identifi-
cation and quantification by matching with the mzCloud, 
mzVault and MassList databases. MetaboAnalyst 5.0 web 
server was used to perform the downstream analysis with 
default parameters. Significantly differentially expressed 
metabolites (DEMs) were identified on the basis of fold 
change ≥ 1.2 and P value < 0.05.

Statistical analysis
In non-scRNA-seq and mass spec data sets, data are 
presented as mean ± standard deviation unless stated 
otherwise by Graphpad Prism 8.0 (GraphPad Inc.). Sche-
matic diagrams were created with BioRender.com. Two-
tailed t-test was used to analyze the statistical differences 
between two groups and ordinary one-way analysis of 
variance (ANOVA) was used for multiple groups, unless 
otherwise mentioned. The differential tissue usages (in 
control and TCS group) were statistically significant 
based on a chi-square test to evaluate the cell proportion 
biases of subtypes for each sample [41]. P value < 0.05 was 
considered statistically significant.

Results
TCS induces hepatocyte hypertrophy in mice
We established a relatively short term TCS exposure 
mouse model to profile the early hepatotoxicity effects 
of TCS at the single cell level (Fig. 1a). After feeding with 
TCS for 14 d, the mice did not show any obvious signs 
of severe toxicity, as indicated by constant body weight 
(Fig.  1b). In addition, most of the blood or serum bio-
markers in the panel were not affected, although some 
groups showed statistically significant changes with a 
small effective size (Additional file  1: Fig. S1a, b). The 
H&E staining on liver tissue showed mild histological 
changes after TCS exposure (Additional file 1: Fig. S1c).  
Moreover, the relative liver weights increased in the 
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treatment group, and the difference became statisti-
cally significant in mice exposed to 200  mg/kg of TCS 
(P < 0.001, Fig.  1c), in agreement with previous reports 
[23, 24]. In contrast, the weights of other organs such as 
the spleen and kidneys were not affected (P > 0.05, Addi-
tional file 1: Fig. S1d). We then determined the TCS con-
centrations in the serum and liver tissue with LC–MS/
MS (Additional file  1: Fig. S2). The serum concentra-
tions of free TCS were 54.8  ng/ml (0.19  μmol/L) and 
108.56 ng/ml (0.37 μmol/L) after exposure to 100 mg/kg 
and 200  mg/kg of TCS, respectively (Fig.  1d). The con-
centrations of TCS in the liver were much higher, reach-
ing 1117.51 ng/g and 2112.73 ng/g, respectively (Fig. 1d), 
suggesting that the liver is the main organ of accumula-
tion and metabolism of TCS in the body [42]. In sum-
mary, 14 d of TCS exposure caused obvious hepatocyte 
hypertrophy at a dose of 200 mg/(kg·d). This group was 
then chosen for further single-cell analysis to better 
understand the underlying mechanism.

Single‑cell transcriptome profiling identifies different cell 
types
We then investigated the cellular and molecular mecha-
nisms of TCS by carrying out a single cell transcrip-
tional profiling of liver tissues from three control and 
three TCS-treated (group of 200  mg/kg) mice by using 
10× Genomics technology. A total of 76,209 cells (37,841 
for control group and 38,368 for TCS-200 group) were 
retained for further analysis, after data quality con-
trol at the gene and cell levels (details in Methods, 
Additional file  1: Fig. S3). We identified 13 major cell 
types (Fig.  2a) according to the expression of canoni-
cal markers in mouse liver (Fig. 2b, c), including B cells 
(n = 10,642, expressing Cd79a, Cd79b and Ms4a1), Baso-
phils (n = 227, expressing Cap3, Ms4a2 and Mcpt8), 
Cholangiocytes (n = 351, expressing Epcam, Sox9 and 
Krt19), Endos (n = 30,750, expressing Pecam1, Clec4g 
and Kdr), Erythrocytes (n = 1615, expressing Hba-a1 and 
Hba-a2), hepatocytes (Heps, n = 11,011, expressing Alb 

Fig. 1  TCS induced hepatocyte hypertrophy in mice liver. a Experimental scheme and workflow diagram. b Body weight of mice in different 
groups. c The liver/body weight ratio in different groups (n = 6). d The TCS concentrations in mice serum and liver tissues after 14 d treatment 
(n = 3). TCS triclosan, ns non-significant, ***P < 0.001
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Fig. 2  Cell diversity in mice liver cells delineated by single-cell transcriptome. a UMAP visualization of 13 cell types based on 76,209 single-cell 
transcriptomes. Cell counts for each individual cell type are indicated in parentheses. Each dot represents a single cell. b Violin plots showing the 
expression levels of representative markers in each cell type. c Distribution of each cell type in control and TCS-200 groups. The bar chart showed 
the relative fraction of each cell type in different groups. d Heatmap of transcription factor (TF) activities in each cell type. UMAP Uniform Manifold 
Approximation and Projection for Dimension Reduction, Endos endothelial cells, Heps hepatocytes, HSCs hepatic stellate cells, LCMs liver capsular 
macrophages, pDCs plasmacytoid dendritic cells, Prolif proliferative cells, T/NK T/natural killer cells, TCS triclosan, RSS regulon specificity score
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and Ttr), HSCs (n = 768, expressing Acta2, Col1a1 and 
Rbp1), Kupffer cells (n = 7923, expressing C1qa, Csf1r 
and Clec4f), liver capsular macrophages (LCMs, n = 3470, 
expressing S100a4, Itgax and Cx3cr1), Neutrophils 
(n = 2150, expressing S100a8 and S100a9), plasmacytoid 
dendritic cells (pDCs, n = 1193, expressing Siglech, Runx2 
and Ccr9), proliferative cells (Prolif, n = 400, express-
ing Mki67 and Top2a) and T/natural killer (NK) cells 
(n = 5709, expressing Cd3d, Cd3e, Cd3g and Nkg7). The 
top 10 DEGs of each cell type are shown in Additional 
file 1: Fig. S4.

To support our cell type identification, we applied sin-
gle-cell regulatory network inference and clustering to 
all cells and identified the TFs with the highest RSS in 
each cell type (Fig. 2d). For instance, E2f8 (an important 
modulator of the cell cycle that induce cell proliferation) 
in Prolif cells, Pou2af1 (a lymphocyte transcriptional 
coactivator expressed mainly in B cells associated with 
the formation of germinal centers) in B cells, and Nr1i3 
(a constitutive androstane receptor that promotes prolif-
eration of liver cells) in Heps. Among these cell types, the 
proportion of Heps was higher in the TCS-200 than con-
trol group, in agreement with our observation of greater 
liver weight. In addition, the HSCs, Erythrocytes and 
Prolif cells also showed higher proportions in TCS-200 
group than control group (Fig. 2c). We then comprehen-
sively analyzed how TCS affects specific cell (sub)types in 
exerting its hepatotoxicity effects.

Heps exhibit proliferation‑ and fibrosis‑associated 
characteristics after TCS treatment
As described above, the number of Heps significantly 
increased after TCS treatment (Fig. 2c). To explore how 
TCS alters Heps, we analyzed the DEGs in the tran-
scriptomes of control and TCS (200  mg/kg)-treated 
Heps (Additional file  1: Fig. S5a). Compared with those 
in control group, Heps in TCS-200 group exhibited 
greater expression of genes involved in extracellular 
matrix (ECM) structural constituent, ECM organization, 
collagen-containing ECM, and regulation of epithelial 
cell proliferation (Fig. 3a). In contrast, the expression of 
genes involved in fatty acid metabolic process, trypto-
phan metabolism and drug metabolism were significantly 
down-regulated, thereby indicating the possible impair-
ment of the metabolic functions of Heps, as further con-
firmed by metabolomics analysis (Fig.  3a; Additional 
file  1: Fig. S5b, c). The GSVA analysis results indicated 
that pathways associated with Notch signaling, epithelial-
mesenchymal transition (EMT) and Hedgehog signaling 
(Additional file  1: Fig. S5d), which are associated with 
liver regeneration and fibrosis, were also activated in 
TCS-200 group.

Next, Heps were divided into four subtypes at a higher 
resolution, which were termed Hep1, Hep2, Hep3 and 
Hep4, respectively (Fig.  3b). Cells from control group 
clustered mainly in Hep1, whereas cells in TCS-200 
group clustered mainly in Hep2 and Hep3. Clustering 
analysis of these subtypes revealed unique transcrip-
tomic signatures. Functional enrichment analysis sug-
gested the involvement of Hep1 in retinol and fatty acid 
metabolism, and the involvement of Hep3 in collagen 
trimer formation and binding (Additional file 1: Fig. S5e). 
Interestingly, Hep2 cells were involved in both retinol 
metabolism and collagen related processes, thus sug-
gesting a mixed or transitional state of Hep1 and Hep3 
subtypes. Furthermore, the drug metabolism-associated 
signatures were enriched in Hep1 cells, ECM- and EMT-
associated genes were enriched in Hep2 and Hep3 cells, 
and cell proliferation signals were intensely enriched in 
Hep3 cells (Fig. 3c).

To understand the transcriptional dynamics of Heps 
during TCS treatment, we reconstructed cell–cell 
relationships through pseudotime trajectory analysis 
(Fig. 3d). The results suggested that the trajectory began 
with Hep1 cells, and most Hep2 cells progressed to the 
Hep3 phenotype, in agreement with the UMAP location 
and pathway enrichment analysis (Fig.  3b, Additional 
file 1: Fig. S5e).

In addition, we used pySCENIC to map the gene regu-
latory networks governing these subtypes. Marked dif-
ferences in the regulon activity were observed among 
different treatment and cell subtypes, thus again support-
ing that distinct cell states were induced by TCS (Fig. 3e). 
The Hep2 and Hep3 cells in TCS-200 group had elevated 
regulon activity for Gata2 and Mef2c (Additional file  1: 
Fig. S5f ), which are known to be associated with develop-
ment and oncogenesis [43, 44]. The up-regulation of the 
protein expression levels of GATA2 and MEF2C was also 
confirmed through both in  vivo and in  vitro treatment 
experiments (Fig.  3f, g; Additional file  1: Fig. S5g). Tar-
get genes regulated by Gata2 and Mef2c are enriched in 
processes associated with the response to transforming 
growth factor beta (Tgfb2, Eng and Bmp2), EMT (Tgfb2, 
Bmp2, Eng and Gja1) and ECM organization (Timp3, 
Sparc, Tgfb2, Ramp2, Adamts1, Serpinh1, Eng and Bmp2) 
and collagen fiber assembly (Bgn) (Additional file 1: Fig. 
S5h). Moreover, Jun, an important TF regulating a large 
number of genes, was up-regulated by TCS treatment. 
Jun promotes hepatocyte survival and the progression 
from steatosis to NASH, whereas the expression of Jun 
in non-parenchymal liver cells is known to correlate with 
fibrosis [45].

We also performed quantitative proteomics analysis of 
DEPs after TCS treatment of the MIHA normal human 
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hepatocyte cell line (Additional file  1: Fig. S5i). The up-
regulated DEPs were enriched mainly in cell–matrix 
adhesion and the cell cycle, whereas the down-regulated 
DEPs were enriched in metabolic processes (Fig.  3h). 
We examined the measured changes in expression of the 
proteins regulated by Gata2 and Mef2c, including those 
associated with drug metabolism (CYP4F12, CYP27A1 
and CYP4F11), cell cycle (CENPF, CCND3, CCNB1 and 
CCNB2) and collagen formation (COL6A1, COL6A2 
and NES), all of which showed trends consistent with the 
scRNA-seq results (Additional file  1: Fig. S5j). Thus, we 
next used the Search Tool for the Retrieval of INteract-
ing Genes/proteins (STRING) database to construct a 
protein–protein interaction network for these proteins, 
to better understand the regulatory relationships among 
these key DEPs (Fig. 3i). GATA2 plays an important role 
in controlling the expression of cell cycle associated pro-
teins (such as CCNB1, CCNB2 and CCND3). GATA2 
and MEF2C up-regulate the expression of CCNB1 and 
NES (involved in EMT), thereby up-regulating the col-
lagen proteins COL6A1 and COL6A2. Furthermore, 
MEF2C directly activates SPTBN1 and consequently 
induces liver fibrosis [46].

In summary, these findings indicated that TCS induces 
the proliferation of normal Heps, down-regulates retinol 
and fatty acid metabolism, and promotes fibrogenesis by 
accelerating ECM-associated processes, in which Gata2 
and Mef2c are the key driving TFs.

HSCs are activated after TCS treatment
HSCs, one of the key non-parenchymal cell types in the 
liver, serve as the major origin of ECM proteins after 
injury. Beyond the increase in HSCs in TCS-200 group 
(Fig.  2c), GO analysis indicated that TCS induced the 
down-regulation of genes involved in lipid oxidation and 
storage, and the up-regulation of genes involved in col-
lagen biosynthetic process, macrophage chemotaxis and 
the cell cycle (Additional file 1: Fig. S6a).

HSCs were divided into one quiescent subtype 
(qHSC) and seven activated subtypes (aHSC1–6 and 

aHSC_prof), among which aHSC_prof exhibited cell 
proliferation features, at a higher resolution (Fig.  4a). 
Among these subtypes, qHSC accounted for the highest 
proportion in control sample (32.3%, n = 42 of 130) but 
only 7.2% (n = 46 of 638) in the TCS treatment sample 
(Additional file 1: Fig. S6b). Notably, aHSC1 and aHSC2 
showed overexpression of genes involved in ECM remod-
eling and fibrosis, thus suggesting roles in the develop-
ment of liver fibrosis. In addition, aHSC4 was enriched in 
the expression of chemotactic cytokines including Ccl6, 
Cxcl10, Ccl24 and Ccr2 (Fig. 4b).

Similarly, pseudotime analysis was performed to follow 
the transcriptomic changes in HSCs after TCS treatment. 
The results indicated that qHSC developed into primarily 
aHSC1 (referred to as cell fate 1) or aHSC4 (referred to 
as cell fate 2) (Fig.  4c), accompanied by aHSC2, aHSC_
prof and so on. To further explore the molecular events 
underlying the different trajectories, we used BEAM to 
analyze the branch-dependent DEGs (Additional file  1: 
Fig. S6c). Cell fate 2, the lineage from qHSC to aHSC4, 
showed the overexpression of genes involved in chemo-
taxis such as Ccl6, Cxcl2, Cxcl13, Ccl3, Ccr2 and Ccr12, 
in agreement with the subtype cell markers shown in 
Fig. 4b. In contrast, cell fate 1, the lineage from qHSC to 
aHSC1, was enriched in the expression of genes involved 
in ECM organization and collagen fibril organization.

Because the activation of HSCs is known to be the key 
driver of liver fibrogenesis, and our analysis indicated that 
TCS induced the proliferation and activation of HSCs, we 
performed Masson’s trichrome and Sirius red staining 
and western blotting to validate the progression of fibro-
genesis. TCS was found to increase collagen deposition 
in mouse liver and to have a statistically significant effect 
in the 200 mg/kg dosage group (Fig. 4d). In addition, the 
protein expression level of α-SMA (an important marker 
of fibrogenesis) (Fig. 4e) and the hepatic deposition level 
of collagen I were elevated, as expected (Fig. 4f ). We also 
validated that TCS promoted the expression of α-SMA 
and collagen I in LX-2, a human HSC line (Fig. 4g, h).

(See figure on previous page.)
Fig. 3  Heterogeneity of hepatocytes (Heps) and their differentiation states. a Functional enrichment in the down-regulated (left) and up-regulated 
(right) DEGs of TCS-200 group vs. control group. b UMAP visualization of distinct subtypes of Heps and their distributions in different groups. c 
Heatmap of expression levels of representative markers involved in drug metabolism, ECM, EMT and cell proliferation. d Pseudotime trajectory 
indicating the development of four subtypes, rooting from Hep1. e Heatmap showing AUC values of the expression levels of TFs in different 
subtypes. f The protein level of GATA2 and MEF2C in mice liver were detected by Western blotting. g Cell viability measured by CCK-8 assay after 
72 h after transfection with si-NC for NC (normal control) or si-GATA2. h Bar plots showing the biological processes enrich up- and down-regulated 
DEPs after TCS treatment. i The potential regulatory relationship of GATA2 and MEF2C controlled downstream proteins leading to cell proliferation, 
ECM reorganization and liver fibrosis. Numbers indicate the fold change of protein between TCS-200 and control groups from proteomics dataset. 
TCS triclosan, DEGs differentially expressed genes, ECM extracellular matrix, MF molecular function, CC cellular component, BP biological process, 
KEGG Kyoto Encyclopedia of Genes and Genomes, AUC area under the curve, TF transcription factor, UMAP uniform manifold approximation and 
projection for dimension reduction, EMT epithelial-mesenchymal transition
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In the proteomics analysis performed on LX-2 cells, 
up-regulated DEPs were mostly associated with cell cycle 
transition, whereas down-regulated DEPs were enriched 
in RNA localization, regulation of glycogen biosynthetic 
process and oxidative phosphorylation (Additional 
file  1: Fig. S6d, e), in good agreement with the scRNA-
seq results (Additional file  1: Fig. S6a). Notably, pro-
teins associated with collagen organization (COL6A2, 
COL4A2, COL6A1, COL16A1 and BMP1) and the cell 
cycle (UBE2E2, TOP2A and CDK14) were elevated in 
TCS-200 group (Additional file 1: Fig. S6f ), thus further 
supporting the proliferation and activation characteriza-
tion of HSCs after TCS treatment.

These results revealed that TCS treatment drives the 
development of HSCs from quiescent cells into several 
different activated phenotypes, particularly the aHSC1 
subtype, which showed overexpression of ECM genes 
(directly associated with fibrosis), and the aHSC4 sub-
type, which showed overexpression of chemotactic 
chemokines (associated with cell migration).

Endos undergo dysfunction and capillarization after TCS 
treatment
Liver Endos, including sinusoidal endothelial cells 
(LSECs) and vascular endothelial cells (LVECs), as well as 
lymphatic endothelial cells, are the largest group of cells 
within the non-parenchymal cells of the liver, and they 
regulate liver homeostasis and intrahepatic vascular tone 
[47]. The genes up-regulated after TCS treatment among 
Endos, with respect to the expression in control group, 
were found to be involved in cellular response to external 
stimulus, the canonical Wnt signaling pathway, response 
to hypoxia and fibroblast proliferation (Additional file 1: 
Fig. S7), whereas the down-regulated genes were involved 
in the regulation of vasculature development, endothelial 
cell proliferation and chemotaxis.

According to the spatial lobular locations, we divided 
Endos into two LVEC subtypes and five LSEC subtypes 
(Fig. 5a), which were mapped on the liver lobule from the 
portal tract to the central venous regions according to the 
expression levels of portal, periportal, middle, pericentral 

and central markers (Fig. 5b). Notably, the proportion of 
the LSEC_mid2 subtype exhibited the most significant 
increase after TCS treatment, and contained more DEGs 
than control group (Fig.  5c, d). The functional enrich-
ment of the up-regulated genes in this subtype suggested 
their participation in liver development, collagen trimer 
assembly, ECM binding, PPAR signaling pathway and 
TGF-β signaling pathway (Fig.  5d), which are associ-
ated with the promotion of liver fibrosis. We then exam-
ined TCS-induced physiological functional changes in 
Endos. Endos remove circulating antigens and toxins 
via different endocytic receptors [48], including Mrc1, 
Stab1 and Stab2, all of which significantly decreased 
after TCS treatment (Fig. 5e). Moreover, Endos respond 
to increased shear stress to maintain normal vascular 
through the activation of TFs such as Klf2, Fos and Junb, 
which were markedly suppressed, thus suggesting TCS-
induced dysfunction of Endos.

At the onset of liver fibrosis, LSECs undergo capillari-
zation (loss of fenestrae) and produce basement mem-
brane—a phenotype mimicking that of common LVECs 
[47–49]. To explore whether this phenotypic change 
also existed in our model, we performed RNA veloc-
ity analysis to estimate the cellular transition probabil-
ity and indeed found a tendency for most LSEC_pc and 
some LSEC_mid2 cells to transform into LVEC_central 
cells (Fig. 5f ). Furthermore, we constructed gene regula-
tory networks for the seven subtypes and found that Hlf 
exhibited the highest RSS in LSEC_mid2 cells (Fig.  5g). 
The target genes regulated by Hlf were mainly involved 
in liver development (Proc, Abcb11, Prox1, Egfr and Hp), 
extracellular structure organization (Gas2, Itih1, Jup and 
Nr1h4), tissue remodeling (Ahsg and Egfr) and response 
to hypoxia (Ang, Acaa2, Hp and Egfr) (Fig. 5h).

Overall, these results indicated TCS-induced dys-
function of Endos, showing diminished endocytic and 
vascular developmental/regulatory ability, whereas the 
ECM-associated processes and collagen trimer assembly 
were up-regulated. In addition, the phenotypic shift of 
most LSEC_pc and some LSEC_mid2 toward LVEC_cen-
tral cells (i.e., capillarization), indicating the occurrence 

Fig. 4  Transcriptomic roadmap of HSCs activation. a UMAP visualization of eight distinct subtypes of HSCs. b Heatmap of expression levels of 
representative markers related to cell quiescence, ECM remodeling and fibrosis, activation, cytokine and proliferation. c Pseudotime trajectory 
indicating the development of HSCs subtypes. Cell fate 1 represents trajectory from qHSC to aHSC1, cell fate 2 represents from qHSC to aHSC4. d 
Masson and Sirius red staining and the corresponding quantification of Masson- and Sirius red-positive areas (n = 5). Scale bar = 1000 μm. e Western 
blotting analysis of α-SMA expression levels in mice liver with or without TCS treatment, and the corresponding quantification of α-SMA protein 
expression levels, relative to GADPH loading control (n = 4). f Immunofluorescence staining of collagen I on mouse liver frozen sections (n = 4). The 
collagen I positive area was analyzed by ImageJ. Scale bar = 50 μm. g The protein expression of COL1A1 and α-SMA in LX-2 cells after TCS treatment. 
h Immunofluorescence staining of α-SMA in LX-2 cells after TCS or DMSO treatment. Scale bar = 20 μm. HSCs hepatic stellate cells, UMAP uniform 
manifold approximation and projection for dimension reduction, qHSC quiescent hepatic stellate cells, aHSC activated hepatic stellate cells, ECM 
extracellular matrix, TCS triclosan, α-SMA alpha smooth muscle actin, ns non-significant; *P < 0.05, **P < 0.01

(See figure on previous page.)
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of liver fibrosis, appeared to be under the control of Hlf 
activation.

B plasma cells with fibrotic characteristics increase 
after TCS treatment
Lymphocytes, including T, NK and B cells, play impor-
tant roles in the pathogenesis of liver disease. We next 
analyzed how TCS affects lymphocytes in mouse liv-
ers. First, we identified the subtypes of lymphocytes 
according to the expression of key marker proteins. NK 
cells were divided into two subtypes: NK_cyto (express-
ing Prf1) and NK_inflam (expressing Xcl1), which have 
cytotoxic and inflammatory characteristics, respectively 
(Fig. 6a, b). Similarly, T cells contained naive (expressing 
Lef1, Ccr7 and Tcf7), effector (expressing Fasl, Ifng and 
Gzmk), memory (expressing Cxcr3, Cxcr6 and Cd40lg) 
and regulatory (expressing Foxp3 and Ctla4) subtypes, 
and NKT cells were characterized by both T and NK 
cell signatures. Three subtypes of B cells were identi-
fied: naive (expressing Ighd, Fcmr), memory (expressing 
Cd38) and plasma (acting as effector B cells with over-
expression of Igha and Jchain) cells. Notably, B_plasma 
showed the most significant increase (up to 23-fold) 
after TCS-200 treatment (11.95% vs. 0.51%) (Fig.  6c), 
thus supporting the requirement of B cells for liver fibro-
genesis [50].

Consequently, we reconstructed the developmen-
tal trajectory of B cells (Fig. 6d) and found that B_naive 
cells differentiated into B_plasma or B_memory sub-
types, the latter of which was also accompanied by a 
minor population of B_plasma cells. To further explore 
the molecular mechanisms underlying the different tra-
jectories, we retrieved the branch-dependent DEGs and 
performed biological processes enrichment analysis 
(Fig.  6e). The results suggested that B_naive cells (State 
3) were enriched in genes involved in B cell activation 
and differentiation; B_memory cells (cell fate 1, State 4) 
were enriched in genes involved in tissue migration and 
the cell cycle transition; and B_plasma cells (cell fate 2, 
State 5) were enriched in genes involved in acute-phase 
response, collagen-containing ECM and hepatocyte 

proliferation. Furthermore, DEGs of B_plasma cells after 
TCS treatment (up = 497, down = 74) were identified 
(Fig. 6f ). The up-regulated genes were enriched in ECM 
organization, response to hypoxia, tissue remodeling and 
fibroblast proliferation (Fig. 6g), many of which are asso-
ciated with liver fibrogenesis.

These results revealed that the TCS-induced increase 
in B plasma cells might be the key subtype of lympho-
cytes contributing to the progression of liver fibrosis.

LCMs and Kupffer cells display M2‑skewed phenotype 
after TCS treatment
Myeloid cells, consisting of granulocytes, monocytes, 
macrophages, dendritic cells and so on, show hetero-
geneous distributions and self-replenish in response to 
drug-induced injury in the liver [51]. LCMs and Kupffer 
cells can be further divided into M1 (expressing Cd86 
and Cd68), M2 (expressing Tgfb2, Wnt5a and Mrc1) 
and proliferation (expressing Mki67, Stmn1, Cenpf and 
Ccnb2) subtypes (Additional file  1: Fig. S8a, b). Among 
them, the proportions of the M2 and proliferation sub-
types increased after TCS treatment (Additional file  1: 
Fig. S8c). Interestingly, the pseudotime trajectory analysis 
also suggested differentiation of the M1 subtype of LCM 
and Kupffer cells into the M2 subtype, along with the dis-
tribution of the proliferation cells (Additional file 1: Fig. 
S8d), thus resulting in M2-skewed polarization. Previous 
study has demonstrated that macrophages in the fibrotic 
liver exhibit M2-preponderant activation [52], thereby 
further supporting TCS treatment-induced liver fibrosis.

Moreover, after TCS treatment, 376 (up = 239, 
down = 137) and 1118 (up = 703, down = 415) DEGs 
were identified in the LCM_M2 and KC_M2 subtypes, 
respectively (Additional file 1: Fig. S8e), including the up-
regulation of several pro-fibrosis genes, such as Ccl2 and 
Il1b in LCM_M2, Il6 and Mmp2 in KC_M2, as well as 
Apom and Spp1 in both LCM_M2 and KC_M2. In addi-
tion, genes associated with ECM (Fbn1, Col14a1, Ecm1, 
Mgp and Col1a1), ECM fibrosis (Pdgfra and Lrp1), ECM 
remodeling (Adamts5) and proteoglycan assembly (Lum) 
were up-regulated in KC_M2 cells. Finally, we performed 

(See figure on previous page.)
Fig. 5  Distinct endothelial cells according to the spatial locations. a UMAP visualization of the 7 distinct subtypes of Endos based on spatial 
distribution. b Heatmap of the expression levels of representative markers indicating generalized Endos as well as central, pericentral, middle, 
periportal and portal position. c Pie chart showing the fraction of each endothelial subtype. d Strip chart showing DEGs of each subtype after 
TCS-200 treatment. The texts in green color represents the pathways enriched in the up-regulated DEGs in LSEC_mid2. e Split violin plot of the 
expression levels of genes associated with endocytic receptors and vascular tone regulation. f RNA velocity analysis of different subtypes of 
Endos, indicating LSEC capillarization. g Scatter diagram showing RSS of TFs in LSEC_mid2 subtype. The top 5 TFs ordered by scores were listed. h 
Transcription regulatory network constructed by Hlf and its target genes. Red text represents TFs, black text for targets (target), pink hexagon for 
genes related to ECM, tissue remodeling and response to hypoxia (key target). Endos endothelial cells, LVEC liver vascular endothelial cells, LSEC 
liver sinusoidal endothelial cells, UMAP uniform manifold approximation and projection for dimension reduction, DEGs differentially expressed 
genes, TCS triclosan, ECM extracellular matrix, RSS regulon specificity score, TFs transcription factors; ***P < 0.001
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functional enrichment analysis of the up-regulated DEGs 
of KC_M2 (Additional file  1: Fig. S8f ), which indicated 
enrichment in biological progresses involved in collagen 
ECM organization, fibroblast proliferation, macrophage 
chemotaxis, response to hypoxia and T-helper (Th)2 cell 
cytokine production. Of note, the excessive secretion of 
Th2 cytokine has been reported to be associated with 
excessive activation of M2 macrophages and to be posi-
tively correlated with the severity of fibrosis [53].

In summary, these results suggested the skewing of 
macrophages from M1 to M2 phenotype, and the discov-
ery of several key genes likely to contribute to the pro-
gression of liver fibrosis.

Cell–cell communication crosstalk within the crucial 
subtypes
To explore differential cell–cell interactions after TCS 
treatment, we constructed a cellular communication 
network among different cell types with potential ligand-
receptor pairs (Additional file 1: Fig. S9a). We observed 
relatively more counts of interactions in HSCs, Kupffer, 
LCMs and Endos cells acting either as source or target 
cells. We confirmed the enhanced interactions between 
macrophages and HSCs, and between macrophages and 
LSECs, in the TCS treatment group (Additional file  1: 
Fig. S9b). Given the analytic results for individual cell 
types, we focused on the cellular communication among 
the Hep2, Hep3, aHSC1, LSEC_mid2, B_plasma, KC_M2 
and LCM_M2 subtypes (Additional file 1: Fig. S9c), all of 
which showed potential associations with the progres-
sion of liver fibrosis after TCS treatment. The interac-
tion counts were particularly high in aHSC1, KC_M2 and 
LSEC_mid2 cells.

The key ligand-receptor pairs forming the interac-
tion network are summarized in Fig.  7a. Many of the 
ligand-receptor pairs have been reported to be involved 
in fibrosis, such as IL6 receptor_IL6, TGFB2/3_TGF-
beta receptor2/3, NOTCH1_WNT4, MERTK_GAS6 and 
TNF_TNFRSF1A [54–57]. As shown in Additional file 1: 
Fig. S9c, aHSC1 exhibited ligand-receptor pairs interact-
ing with the other subtypes. For the ligands on aHSC1 
cells, the most significantly enriched pairs comprised 

collagen molecule and the corresponding complex on 
all subtypes, in line with excessive ECM formation when 
HSCs are activated. We confirmed that the protein levels 
of collagen I and ITGB1 (one subunit of a1b1 complex) 
were both elevated in TCS-treated mouse livers (Figs. 4f, 
7b). Among these ligand-receptor pairs, we observed that 
GAS6 from LSECs and macrophages showed strong com-
munication with aHSC1 through AXL. It was reported 
that GAS6_AXL pathway is associated with fibrosis [58], 
we further verified the involvement of the GAS6_AXL 
pathway in TCS-induced fibrosis. We first confirmed that 
the protein level of GAS6 was elevated in TCS-treated 
mouse liver (Fig.  7b). TCS also promoted the expres-
sion of α-SMA and phosphorylated Akt (p-Akt) (Fig. 7c). 
After incubation with recombinant GAS6 (rGAS6), 
HSC LX-2 cells also showed increased expression of 
α-SMA and p-Akt (Fig.  7d). Moreover, the AXL inhibi-
tor BGB324 partially blocked the activation of HSC by 
rGAS6 (Fig. 7d). Therefore, we experimentally confirmed 
the potential contributing role of the GAS6_AXL pair 
in TCS-induced liver fibrosis, thus leading to increased 
expression of α-SMA (Fig. 7e).

Overall, our study identified several critical ligand-
receptor pairs between the selected crucial subtypes, 
which are known or have been reported to facilitate liver 
fibrogenesis. Combing the above results, we delineated 
the key underlying mechanisms of TCS-induced liver 
fibrosis (Fig.  7f ), which were attributable to cell type-
specific modulation on Heps (particularly Hep2 and 
Hep3), Endos (particularly LSEC_mid2), macrophages 
(particularly KC_M2 and LCM_M2), B cells (particularly 
B_plasma) and HSCs (particularly aHSC1).

Discussion
TCS was once considered a safe additive because 
the  median lethal dose (LD50) for inducing acute tox-
icity is as high as 4350  mg/kg body weight in mice 
and > 5000  mg/kg body weight in dogs [59]. The TCS 
content in commercial products may reach as high as 
17 mmol/L (0.5%) [5]. Although the use of TCS in anti-
septic soaps was phased out in the United States in 
2016 by FDA, it is still widely used in a wide range of 

Fig. 6  Dynamic regulation of lymphocytes after TCS treatment. a UMAP visualization of distinct subtypes of lymphocytes including B, T and NK 
cells. b Heatmap of the expression levels of representative markers indicating lymphocytes, regulatory, naive, memory, effector, cytotoxic, and 
inflammatory functions. c Pie chart showing the relative fraction of each lymphocyte subtype. d Pseudotime trajectory indicating the development 
of B cell subtypes. The different color schemes represent the segregation based on pseudotime, cell state, treatment and subtype, respectively. 
e BEAM showing genes involved in the differential development of cell fate 1 (State 4) and cell fate 2 (State 5), and the enriched GO terms were 
listed at right. f Lollipop chart depicting the DEGs of B plasma cells after the TCS-200 treatment. Red represents up-regulated and blue represents 
down-regulated genes. g Bar graph showing the functions enriched in up-regulated DEGs of B plasma cells after the TCS-200 treatment. Length 
represents gene ratio and color represents adjusted P value. UMAP uniform manifold approximation and projection for dimension reduction, NK 
natural killer cells, C1 cluster 1, C2 cluster 2, C3 cluster 3, BEAM branched expression analysis modeling, GO Gene Ontology, DEGs differentially 
expressed genes, TCS triclosan; *P < 0.05, ***P < 0.001

(See figure on previous page.)
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Fig. 7  (See legend on next page.)
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personal care and health care products (such as tooth-
paste, mouthwash, shampoo, deodorant and cosmetics) 
in many countries [60–63]. The wide use and chemical 
persistence of TCS have also led to substantial accumu-
lation in the environment, thus causing severe pollution 
problems [64, 65].

The toxicity of TCS has been studied in different mouse 
models with varying dosages or exposure terms. For 
instance, Wang et  al. [23] have demonstrated that TCS 
induces mouse liver tumors through the chimeric antigen 
receptor (CAR) and PPARα activation at doses of 0, 10, 
100 and 200  mg/kg for 14 or 28 d. Cao et  al. [42] have 
examined dose–response genotoxicity of TCS in mice 
at doses of 0 to 1000 mg/(kg·d) for 19 d. In the present 
study, we treated mice with 200  mg/(kg·d) body weight 
for 14 d by oral gavage, and we provide the first detailed 
single cell atlas in mouse liver with a focus on the TCS-
induced liver fibrosis. Of note, although the dosage used 
in our study was higher than the typical concentrations 
in consumer products for daily use, the measured TCS 
serum concentration was largely within the range of 
reported human body burden levels (i.e., sub μmol/L in 
serum), and the mice showed no changes in body weight, 
or in a panel of blood or serum biomarkers. Nevertheless, 
liver hypertrophy and pathology were observed after the 
14-day treatment, thus confirming prior findings indicat-
ing that the liver is the main target organ of TCS [11]. 
Our study exploited scRNA-seq to illustrate TCS treat-
ment-induced modulation of gene expression in major 
cell types including Heps, HSCs, Endos, lymphocytes and 
myeloid cells, and their communication crosstalk. More 
importantly, the molecular and cellular events underlying 
TCS-induced liver fibrogenesis were dissected at the sin-
gle cell level.

TCS has been reported to induce an increase in 
hepatocyte DNA synthesis and cell proliferation. In our 
study, Heps in the TCS treatment group exhibited obvi-
ous proliferation, mainly driven by Hep2 and Hep3 sub-
types. In addition, elevated collagen accumulation was 
observed after TCS treatment, as verified with Masson’s 
trichrome and Sirius red staining, as well as immunoblot-
ting and immunofluorescence experiments. The analysis 

of subtypes suggested their transition from metabolic 
processes toward proliferation and fibrosis. The Hep2 
and Hep3 subtypes were enriched in ECM and EMT 
related processes, which might be regulated by TFs such 
as Gata2 and Mef2c.

Activated HSCs are known as the main ECM-pro-
ducing cells. The transition from quiescence led to two 
different trajectories: one subtype participated in cell 
migration, and the other participated in ECM organi-
zation. Recently, Zhang et  al. [66] have discovered two 
major trajectories during HSC activation in liver fibro-
genesis, from proliferation to either an inflammatory 
cluster or collagen organization cluster. Notably, we 
extended the trajectory starting from quiescent HSCs 
and accompanied by the activated proliferation subtypes.

Other cells, including Endos and immune cells, also 
regulate the ECM and contribute to the progression of 
liver fibrosis. LSECs are specialized Endos that form 
hepatic sinusoids, which lack a basement membrane, 
thus allowing for solute exchange between the sinusoid 
lumen and the space of Disse [67]. In the normal liver, 
Endos remove circulating antigens and toxins via endo-
cytic receptors, and respond to increased shear stress 
to maintain normal vascular conditions. Our study sug-
gested that TCS treatment induced disorder in endocy-
tosis and dysfunction in vascular regulation, which are 
the representative features of endothelial dysfunction 
observed in cirrhosis [68]. During the progression of liver 
fibrosis, LSEC fenestrae are diminished, thus preventing 
the exchange in substances and oxygen between the liver 
parenchyma and sinusoidal blood, which is also known as 
capillarization, thereby leading to a failure in suppressing 
HSCs [69]. In our study, LSECs exhibited a phenotypic 
shift to LVECs, in line with the capillarization features. 
Furthermore, LSEC_mid2 cells were charactered by 
middle-zone markers and overexpression of genes asso-
ciated with ECM and TGF-β signaling pathway. This 
might be regulated by TF Hlf, which facilitates liver fibro-
sis through activation of HSCs driven by the HLF/IL-6/
STAT3 feedforward circuit [70].

Studies have shown that B cells are required for liver 
fibrogenesis in an antibody- and T cell-independent 

(See figure on previous page.)
Fig. 7  Cell–cell communication crosstalk of different cell types. a Dot plot depicting ligand-receptor pairs within different subtypes. Circle sizes 
indicate mean expression of pairs and colors indicated enrichment of P-values in the two subtypes. b Immunofluorescence staining of ITGB1 (top) 
and GAS6 (bottom) on mouse liver frozen sections. Scale bar = 25 μm (top) and scale bar = 10 μm (bottom). c LX-2 cells were treated with indicated 
concentration of TCS for 24 h, and the expression of α-SMA, p-Akt and total Akt were examined with Western blotting, GAPDH was used as loading 
control. d LX-2 cells were incubated with 500 ng/ml rGAS6 for 30 min and/or pre-incubated with BGB324 (1 μmol/L, 30 min), and the expression 
of α-SMA, p-Akt and total Akt were examined with Western blotting, GAPDH was used as loading control. e Scheme showing the potential 
fibrosis-related mechanism caused by the combination of GAS6 and AXL in HSCs. f Summary and inference of cellular communication induced 
by TCS on mice liver. ITGB1 integrin beta 1, TCS triclosan, α-SMA alpha smooth muscle actin, p-Akt phosphorylated Akt, rGAS6 recombinant GAS6, 
HSCs hepatic stellate cells, LSEC liver sinusoidal endothelial cells, qHSC quiescent hepatic stellate cells, aHSC activated hepatic stellate cells, ECM 
extracellular matrix, EMT epithelial-mesenchymal transition; *P < 0.05, **P < 0.01
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manner [71]. Our study revealed that the pro-fibrogen-
esis function of B cells appeared to be mainly related to 
the plasma cell, which sharply increased after TCS treat-
ment. The relationship between plasma cells and stel-
late cells in autoimmune hepatitis has been established, 
exhibiting co-localization and positive correlation [72]. 
In agreement with this relationship, genes associated 
with ECM organization, response to hypoxia and tissue 
remodeling were up-regulated in plasma cells in our data.

Among myeloid cells, macrophages, including LCM and 
Kupffer cells, displayed M2-skewed phenotype. M2 mac-
rophages release anti-inflammatory or pro-resolving medi-
ators, which influence wound repair, tissue remodeling and 
fibrosis [73]. Several up-regulated genes facilitating liver 
fibrosis were identified in our data. For example, Il1b is a 
potent inflammatory cytokine produced mainly by mac-
rophages that participate in toxic-, ethanol- and NASH-
induced fibrosis [74, 75], and it has been found to prolong 
the survival of HSCs [76]. Il6 is a key pro-inflammatory and 
profibrogenic cytokine that drives liver fibrosis [57]. Mmp2 
belongs to the matrix metalloproteinase family, and its 
increased expression has been found to promote ECM dep-
osition [77]. Additionally, Ppara, a nuclear receptor partici-
pating in the development of hepatic steatosis induced by 
TCS [21], was up-regulated after TCS treatment in LSEC_
mid2, Hep3, aHSC1 and KC_M2 cells in our study.

Finally, cell–cell communication crosstalk analysis 
confirmed the central role of HSCs in association with 
other cell types. Notably, aHSC1 cells exhibited the most 
interactions with other subtypes when acting as either 
source or target in ligand-receptor pairing. The com-
bination of GAS6 and AXL was verified to increase the 
expression of α-SMA and promote fibrosis, collagen 
molecules and the corresponding complex, IL6 recep-
tor_IL6, TGFB2/3_TGFbeta receptor2/3, MERTK_GAS6 
and TNF_TNFRSF1A, in line with the role of aHSC1 as a 
major executor of fibrogenesis.

Conclusions
The present study provides the first comprehensive anal-
ysis of cellular and biological processes involved in TCS-
induced hepatotoxicity through scRNA-seq. Our analysis 
uncovered the molecular changes in the six main liver 
cell types, and enabled the construction of an interaction 
network of cells centering on the activation of HSCs. Our 
study suggests that TCS modulates different cell types 
in concert to activate HSCs, promoting fibrogenesis and 
resulting in hepatotoxicity.
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