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ABSTRACT

Small noncoding RNAs fulfill key functions in cellular and organismal biology, typicallyworking in concert with RNA-binding
proteins (RBPs). While proteome-wide methodologies have enormously expanded the repertoire of known RBPs, these
methods do not distinguish RBPs binding to small noncoding RNAs from the rest. To specifically identify this relevant sub-
class of RBPs, we developed small noncoding RNA interactome capture (snRIC2C) based on the differential RNA-binding
capacity of silica matrices (2C). We define the S. cerevisiae proteome of nearly 300 proteins that specifically binds to
RNAs smaller than 200 nt in length (snRBPs), identifying informative distinctions from the total RNA-binding proteome
determined in parallel. Strikingly, the snRBPs include most glycolytic enzymes from yeast. With further methodological
developments using silica matrices, 12 tRNAs were identified as specific binders of the glycolytic enzyme GAPDH. We
show that tRNA engagement of GAPDH is carbon source–dependent and regulated by the RNA polymerase III repressor
Maf1, suggesting a regulatory interaction between glycolysis and RNA polymerase III activity. We conclude that snRIC2C

and other 2C-derived methods greatly facilitate the study of RBPs, revealing previously unrecognized interactions.
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INTRODUCTION

RNA–protein interactions govern not only gene expression
from beginning to end, but are also crucial for the function
of cellular machines such as the ribosome, the spliceo-
some, the signal recognition particle, telomerase, and
many others (Glisovic et al. 2008; Gerstberger et al.
2014; Mitchell and Parker 2014; Singh et al. 2015).
Recent work suggests that the biological scope of RNA–
protein interactions and RNA-binding proteins (RBPs) is
even larger than previously anticipated (Baltz et al. 2012;
Castello et al. 2012). Against this background, the devel-
opment of methods to study RNA–protein interactions
and RBPs promises fundamental new insights.

Decades ago, UV photo-cross-linking was shown to cat-
alyze covalent bond formation between RNA and proteins
at zero distance (Hockensmith et al. 1986; Brimacombe
et al. 1988) without similarly promoting protein–protein
cross-linking (Greenberg 1979; Pashev et al. 1991;
Suchanek et al. 2005). To identify the poly(A) RNA-binding
proteome of cultured cells comprehensively, RNA interac-

tome capture (RIC) combined UV photo-cross-linking with
oligo(dT) capture of polyadenylated RNAs followed by
mass spectrometry (Baltz et al. 2012; Castello et al. 2012).
RICwas subsequently refined by introduction of locked nu-
cleic acid (LNA)-modified dT-capture probes (enhanced
RIC, eRIC), allowingmore stringent conditions and improv-
ing the signal to noise ratio of conventional RIC (Perez-Perri
et al. 2018, 2021). However, both RIC and eRIC only iden-
tify RBPs that bind polyadenylated RNAs. To identify RBPs
irrespective of the class of RNAs that they bind to, OOPS
(Queiroz et al. 2019) and XRNAX (Trendel et al. 2019)
weredeveloped to extract cross-linkedRBPs from the inter-
phase between aqueous and organic solvents after a phe-
nol extraction of RNA, while the PTex method uses two
organic solvents (Urdaneta et al. 2019).

We (Asencio et al. 2018) and others (Shchepachev et al.
2019) recently reported that the silica matrices commonly
used for total RNA isolation also retain RBPs that are
covalently cross-linked to RNA, a method we refer to as
complex capture (2C). Here, we explored 2C for the
determination of the total RNA-binding proteome of the
yeast Saccharomyces cerevisiae, establishing RIC2C.
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Unexpected observations then motivated the develop-
ment of further downstream applications of 2C, especially
for the identification of the cellular RNAs that bind to an
RBP of interest (CLIP2C) and the determination of those
RBPs that bind to small noncoding RNAs (snRIC2C), a poly-
functional class of RNAs with multiple regulatory roles.
These technical advances ledus to uncover anovel connec-
tion between tRNAs, glycolytic enzymes and carbon me-
tabolism in yeast.

RESULTS

RIC2C identifies 983 RBPs in yeast

We recently reported that commercially available silica col-
umns used to purify RNA can also be used for the copurifi-
cation of cross-linked RBPs to capture covalently linked
RNA–protein complexes, called complex capture (2C)
(Asencio et al. 2018). To utilize 2C for the determination
of a high confidence RNA-binding proteome of the yeast
Saccharomyces cerevisiae, we irradiated cultured cells
with 3 J/cm2 UV light at 254 nm, using nonirradiated cells
as negative controls. Lysates from three independent bio-
logical replicates were subjected to a first round of 2C pu-
rification. To minimize residual contamination with DNA-
binding proteins, we treated the 2C eluates with DNase I
and conducted a second round of 2C. Subsequently,
RBPs in the second-round eluates were released by
RNase I treatment, TMT-labeled, and analyzed by mass
spectrometry (Fig. 1A). The enrichment of RBPs by RIC2C

compared to the negative controls is strongandhighly con-
sistent (Supplemental Fig. 1), identifying 983 RBPs from
yeast (Fig. 1B; Supplemental Table 1). Gene Ontology
(GO) term enrichment analysis confirms ribosomal proteins
as a highly enriched category in the cross-linked samples,
reflecting that RIC2C is not restricted tomRNA-binding pro-
teins and efficiently captures the total RNA binding prote-
ome (Fig. 1C).
Comparison with published data sets of RBPs in yeast

suggests that the repertoire of RBPs in yeast may be near-
ing completion, with 174 additional novel RBPs (Fig. 1D)
identified in our data set, including 156 RBPs without
known RNA-binding domains (RBD) (Fig. 1E). Like previous
studies, RIC2C identified numerous metabolic enzymes, in-
cluding severalmembers of theglycolytic pathway, as RBPs
(Fig. 1B,E; Supplemental Table 1).
To validate RIC2C, eluates from cross-linked and non-

cross-linked samples were treated with RNase I or
left untreated, and subjected to immunoblotting for
the RBPs Pab1 and GAPDH (Tdh3), respectively. Both pro-
teins were only retained by RIC2C after cross-linking.
Furthermore, Pab1 showed the characteristic RNA-induced
smear that collapses after RNase treatment into more de-
fined bands just exceeding the molecular mass of the na-
tive protein (Fig. 1F, top panel). Interestingly, cross-linked

GAPDH shows a farmore defined band of slowermigration
rather than a smear without RNase treatment, which again
collapses into a faster migrating GAPDH band after RNA
digestion (Fig. 1F, bottom panel). GAPDH has been found
to bind tRNAs in HeLa cells (Singh and Green 1993), and
our results reveal that yeast GAPDH apparently binds a rel-
atively homogenous class of low molecular mass RNAs.
These results suggest that yeast GAPDH may also bind
tRNAs and exemplify the utility of RIC2C.

CLIP2C identifies several tRNAs as specific
GAPDH-binding partners

To follow up on the striking GAPDH result, we decided to
determine its RNA binding partners. Existing CLIP proto-
cols have been very successful with canonical RBPs like
hnRNPs, splicing factors or Pab1 (Baejen et al. 2014), but
show limitations with noncanonical RBPs, where often
only a minor fraction of the cellular protein is bound to
RNA. Such a situation typically causes signal to noise issues
from a high background.
We reasoned that enrichment of the RNA-bound frac-

tion by 2C before immunoprecipitation could help to ad-
dress this situation. To test this notion, we compared
GAPDH immunoprecipitations from input lysates and 2C
eluates and evaluated the efficiencies of capturing cross-
linked GAPDH–RNA complexes. Input and unbound frac-
tions, together with eluates from the IPs were analyzed
by western blotting. While the IP from the input lysate
showed a stronger overall signal, including more back-
ground above and below the expected size, the pattern
was unaffected by RNase treatment, strongly suggesting
that most of the immunoprecipitated protein was not
bound to RNA (Supplemental Fig. 2). In contrast, 2C ex-
traction reduced the overall IP signal, but a shifted band
became clearly visible above the size of native GAPDH in
the sample not treated with RNase. This shifted band is
RNase-sensitive and the signal accumulates at the expect-
ed size of GAPDH following RNA digestion (Supplemental
Fig. 2). These results clearly show that 2C strongly enriches
for the RNA-bound forms of GAPDH for immunoprecipita-
tion, potentially improving the signal to noise ratio of sub-
sequent sequencing experiments.
Encouraged by this result, we developedCLIP2C to iden-

tify the RNAs bound to GAPDH. Following a first round of
2C, the eluates were DNase I–treated and RNA was frag-
mented. A small aliquot was saved for sequencing an input
sample, while the rest was used for immunoprecipitation.
Libraries from the input and the RNA isolated from the
immunoprecipitation were generated and sequenced
(Fig. 2A). To test the 2C-CLIP method, we used Pab1-
TAP and Tdh3-Protein A tagged strains to be used in
IgG-based pulldowns. An untagged WT strain was also in-
cluded in the experiment as a negative control
(Supplemental Fig. 3). Sequencing data from the input
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FIGURE 1. 2C total RNA interactome capture (RIC2C) identified 983 RBPs in yeast. (A) Schematic representation of RIC2C. UV-cross-linked and
nonirradiated negative controls were subjected to a first round of 2C. Any residual DNA in the eluates was digested by DNase I, and the RNA
and RNA–protein adducts were repurified by a second 2C extraction. Eluates from the second round were RNase I–treated and proteins were
subjected to TMT labeling and mass spectrometry analysis. (B) Volcano plot displaying log2 fold change of protein abundance versus −log10
P-value after RIC2C of CL and NoCL samples. Gray dots represent proteins displaying no statistically significant difference. Orange dots represent
proteins statistically enriched (logFC≥ 1 and P-value≤0.05) in CL over NoCL samples. Glycolytic enzymes statistically enriched in the CL fraction
are highlighted with black circles. (C ) Top 10 significantly (Padjusted < 0.05) enriched GOmolecular functions, cellular components and biological
processes terms of RBPs identified by RIC2C compared to the identified background. (D) Venn diagram showing the overlap between the RBPs
detected by RIC2C, TRAPP (Shchepachev et al. 2019) and a compendium of other RNA interactome capture experiments in yeast (Scherrer et al.
2010; Tsvetanova et al. 2010; Mitchell et al. 2013; Ray et al. 2013; Kramer et al. 2014; Beckmann et al. 2015; Matia-Gonzalez et al. 2015; Brannan
et al. 2016; Shchepachev et al. 2019). (E) Analysis of the RBPs detected after RIC2C in yeast. RBPs were categorized according to experimental
evidence described in literature (“known”), their detection on RIC experiments (RIC) or content of RNA binding domains (RBD). Novel RBPs de-
tected by RIC2C unrelated to previous experimental evidence and not detected on any RIC experiment were categorized as “unknown.” (F )
Validation of two RBPs by 2C-western blot. A total of 10 µg of 2C RNA from CL and NoCL samples were treated or not with RNase I, separated
by SDS-PAGE, blotted to a nitrocellulose membrane and probed against Pab1 and GAPDH antibodies.
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samples were used to assess variability in gene expression
between the different strains, and sequencing data from
the IPs served to detect the GAPDH target RNAs. One
thousand two hundred and ninety genes were identified
as targets of Pab1 and as expected from a poly(A)-binding
RBP, 3′UTR regions were found to be particularly enriched.
Three hundred and twenty-six genes, including 299 pro-
tein coding mRNAs, were identified as targets of Tdh3.
This includes several tRNAs and a subset of mRNAs encod-
ing for proteins of the glycolytic pathway (Fig. 2B;
Supplemental Table 2). However, the defined shift of
RNA-cross-linked GAPDH by ∼25 kDa suggests that the
tRNAs might be preferential targets of GAPDH (Fig. 1F;
Supplemental Figs. 2, 3). No enrichment was observed
for the WT negative control sample, strongly supporting
the specificity of the results. Overall, 12 different tRNAs
are significantly enriched in the Tdh3 IPs, while no tRNA
was enriched in the IPs of Pab1 (Fig. 2C; Supplemental
Table 2). Thus, similarly to the human protein, yeast
GAPDH also binds tRNAs in vivo.

snRIC2C yields the yeast proteome of small
noncoding RNA-binding proteins

Which other RBPs might preferentially bind to tRNAs or
other small noncoding RNAs? We wondered whether 2C
could be adapted to address this question, because the
binding of small versus longer RNAs to silica matrices is
known to be sensitive to the concentration of ethanol in
the buffer (Hu et al. 2020). Starting with a 2C total RNA el-
uate (Fig. 3A, upper panel), we separated RNAs longer
(Fig. 3A, middle panel) and shorter (Fig. 3A, lower panel)
than 200 nt, respectively, during a second round of differ-
ential 2C (see Materials and Methods section for experi-
mental details). Using a bioanalyzer chip optimized to
resolve small RNAs, the shorter RNA fraction is found to
peak at 66 nt, close to the length of yeast tRNAs (Fig.
3B). While the small RNA fraction shows little if any con-
tamination by longer RNAs (Fig. 3A, bottom panel), the
long RNA fraction still includes noticeable amounts of
small RNAs (Fig. 3A, middle panel). When 10× long (15
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µg) and 1× short (1.4 µg) RNA were compared by western
blotting for GAPDH following 2C, the signal of shifted
GAPDH–RNA complexes from short RNA exceeds that
from long RNA, reflecting a strong enrichment of cross-
linkedGAPDH in the 2C short RNA fraction (Fig. 3C). As ex-
pected, cross-linked Pab1 is strongly enriched in the long
RNA fraction, supporting the specificity of the size separa-
tion process.
Based on the successful determination of the total RNA-

binding proteome by RIC2C and the excellent separation
between small and long RNAs using 2C, we felt encour-
aged to apply 2C for the determination of the first prote-
ome-wide data set of proteins that bind to small
noncoding RNAs by snRIC2C (Fig. 4A). In essence, UV-
cross-linked and non-cross-linked samples were subjected
to a first round of 2C and eluateswere treatedwithDNase I,
as in RIC2C. Each sample was then split into two equal ali-

quots for a second round of 2C. One aliquot followed the
RIC2C protocol and underwent a second round of 2C for
elution of total RNA; the second aliquot was used for differ-
ential 2C to isolate the small RNA fraction. Cross-linked
proteins copurified with the 2C total and small RNA frac-
tions from the second round were then furnished with tan-
dem mass tags (TMT) and analyzed by mass spectrometry.
The raw TMT signals showed high reproducibility between
experimental repeats and a clear enrichment of the total
and small RNA-cross-linked samples over their respective
non-cross-link controls (Supplemental Fig. 4A,B).

Around 1000 RBPs were identified in the total RNA sam-
ples with an overlap of over 75% with the original RIC2C

experiment (Supplemental Fig. 4C), reflecting the repro-
ducibility of the method. snRIC2C identified 311 proteins
that bind to purified small RNAs (Fig. 4B,C; Supplemental
Table 3), including 52 RBPs that were not previously
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annotated as such in yeast (Fig. 4C). Subsequent GO-term
analysis of these proteins showed a strong enrichment for
terms related to tRNA metabolism (Fig. 4D), as expected,
supporting the validity of snRIC2C.
While the differential 2C elution yields quite pure small

RNA fractions without noticeable long RNA contamina-
tion, the converse does not apply to the long RNA fraction
(Fig. 3A). Therefore, we only considered the cross-linked
proteomes associated with total and small RNA for com-
parative analyses (Fig. 4E). Together with the 311 highly

enriched proteins in the short RNA fraction, we found
235 additional proteins that fell slightly below the statisti-
cal threshold for significance in snRIC2C (log2FC≥ 1 and
P-value≤ 0.05) but were strongly enriched in RIC2C. We
suggest that these RBPs likely bind long and small RNAs
(“wide range RBPs”). Finally, 540 RBPs were detected by
RIC2C but undetected in snRIC2C samples and, therefore,
are considered as preferential long RNA binders (Fig. 4E).
To validate these data, we used different TAP-tagged

strains and examined UV-cross-linked and non-cross-

A

C D

E F

B

FIGURE 4. snRIC2C identified 311 short RNA binding proteins in yeasts. (A) Schematic representation of snRIC2C workflow. (B) Volcano plot dis-
playing log2 fold change of protein abundance versus −log10 P-value for total (left panel) and short (right panel) 2C-RNA, respectively. Orange
dots represent statistically significantly enriched proteins in CL versus NoCL samples. Glycolytic enzymes statistically enriched in the CL RNA frac-
tions are highlighted. (C ) Comparison of RBPs detected in the short RNA fraction versus the 2C total RNA fraction or any other yeast RIC exper-
iment. (D) Top 10 significantly enrichedGOmolecular functions terms of short RNA binding proteins identified by snRIC2C compared to RIC2C. (E)
Venn diagram classifying the RBPs identified in the snRIC2C experiment. Proteins statistically enriched (logFC higher than 1 and P-value lower than
0.05) in the total RNA fraction and not enriched in the short RNA one, were considered long RNA binders. Proteins statistically enriched in the
short RNA fraction were considered short RNA binders. Proteins statistically enriched in the total RNA fraction and candidate hits in the short RNA
fraction (logFC between 0.5 and 1 and P-value lower than 0.05) were considered wide range RNA binders (light blue circle). (F ) Validation of the
classification of RBPs based on the length of RNA target molecules by 2C-western blot. TAP-tagged and an untagged WT strain were UV cross-
linked, and 1 mg of lysate was subjected to a 2C extraction for total RNA. TAP-tagged strains were probed with a PAP antibody for Protein A
detection. The untagged WT strain was probed with a GAPDH antibody. Pub1-TAP was tested as a wide range RBP. Ssd1-TAP, Pfk2-TAP,
Cbf5-TAP, and Gar1-TAP were tested as long RNA binders. GAPDH, in the untaggedWT strain, Cdc60-TAP, Grs1-TAP, and Gus1-TAP were test-
ed as short RNA binders.
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linked samples of these by western blot following 2C. In
addition to GAPDH (Tdh3), three tRNA synthetases identi-
fied as small RNA binders were examined: Cdc60, Grs1,
and Gus1. As observed before with GAPDH, all four
RBPs show a sharp, RNase-sensitive additional band mi-
grating <50 kDa more slowly than the native proteins be-
fore RNase treatment (Fig. 4F). In contrast, the “wide
range binder” Pub1 and the long RNA binders Ssd1,
Pfk2, Cbf5, and Gar1 all show different patterns with
RNase-sensitive smears and/or additional bands migrating
>100 kDa more slowly or being retained in the wells of the
gel. These results support the assignment of small noncod-
ing RNAbinders by snRIC2C, and confirm that the shifts ob-
served in 2C immunoblots correlate well with the lengths
and homo-/heterogeneity of the bound RNAs.

Analysis of small noncoding RBPs reveals enrichment
of glycolytic and TCA cycle enzymes

Classification of the snRBPs shows that 41% of the 311 RBPs
are enzymes, including 45 metabolic enzymes (Fig. 5A).
Among the metabolic enzymes, processes related to
tRNA metabolism and carbohydrate derivative metabolic
processes are strongly enriched (Fig. 5B). Interestingly, 10
glycolytic enzymes (Hxk2, Fba1, Tdh1-3, Tpi1, Pgk1,
Gpm1, and Eno1-2) and five enzymes of the TCA cycle
(Aco1, Idh1, Mdh1, Lsc1, and Lpd1) were identified as
snRBPs (Figs. 4B, 5C), and aminoacyl-tRNA biosynthesis
and carbon metabolism are the two significantly enriched
pathways among the snRIC2C hits (Fig. 5D). To confirm
this striking enrichment, we tested several further TAP-
tagged strains in 2C-western blot experiments, using an un-
tagged WT strain as a negative control (Supplemental Fig.
5). These experiments confirm that the glycolytic enzymes
Tdh3, Fba1, Pgk1, Hxk2, Gpm1, Tpi1, and Eno1 all show
the defined, RNase-sensitive additional band less than 50
KDa larger than the expected size of the respective proteins
(Fig. 5E). We conclude that several yeast glycolytic enzymes
bind small noncoding RNAs in addition to their well-known
roles in central carbon metabolism.

Small noncoding RNA binding of GAPDH is carbon
source–dependent and regulated by Maf1

We wondered whether the binding of glycolytic enzymes
to small noncoding RNAs is constitutive or subject to bio-
logical regulation. A growing body of evidence links nutri-
ent availability with the regulation of RNA polymerase III
activity by its universal repressor Maf1 (Morawiec et al.
2013; Graczyk et al. 2018; Willis 2018). Under favorable
growth conditions like fermentation, Maf1 is repressed, al-
lowing high Pol III activity and tRNA transcription.
Conversely, growth under respiratory conditions results in
Maf1 activation, which represses Pol III activity and tRNA
synthesis (Ciesĺa et al. 2007; Morawiec et al. 2013;

Graczyk et al. 2018; Willis 2018). Therefore, we tested
whether the tRNA binding activity of GAPDH responds to
changes of the carbon source in the growthmedia and is af-
fected byMaf1.WhenWTandMaf1KOcellswere grown in
glucose, a fermentative carbon source, or glycerol and eth-
anol, which can only be respired, we observed tRNA en-
gagement of GAPDH only under fermentative conditions
(Fig. 6). Under these conditions, RNA binding is unaffected
by Maf1 deletion. However, deletion of Maf1 strongly in-
duces the binding of GAPDH to tRNA under respiratory
conditions, in contrast to mitochondrial ATP1, another en-
zyme of energymetabolism that we identified as an RBP by
RIC2C (Supplemental Table 1) and that we used as a speci-
ficity control. These results uncover a connection between
tRNA binding of glycolytic enzymes, the activity of the gly-
colytic pathway that is influenced by the prevalent carbon
source and Pol III activity.

DISCUSSION

We previously showed that commercially available silica
columns for the purification for total cellular RNA can
also be used to select for RBPs that are covalently cross-
linked to these RNAs, offering a simple method (called
complex capture [2C]) to test the RNA-binding activity of
proteins by simple immunoblotting of 2C eluates
(Asencio et al. 2018). Realizing that the 2C principle can
also be used to determine the total RNA-binding prote-
omes of cells if eluates are analyzed by sensitive mass
spectrometry, we applied this method to the yeast
Saccharomyces cerevisiae. Our unexpected biological ob-
servations drove further methodological advances, and
this work hence reports both the development of enabling
methods and new biological insights on the interaction of
glycolytic enzymes with small noncoding RNAs in yeast.

Methodological advances

RIC2C

Based on our earlier work, 2C could be readily applied to
the determination of the proteome that binds to any class
of cellular RNAs. For yeast, we found a total number of 983
RBPs, which is in keeping with other reports both in terms
of the number and the identity of the RBPs. This result both
validates RIC2C methodologically and suggests that at
least under standard growth conditions the number of
yeast RBPs appears to approximate saturation, since we
identified only a modest number of 174 RBPs that were
not detected previously. RIC2C provides advantages com-
pared to alternative methods. It does not require in vivo la-
beling of RNAwith nucleotide analogs, like CARIC (Huang
et al. 2018). RIC2C is simple, easily scalable and does not
require the challenging isolation of RBPs from the inter-
phase between two solvents, as in OOPS, XRNAX, and
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PTex (Queiroz et al. 2019; Trendel et al. 2019; Urdaneta
et al. 2019). Moreover, organic phase separation methods
like OOPS can underrepresent RBPs bound to small RNAs
(Queiroz et al. 2019). RIC2C conceptually corresponds to
the recently published TRAPP protocol (Shchepachev

et al. 2019), where silica powder is used as the starting ma-
terial for the enrichment of total RNA-binding proteins.
RIC2C does not require extensive washing and preparation
steps for the purification columns prior to the application
of samples, because it uses columns and buffers contained

DA

B

C

E

FIGURE 5. Glycolytic pathway is enriched in short RNA binding proteins. (A) Analysis of proteins found in snRIC2C experiment. (B) Go-term mo-
lecular function and Interpro domain analysis of the proteins enriched in the CL short fraction in snRIC2C experiment. (C ) Schematic representation
of glycolysis and TCA cycle pathways. Proteins highlighted in green were identified as long or wide range RBPs, and proteins highlighted in red
were found to bind short RNAs in snRIC2C. (D) Analysis of KEGG enriched pathways after snRIC2C. Aminoacyl-tRNA biosynthesis and carbon me-
tabolism pathways were found to be statistically enriched from the proteins detected in the short RNA fraction in snRIC2C experiment. (E)
Validation of glycolytic and TCA enzymes as short RBPs by 2C-WB. TAP-tagged strains and an untagged WT strain were UV-cross-linked and
1 mg of lysate was used in a round of total 2C-RNA extraction. Blots were probed against PAP antibody. The untagged WT strain was tested
as a negative control for the western blot. Pab1-TAP and Pfk2-TAP were used as controls as wide range and long RNA binders, respectively.
Tdh3-TAP, Fba1-TAP, Pgk1-TAP, Hxk2-TAP, Gpm1-TAP, Tpi1-TAP, and Eno1-TAP were tested as short RNA binders.
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in commercially available RNA extraction kits. Therefore, it
is a simple and straightforwardmethod that can be applied
to a wide range of biological materials, both eukaryotic
and prokaryotic in origin. Because different column sizes
are commercially available, it is simple to scale RIC2C to
the experimental needs.

CLIP2C

UV-cross-linking followed by immunoprecipitation and li-
brary preparation from the coprecipitated RNAs is com-
monly used to determine the RNAs bound to an RBP of
interest (Darnell 2010; Van Nostrand et al. 2016; Lee and
Ule 2018; Ule et al. 2018). While CLIP protocols typically
perform well when studying canonical, high affinity RBPs
such as for example, RNA processing factors, they can
fall short with noncanonical, lower affinity RBPs, where of-
ten only a minor fraction of the protein is RNA-bound
which can give rise to a high nonspecific background.
CLIP2C offers a simple enrichment step for the RNA-bound
fraction of an RBP of interest (Fig. 2A; Supplemental Fig.
S2) before immunoprecipitation. The resulting RNA-load-
ed RBP subsequently represents an ideal substrate for li-
brary generation and sequencing, because contaminant
proteins in the immunoprecipitation are reduced.
Nonetheless, 2C requires protein denaturing conditions,
which potentially compromises the subsequent immuno-
precipitation step if the antibody used recognizes a native-
ly folded epitope. Therefore, antigen-antibody pairs
should be pre-evaluated for their compatibility with dena-
tured/renatured proteins.We also show that proteins bear-
ing protein-A tags can be efficiently pulled-down from 2C
eluates, subsequently yielding excellent sequencing re-
sults. We used CLIP2C to demonstrate for the first time

that yeast GAPDH binds tRNAs in
vivo, supporting the evolutionary con-
servation of the GAPDH–tRNA inter-
action previously reported for human
GAPDH (Singh and Green 1993).

snRIC2C

Unlike other methods for the capture
of RNA-binding proteomes, the silica
matrix-based approach allows robust
and reproducible separation of small
(<200 nt) from longer RNAs. We
show here that based on this principle
snRIC2C can be used to determine the
collective of RBPs that binds to small
noncoding RNAs. As discussed be-
low, this collective displays interesting
distinctions from the total RNA-bound
proteome as a whole. To the best of
our knowledge, snRIC2C represents

the first method for the systematic isolation of RBPs based
on the lengths of their target RNAs. snRIC2Cmay also be of
particular interest for the field of bacterial small RNA me-
tabolism, as small noncoding RNAs are highly recognized
for their critical regulatory roles in bacteria (Jørgensen
et al. 2020; Quendera et al. 2020; Ponath et al. 2022),
but methods to identify and study their associated RBPs
are still needed.

New biological data sets and insights

Identification of the snRBPs from yeast

Using snRIC2C, we identified ∼300 yeast proteins that are
highly enriched for binding to small noncoding RNAs,
snRBPs (Fig. 5). Since small noncoding RNAs exert numer-
ous regulatory functions, it is important to reveal the
snRBPs with which they preferentially interact.
Unsurprisingly, the snRBPs include many proteins known
for their roles in tRNA metabolism and function. But it is
quite unexpected to find somany glycolytic and TCA cycle
enzymes among the snRBPs (Figs. 4B, 5C). Earlier work
connected yeast glycolytic enzymes with tRNAs. For in-
stance, enolase has been found to bind tRNAs in vivo
(Shchepachev et al. 2019) and has been proposed to par-
ticipate in the import of tRNA to mitochondria in yeast
(Entelis et al. 2006). Interestingly, while enolase was origi-
nally considered to directly contribute to the import of
tRNA into mitochondria, later publications favor the view
that enolase accompanies other proteins participating in
this process (Baleva et al. 2017). Our results broadly impli-
cate glycolytic enzymes and TCA cycle enzymes in the
binding of small noncoding RNAs. At least for GAPDH,
these largely appear to be tRNAs (Fig. 2B,C). These

FIGURE 6. Engagement of GAPDH to tRNAs is carbon source–dependent and regulated by
the RNApolymerase III universal repressorMaf1.WT and ΔMaf1 strains were grown in glucose,
glycerol and ethanol and UV-cross-linked. Total 2C RNA extractions were performed from two
different biological replicates and 20 µg of RNAs were tested on 2C-western blots against
GAPDH and ATP1 antibodies. GAPDH∗ represents residual GAPDH signal after stripping
and reprobing the membrane.
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observations raise the question of what the function(s) of
these RNA–protein interactions may be. As exemplified
above and by other examples, the enzymes may moon-
light in critical aspects of small noncoding RNA biology.
Alternatively, the RNAs may riboregulate the enzymes
that they bind to. Riboregulation has recently been shown
for human enolase 1 (Huppertz et al. 2022), the human
small noncoding vtRNA1-1 has been identified to regulate
mammalian autophagy by binding to the receptor protein
p62 (Horos et al. 2019), and RNA has been found to pro-
mote phase separation of glycolytic enzymes into G bod-
ies under hypoxic conditions (Fuller et al. 2020)
With ∼300 yeast snRBPs having been identified and the

application of snRIC2C to other organisms, we expect fur-
ther insights into the biological functions of small noncod-
ing RNAs.

A carbon source–dependent interaction between
glycolysis and RNA polymerase III activity

Cells dedicate profound resources to protein production,
not only involving translation itself, but also including the
transcription, maturation and amino-acylation of tRNAs.
Therefore, cells must monitor nutrient availability and
modulate protein and tRNA synthesis accordingly. The ac-
tivity of the tRNA-synthesizing Pol III is inhibited under nu-
trient limiting conditions by the repressor protein Maf1
(Upadhya et al. 2002). Here, we show that the binding of
tRNAs to GAPDH is affected by Maf1 activity: increased
tRNA levels in the Maf1 KO strain grown under respiratory
conditions (Ciesĺa et al. 2007) are accompanied by in-

creased tRNA–GAPDH engagement. Interestingly, earlier
work identified regulatory interactions between carbon
metabolism enzymes and Pol III activity (Ciesĺa et al.
2007; Morawiec et al. 2013; Szatkowska et al. 2019), but
fell short of noticing the direct and carbon source–depen-
dent interaction of glycolytic enzymes with Pol III tran-
scripts. Our findings suggest a connection between
nutrient availability, energy metabolism and Pol III activity,
and more research will serve to analyze the functional role
of these interactions in detail.

MATERIALS AND METHODS

S. cerevisiae strains and manipulations

Standard methods were used for yeast culture and manipulation
(Amberg et al. 2005). Yeast strains, genotype and origin are sum-
marized in Table 1.

Yeast culture, cross-linking, lysate preparation,
2C method, and 2C-western blot

Yeast culture, UV cross-linking, cell lysis, 2Cmethod and 2C-west-
ern blot experiments were done as previously described (Asencio
et al. 2018). The following antibodies were used in western blot
experiments: Anti-Pab1 1:4000 (Abcam, #ab189635), Anti-
GAPDH 1:4000, a polyclonal antibody that detects all three Tdh
(Tdh1, Tdh2, and Tdh3) yeast GAPDH isoforms (Sigma-Aldrich
#G9545 [33]), Anti-histone H3 HRP 1:1000 (Abcam, #ab21054),
Anti-Hexokinase 1:10000 (Bio-Rad, #4959-9988), Anti-Tpi
1:4000 (Proteintech, #10713-1-AP), Anti-tubulin 1:4000 (Abcam,

TABLE 1. Saccharomyces cerevisiae strains used in this study

Strain Genotype Source

WT BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Horizon Discovery Ltd.
ΔMaf1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 maf1Δ Horizon Discovery Ltd.

Cbf5-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 CBF5-TAP::His3Mx6 Horizon Discovery Ltd.

Cdc60-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 CDC60-TAP::His3Mx6 Horizon Discovery Ltd.
Eno1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ENO1-TAP::His3Mx6 Horizon Discovery Ltd.

Fba1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 FBA1-TAP::His3Mx6 Horizon Discovery Ltd.

Gar1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GAR1-TAP::His3Mx6 Horizon Discovery Ltd.
Gpm1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GPM1-TAP::His3Mx6 Horizon Discovery Ltd.

Grs1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GRS1-TAP::His3Mx6 Horizon Discovery Ltd.

Gus1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GUS1-TAP::His3Mx6 Horizon Discovery Ltd.
Hxk2-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 HXK2-TAP::His3Mx6 Horizon Discovery Ltd.

Pab1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PAB1-TAP::His3Mx6 Horizon Discovery Ltd.

Pfk2-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PFK2-TAP::His3Mx6 Horizon Discovery Ltd.
Pgk1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PGK1-TAP::His3Mx6 Horizon Discovery Ltd.

Pub1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PUB1-TAP::His3Mx6 Horizon Discovery Ltd.

Ssd1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SSD1-TAP::His3Mx6 Horizon Discovery Ltd.
Tdh3 Protein A MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TDH3-ProtA::His3Mx6 (Asencio et al. 2018)

Tdh3-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TDH3-TAP::His3Mx6 Horizon Discovery Ltd.

Tpi1-TAP MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TPI1-TAP::His3Mx6 Horizon Discovery Ltd.
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#ab6160), and Anti-PFK antibody 1:4000 (Heinisch 1986).
Peroxidase anti-peroxidase (PAP) antibody 1:10,000 was used
to detect all TAP and Protein A tagged proteins (Sigma-Aldrich
# P1291); Anti-ATP5b 1:1000 (Proteintech, #17247-1-AP) was
used to detect the yeast ortholog protein ATP1.

Up- and downscaling the 2C method

In our original description of the 2C method, we used Zymo-Spin
V-E (#C1024; Zymo Research) columns which are included in
Zymo Research RNA Extraction Midi Kits or can be purchased
separately. However, the 2C method can be up- or downscaled
depending on the required amount of 2C RNA and/or the avail-
able input material. We have successfully tested Zymo Research
micro (Zymo-Spin IC, #C1004), mini (Zymo-Spin IIICG, #C1006),
and maxi (Zymo-Spin VI, #C1013) columns. Alternatively, several
columns can be used in parallel to process different aliquots of the
same lysate simultaneously.

2C total RNA interactome capture (RIC2C)

WT yeast cells were grown, UV-cross-linked and lysed as de-
scribed above. Nonirradiated cells were cultured and processed
in parallel throughout the experiment as negative controls.
Three biological replicates were included in the experiment. A
first round of 2C extraction was performed from 1 mg of protein
lysate with Zymo-Spin V-E columns, and 2C-RNA was later eluted
with 300 µL of nuclease-free water. Although in our hands, the
DNA contamination after a 2C extraction from a yeast lysate is be-
low 2%, we nevertheless treated the eluates with 20 U of DNase I
(AM2224, Ambion) at 37°C for 30 min to minimize the chances of
detectingDNAbinding proteins aftermass spectrometry analysis.
A second round of 2Cwas performed to eliminate the DNase I en-
zyme and any contaminant DNA binding protein. For this, four
volumes of RNA lysis buffer were added to the DNase I–treated
samples. Samples were mixed, five volumes of ethanol were add-
ed, and after mixing, the samples were added to a second Zymo-
Spin V-E column. Second round 2C-RNA was eluted with 300 µL
of nuclease-free water. An amount of 100 µg of 2C RNA eluates
were RNase I–treated and processed for TMT labeling. Briefly,
cysteines were reduced with dithiothreitol at 56°C for 30 min
(10 mM in 50 mM HEPES, pH 8.5) and further alkylated with 2-
chloroacetamide at room temperature in the dark for another
30 min (20 mM in 50 mM HEPES, pH 8.5). Samples were pro-
cessed using the SP3 protocol (Hughes et al. 2014) and on-
bead digested with trypsin (sequencing grade, Promega), which
was added in an enzyme to protein ratio 1:50 for overnight diges-
tion at 37°C. Peptides were modified with TMTsixplex (Dayon
et al. 2008) Isobaric Label Reagent (Thermo Fisher) following
manufacturer’s instructions. For sample clean up, an OASIS HLB
µElution Plate (Waters) was used. Offline high pH reverse phase
fractionation was performed on an Agilent 1200 Infinity high-per-
formance liquid chromatography system, equippedwith aGemini
C18 column (3 µm, 110 Å, 100×1.0 mm, Phenomenex), resulting
in five fractions.

Formass spectrometry data acquisition, an UltiMate 3000 RSLC
nano LC system (Dionex) fitted with a trapping cartridge (µ-
Precolumn C18 PepMap 100, 5 µm, 300 µm i.d. × 5 mm, 100 Å)
and an analytical column (nanoEase M/Z HSS T3 column 75 µm

×250 mm C18, 1.8 µm, 100 Å, Waters) was used. Trapping was
carried out with a constant flow of trapping solution (0.05% tri-
fluoroacetic acid in water) at 30 µL/min onto the trapping column
for 6 min. Subsequently, peptides were eluted via the analytical
column running solvent A (0.1% formic acid in water) with a cons-
tant flow of 0.3 µL/min, with an increasing percentage of solvent B
(0.1% formic acid in acetonitrile) from 2% to 4% in 4 min, then 4%
to 8% in 2 min, from 8% to 28% for a further 66 min, in another 10
min from 28% to 40%, followed by an increase of B from 40%–

80% for 3 min and a reequilibration back to 2% B for 5 min. The
outlet of the analytical column was coupled directly to a
QExactive plus Mass Spectrometer (Thermo) using the
Nanospray Flex ion source in positive ion mode.

Mass spectrometry analysis for RIC2C and snRIC2C

experiments

IsobarQuant (Frankenetal. 2015) andMascot (v2.2.07)werechosen
for data processing. AUniprotSaccharomyces cerevisiaeproteome
database (UP000002311) containing common contaminants and
reversed sequences was used. The search parameters were the fol-
lowing: carbamidomethyl (C) and TMT10 (K) (fixed modification),
acetyl (N-term), oxidation (M), and TMT10 (N-term) (variable modi-
fications). A mass error tolerance of 10 ppmwas set for the full scan
(MS1) and forMS/MS (MS2) spectra of 0.02KDa. Trypsinwas select-
ed as protease with an allowance of a maximum of two missed
cleavages. A minimum peptide length of seven amino acids and
at least two unique peptides were required for individual protein
identification. The false discovery rate on peptide and protein level
was set to 0.01.

CLIP2C

Pab1-TAP, Tdh3-Protein A and a WT untagged strain were grown
in YPD, UV cross-linked and lysed as described above. A first
round of 2C was performed from 1 mg of protein lysate, and
100 µg of the obtained 2C-RNA were DNase I–treated for 30
min at 37°C. After DNase I treatment, RNA samples were diluted
with RNA fragmentation buffer to a final concentration of 20 mM
Tris-HCl pH 7.5, 1% SDS and 30mMMgCl2. RNAwas fragmented
by incubating the samples for 15 min at 95°C. Fragmentation was
stopped by adding EDTA to a final concentration of 30 mM,
quickly cooling down the samples on ice and later kept at room
temperature. Samples were brought to 2 mL with buffer B (25
mM Tris-HCl 7.5 mM; 140 mM NaCl, 1.8 mM MgCl2; 0.5 mM
DTT and 0.1% NP-40), and 50 and 100 µL were saved for IP vali-
dation and input sequencing, respectively. To the remaining vol-
ume, 100 µL of prewashed Dynabeads Pan mouse IgG (#11041,
Thermo) were added per sample and were incubated at 4°C for
2 h with gentle rotation. Samples were washed once with buffer
B, three times with wash buffer (25 mM Tris-HCl 7.5 mM; 1 M
NaCl, 1.8 mM MgCl2; 0.5 mM DTT and 0.1% NP-40), and one
time with buffer B. After the washing steps the beads were mag-
netically pelleted, the supernatant was discarded, and the beads
were resuspended in 20mM Tris-HCl pH 7.5. While on the beads,
samples were end-repaired by the T4 PNK enzyme (#M0201L,
NEB) following manufacturer instructions. After end-repairing,
beads were resuspended in 50 µL of proteinase buffer plus 5 µL
of proteinase K (#3115828001, Roche), and the samples were
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incubated for 1 h at 37°C with gentle rotation. The RNA from the
IPs was purified by adding to the beads 200 µL of RNA lysis buffer.
Beads were magnetically pelleted and the supernatants were
transferred to new tubes. A total of 250 µL of ethanol and 25 µL
of Magbeads (#D4100, Zymo Research) were added per sample.
Samples were mixed and incubated for 15 min at room tempera-
ture with gentle rotation. Beads were magnetically pelleted and
washed sequentially with MagBead DNA/RNA Wash1 buffer
(#R2130-1, Zymo Research) and MagBead DNA/RNA Wash 2
buffer (#R2130-2, Zymo Research). After magnetically pelleted,
beads were resuspended in 30 µL of H2O. Samples were incubat-
ed at 37°C for 15 min, and after magnetically pelleting the beads,
the eluted RNA was finally transferred to a new tube.

The saved 100 µL of fragmented 2C-RNA for the inputs were
processed in parallel during the 2 h incubation period of the im-
munoprecipitation. Samples were processed for a second 2C ex-
traction using a Zymo-Spin IC micro column (#C1004, Zymo
Research) and 3 µg of the resulting RNA was end-repaired, in a fi-
nal volume of 50 µL, by the T4 PNK enzyme (#M0201L, NEB) fol-
lowing manufacturer instructions. To eliminate the T4 PNK
enzyme and buffers, the RNA was later purified by adding 200
µL of RNA lysis buffer, after mixing and addition of 250 µL of eth-
anol, 25 µL of Magbeads were added to each sample. Samples
were incubated for 15 min at room temperature and gently rotat-
ed. Samples were washed with MagBead DNA/RNA wash buffer
1 and 2 as previously described, and RNA was finally eluted in 30
µL of H2O. After RNA purification, 1 µg of input RNAwas subject-
ed to rRNA depletion with the Ribo-Zero Gold Yeast Kit
(MRZY1324, Illumina) following manufacturer instructions.

RNApurified from the IPs and ribodepleted RNA from the input
samples were processed for library preparation with the Nextflex
Small RNA Kit v3 (#NOVA-5132-06, PerkinElmer), following man-
ufacturer instructions. Libraries from three biological replicates of
inputs and IPs were pooled together and sequenced on a
NextSeq500 (Illumina) instrument on an 80 paired-end run.

Sequencing informatics analysis

Reads were trimmed with Cutadapt (v2.3) and sequencing quality
was inspected with FastQC. Novoalign (v3.07.01) was used to
map to the yeast genome (sac3). Gene counts were summarized
with featureCounts (v1.6.4). DESeq2 (Love et al. 2014) with IHW
(Ignatiadis et al. 2016) for multiple hypothesis correction was
used to determine significantly enriched RNAs in IP samples vs
corresponding input controls (adjusted P-value <0.5; log2 fold-
change>1). Transcriptome coverage plots were generated with
bamCompare, computeMatrix and plotProfile functions from
DeepTools (Ramírez et al. 2014). CSAW (Lun and Smyth 2016)
was used to detect significantly enriched regions in the IP samples
compared to the input controls.

Fractionation of 2C-RNA in long and short RNA
molecules

Four volumes of RNA lysis buffer were added to 100 µg of 2C total
RNA extracted following the standard 2C method. After mixing,
ethanol was added to a final concentration of 33% (vol/vol).
Samples we mixed by gentle vortexing and later added to a
Zymo-spin IIICG (#C1006, Zymo Research) column. However,

and as described before, the procedure can be up- or down-
scaled at will. Under these conditions, the column only retains
RNA molecules longer than 200 nt. The flowthrough, containing
the short RNA fraction, was transferred to a new tube. Ethanol
to a final concentration of 65% (vol/vol) was added; samples
were mixed and added to a second silica column (mini or micro
column), which will now retain the short RNAs. Both sets of col-
umns, containing separately the long and short RNA fractions
were loaded with 400 µL of RNA Prewash buffer and spun at
10,000g for 30 sec. The flowthrough was discarded and the col-
umns were washed with 700 µL of RNA wash buffer. Columns
were centrifuged at 10,000g for 30 sec, the flowthrough discard-
ed and loaded again with 400 µL of RNA wash buffer. Columns
were centrifuged at 10,000g for 2 min to eliminate any residual
ethanol. After the centrifugation, the columns were transferred
to new collection tubes and RNA was finally eluted in 50 µL of
H20 by centrifugation at 16,000g for 1 min. To evaluate the per-
formance of the 2C-RNA fractionation, 1 µL of each sample was
assessed with Bioanalyzer RNA nanochips (#5067-1511; Agilent)
(Schroeder et al. 2006). In addition, to accurately analyze the
2C-short RNA fraction, 1 µL of the short RNA fraction was also
run on a Bioanalyzer Small RNA chip (#5067-1548; Agilent).

2C small noncoding RNA interactome capture
(snRIC2C)

An untagged WT strain was grown in YPD, UV cross-linked and
lysed as previously described. Corresponding nonirradiated cells
were processed in parallel as negative controls. A first round of 2C
total RNA extractions was performed as previously described, and
two vials containing 550 µg of 2C RNA per sample were DNase I–
treated at 37°C for 30 min in a final volume of 1 mL. One set of
DNase I–treated RNAwas used to purify a second round of 2C to-
tal RNA, while the second set was used to purify a fraction of 2C
short RNA. For the purification of the second round of 2C total
RNA, 4 mL of RNA lysis buffer were added to the DNase I–treated
RNA, the samples were gently mixed by vortexing, and 5 mL of
ethanol to a final concentration of 50% were added. The samples
were mixed again and added to a Zymo-Spin VI maxi column
(#C1013, Zymo Research) inserted on a 50mL polypropylene cen-
trifuge tube. Samples were centrifuged at 3000g for 5min and the
supernatant was discarded. An amount of 4 mL of RNA prewash
buffer was added and the column was centrifuged again at
3000g for 5 min. Later, the column was washed twice by centrifu-
gation with 5 mL of RNA wash buffer and finally eluted with 2 mL
of H2O.
For the purification of the second round of 2C short RNA, 2 mL

of a 1:1 mixture of RNA lysis buffer and ethanol were added per
DNase I–treated sample. The samples were mixed and loaded
on a Zymo-spin VI maxi column sitting on a 50 mL Falcon tube.
Samples were centrifuged at 3000g for 5min, and 3mL of ethanol
were added to the flowthrough, which contained the short RNA
fraction. Samples were mixed and loaded on a Zymo-spin IIICG
mini column and centrifuged at 10,000g for 30 sec. The flow-
through was discarded and 400 µL of RNA prewash buffer were
added to the column and the samples were centrifuged at
10,000g for 30 sec. Samples were washed two times sequentially
by centrifugation with 700 and 400 µL of wash buffer, respective-
ly. Finally, 100 µL of H20 were added to the column and the 2C
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short RNA fraction was eluted by centrifugation at 16,000g for 1
min.

After the second round of 2C, total and short RNA fractions
were quantified in Nanodrop 1000 (Thermo Fisher Scientific)
and 35 µg of each fraction were RNase I (#AM2295; Ambion) di-
gested in 10 mM Tris-HCl pH 7.5 and 100 mM NaCl for 30 min
at 37°C. The resulting RNase I–treated samples were processed
for TMTsixplex labeling as described above for the RIC2C exper-
iment with the exception that six fractions per sample were ob-
tained after TMTsixplex labeling. Mass spectrometry data
acquisition was done similarly to the RIC2C experiment described
above with the exception of the gradient used. In snRIC2C, pep-
tides were eluted via the analytical column running solvent A
(0.1% formic acid in water, 3% DMSO) with a constant flow of
0.3 µL/min, with an increasing percentage of solvent B (0.1% for-
mic acid in acetonitrile, 3% DMSO) from 2% to 8% in 6 min, then
8% to 28% for a further 42min, in another 5 min from 28% to 40%,
followed by an increase of B from 40%–80% for 4 min and a
reequilibration back to 2% B for 4 min. The outlet of the analytical
column was coupled directly to an Orbitrap Fusion Lumos Tribrid
Mass Spectrometer (Thermo) using theNanospray Flex ion source
in positive ion mode.

Carbon source–dependent tRNA engagement
of GAPDH

Precultures of WT and Maf1Δ cells were grown overnight in YPD
(2% glucose), YPG (3% glycerol), or YPE (3% ethanol) media.
The next day, aliquots were used to start 250 mL cultures at an
O.D.600=0.1 and grown until mid-log phase (O.D.600≈0.8).
Cells were collected and UV-cross-linked, as described before,
with 3 J/cm2 of UV light at 254 nm. After lysis, a 2C total RNA ex-
traction was performed from 1mg of protein lysate and the result-
ing 2C RNA was quantified in nanodrop. An amount of 20 µg of
2C RNA from two biological replicates was run on an SDS-
PAGE, blotted to a nitrocellulose membrane and probed with an-
tibodies against GAPDH and human ATP5b, which detects the
yeast ortholog ATP1p.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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cuses on developing new methods and technologies enabling
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What are the major results described in your paper and
how do they impact this branch of the field?

Previous work at Dr. Hentze’s laboratory resulted in the develop-
ment of the 2C method, which facilitates the enrichment and
detection of UV-crosslinked RNA–protein complexes. In that
publication, we proposed that 2C could be the base for the im-
plementation of different methods impacting the identification
and characterization of RNA–protein interactions. Following
those ideas, we describe in this paper the development of meth-
ods derived from 2C, which greatly facilitate the study of RNA–
protein complexes. This includes RIC2C for the identification of
the total RNA-binding proteome and CLIP2C, for the identifica-
tion of the target RNA molecules bound by a specific RBP.
Particularly relevant was the development of snRIC2C, enabling
for the first time, the identification of proteins binding specifically

to small noncoding RNAs. In addition, the development of these
methods resulted in interesting biological observations, like the
detection of multiple glycolytic enzymes moonlighting as
snRNA-binding proteins. Overall, the unique combination of
methodological advances coupled with relevant biological in-
sight, makes this paper of interest for the broad RNA research
community.

What led you to study RNA or this aspect of RNA science?

I worked on proteins related to energymetabolism duringmy PhD.
This not only included understanding their direct role in energy
metabolism, but also additional functions, like their effect on cel-
lular homeostasis and ageing. Therefore, I found fascinating the
research work conducted at Dr. Hentze’s laboratory, pioneering
the study of the dual role of many of these metabolic enzymes,
moonlighting as RNA-binding proteins.

I feel privileged for contributing to the field with the development
of methods enabling and/or simplifying the identification and
characterization of these RBPs. I am particularly excited about
the development of snRIC2C, as the identification of proteins bind-
ing to snRNAwas usually not achieved by conventional RNA inter-
actome capture methods.

During the course of these experiments, were there any
surprising results or particular difficulties that altered your
thinking and subsequent focus?

Several glycolytic enzymes were previously identified as RBPs,
like human GAPDH, known to bind to tRNAs. However, it was
very surprising to identify additional multiple proteins along the
glycolytic pathway and mitochondrial TCA cycle to moonlight
specifically as snRNA-binding proteins. The biological relevance
of these interactions is far from being understood. But beautiful
examples, like the control of glycolysis and embryonic stem
cell differentiation by the riboregulation of Enolase 1 and
the regulation of autophagy by the snRNA Vault RNA1-1 sug-
gests that an exciting entire scientific field is waiting to be
explored.

What are some of the landmark moments that provoked your
interest in science or your development as a scientist?

I have always had a very curiousmind and I was always very excited
to learn new things. It could be about machines, space, physics or
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nature. It did not matter, but it was just a genuine interest in know-
ing how things work. However, I still remember a fantastic and in-
fluential Biology teacher at High School, who helped me realize
that my actual passion is biology and its universe of incredibly
small machines that make life possible.

If you were able to give one piece of advice to your younger
self, what would that be?

Think out of the box! The development of 2C and its derivedmeth-
ods came as an idea to significantly simplify current methods for

the isolation or enrichment of UV-crosslinked RNA-binding pro-
teins. That simple idea resulted in the development of several nov-
el methods and the discovery of multiple metabolic enzymes
moonlighting as snRBPs.
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