Skip to main content
. 2023 Jan 19;14(8):2054–2069. doi: 10.1039/d2sc06576b

The performance of MetalProGNet trained with different pose sources (top-3 values of the test metrics are bolded).

Pose source Model type R p RMSE
Training Validation Test Training Validation Test
Glide SP Mixture 0.799 ± 0.017 0.673 ± 0.007 0.629 ± 0.013 1.130 ± 0.045 1.393 ± 0.007 1.402 ± 0.019
Finetuning 0.890 ± 0.042 0.605 ± 0.004 0.619 ± 0.008 0.868 ± 0.126 1.454 ± 0.016 1.423 ± 0.022
PLANTS Mixture 0.776 ± 0.037 0.650 ± 0.007 0.624 ± 0.005 1.183 ± 0.080 1.425 ± 0.012 1.416 ± 0.008
Finetuning 0.879 ± 0.072 0.600 ± 0.013 0.632 ± 0.024 0.874 ± 0.251 1.450 ± 0.022 1.397 ± 0.040
Crystal Mixture 0.987 ± 0.003 0.738 ± 0.003 0.703 ± 0.010 0.306 ± 0.028 1.270 ± 0.010 1.285 ± 0.020
Finetuning 0.939 ± 0.011 0.682 ± 0.003 0.680 ± 0.013 0.704 ± 0.057 1.326 ± 0.015 1.321 ± 0.015