
Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl
Substances: A Multi-Cohort Study
Jesse A. Goodrich,1 Douglas I. Walker,2 Jingxuan He,1 Xiangping Lin,3 Brittney O. Baumert,1 Xin Hu,4 Tanya L. Alderete,5
Zhanghua Chen,1 Damaskini Valvi,3 Zoe C. Fuentes,3 Sarah Rock,1 Hongxu Wang,1 Kiros Berhane,6 Frank D. Gilliland,1
Michael I. Goran,7 Dean P. Jones,4 David V. Conti,1 and Leda Chatzi1
1Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
2Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
3Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
4Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
5Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
6Department of Biostatistics, Columbia University, New York, New York, USA
7Department of Pediatrics, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, California, USA

BACKGROUND: Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and has been associated with an increased risk of several cardio-
metabolic diseases. However, the metabolic pathways linking PFAS exposure and human disease are unclear.
OBJECTIVE: We examined associations of PFAS mixtures with alterations in metabolic pathways in independent cohorts of adolescents and young
adults.
METHODS: Three hundred twelve overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) and 137 young adults from
the Southern California Children’s Health Study (CHS) were included in the analysis. Plasma PFAS and the metabolome were determined using
liquid-chromatography/high-resolution mass spectrometry. A metabolome-wide association study was performed on log-transformed metabolites
using Bayesian regression with a g-prior specification and g-computation for modeling exposure mixtures to estimate the impact of exposure to a mix-
ture of six ubiquitous PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and PFDA). Pathway enrichment analysis was performed using Mummichog and
Gene Set Enrichment Analysis. Significance across cohorts was determined using weighted Z-tests.

RESULTS: In the SOLAR and CHS cohorts, PFAS exposure was associated with alterations in tyrosine metabolism (meta-analysis p=0:00002) and
de novo fatty acid biosynthesis (p=0:03), among others. For example, when increasing all PFAS in the mixture from low (∼ 30th percentile) to high
(∼ 70th percentile), thyroxine (T4), a thyroid hormone related to tyrosine metabolism, increased by 0.72 standard deviations (SDs; equivalent to a
standardized mean difference) in the SOLAR cohort (95% Bayesian credible interval (BCI): 0.00, 1.20) and 1.60 SD in the CHS cohort (95% BCI:
0.39, 2.80). Similarly, when going from low to high PFAS exposure, arachidonic acid increased by 0.81 SD in the SOLAR cohort (95% BCI: 0.37,
1.30) and 0.67 SD in the CHS cohort (95% BCI: 0.00, 1.50). In general, no individual PFAS appeared to drive the observed associations.
DISCUSSION: Exposure to PFAS is associated with alterations in amino acid metabolism and lipid metabolism in adolescents and young adults. https://
doi.org/10.1289/EHP11372

Introduction
Per- and polyfluoroalkyl substances (PFAS) make up a prevalent
class of persistent organic pollutants with endocrine and metabo-
lism disrupting properties.1,2 PFAS are used in a broad range of
industrial and consumer products, such as firefighting foams, non-
stick pans, waterproof clothing, food packaging, and even cos-
metic products, including lipstick.3,4 Because of their widespread
use and resistance to chemical degradation, PFAS can be found in
drinking water and food sources across the world. In the United
States, an estimated 200million people have drinking water with
perfluorooctane sulfonic acid (PFOS) or perfluorooctanoic acid
(PFOA) levels >1 ng=L,5 which is considerably higher than the
U.S. Environmental Protection Agency 2022 safe drinking
water health advisory levels of 4 × 10−6ng=L for PFOA and
2× 10−6ng=L for PFOS.6,7 Because of their chemical properties,
some PFAS also bioaccumulate in human tissues, with estimated

half-lives of up to 25 y.8 Consequently, several legacy PFAS,
including PFOS, PFOA, perfluorohexanesulfonic acid (PFHxS),
perfluoroheptanesulfonic acid (PFHpS), perfluorononanoic acid
(PFNA), and perfluorodecanoic acid (PFDA) are detectible in the
blood of nearly all humans.9,10 Therefore, it is of utmost impor-
tance to determine how exposure to PFAS impacts human health to
inform public health policy and reduce exposure levels for harmful
PFAS.

Accumulating evidence suggests that PFAS exposure is associ-
ated with an increased risk of metabolic disorders.11 PFAS expo-
sure during sensitive periods of development, such as childhood or
adolescence, is of particular concern because this is an important
developmental stage for cellular differentiation and development
of metabolic tissues.12–15 Longitudinal studies have found that
PFAS exposure during childhood is associated with the develop-
ment of dysregulated glucose metabolism and insulin resist-
ance,16,17 dyslipidemia,18 and adiposity.19,20 Similar associations
have been observed in adults, suggesting that these associations
persist into adulthood.21–23 However, the mechanisms linking
PFAS exposure andmetabolic disorders in humans remain unclear,
especially in children.

Studies examining the associations of PFAS with alterations in
targeted biomarkers have been used to examine the potential mech-
anisms linking PFASwithmetabolic disorders. These targeted bio-
marker studies have focused primarily on metabolites known to be
associated with a specificmetabolic disease, with a particular focus
on metabolites related to lipid metabolism. For example, cross-
sectional and longitudinal human studies have consistently shown
that PFAS exposure increases serum total and low-density lipopro-
tein cholesterol in both children and adults.11 Dyslipidemia is a
hallmark of metabolic syndrome and can increase the risk for
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metabolic and cardiovascular disease,24 suggesting that PFAS-
associated alterations in lipids may mediate the relationship
between PFAS exposure and risk of metabolic disorders.
However, using a targeted approach to study the impact of PFAS
exposure on alterations in metabolites does not provide informa-
tion about how PFAS alter metabolic networks, which is impor-
tant for understanding the mechanisms linking PFAS exposure
with metabolic disorders.

Untargeted metabolomics approaches can quantify thousands
of metabolites, which can provide insight on the metabolic per-
turbations of PFAS exposure. Although previous studies have
used metabolomics to examine the associations of PFAS expo-
sure and alterations in metabolic pathways, important gaps in the
literature remain.25 In vivo and in vitro models have shown
that exposure to individual PFAS alters fatty acid metabolism,
including in human cell lines,26 rodents,27–29 and zebrafish.30 In
humans, studies using both targeted and untargeted metabolomics
methods have reported similar associations between exposure to
individual PFAS, including PFOS, PFHxS, and PFOA, and fatty
acid metabolism.31–40 Other studies have reported associations
between PFAS exposure and metabolic pathways such as amino
acid31,34,37,40,41 or bile acid metabolism,39,42,43 both of which are
important pathways that can contribute to the pathogenesis of dis-
eases, such as type 2 diabetes and cancer.44–47 Together, these
human studies present a myriad of sometimes conflicting results.
Although differences in study populations and the use of targeted
vs. untargeted metabolomic methods may account for some of
the differences across studies, the majority of existing studies
have examined the metabolic perturbations of PFAS congeners
individually, using single exposure models. In reality, individuals
are exposed to a complex mixture of potentially correlated
PFAS compounds that may have synergistic effects on human
metabolism.48 Previous studies examining the impact of PFAS
mixtures on the metabolome have relied primarily on reducing
the dimensionality of the correlated PFAS exposures prior to
analysis using either principal components or by calculating the
sum of PFAS congeners.25 However, it is difficult to draw con-
clusions about the effects of different components of the PFAS
mixture from these studies owing to difficulties in interpreting
principal components or summed exposure variables. Despite the
analytical difficulties, examining the effects of PFAS mixtures on
metabolic pathways is key to fully understand the consequences
of exposure to these chemicals. Further, understanding how
PFAS mixtures impact human metabolism can help to put previ-
ous studies on individual PFAS congeners in greater context.

In the present study, we aimed to examine the impact of PFAS
mixtures onmetabolic pathways in independent cohorts of children
and young adults. By using two cohorts, we aimed to identify asso-
ciations between PFAS mixtures and metabolic pathways that
were consistent across cohorts despite varied background charac-
teristics. We used high-resolution mass spectrometry (HRMS)–
based untargetedmetabolomics coupledwith a Bayesian hierarchi-
cal regression with a g-prior specification and g-computation for
modeling exposure mixtures to estimate the joint effects of PFAS
mixtures onmetabolic pathways.

Methods

Study Populations
Study of Latino Adolescents at Risk. This study used data from
the Study of Latino Adolescents at Risk (SOLAR). As described
previously,16,49–51 the SOLAR cohort included 328 overweight/
obese children recruited in two waves between 2001 and 2012.
Participants completed yearly clinical visits at the General
Clinical Research Center of the Clinical Trials Unit at the

University of Southern California. At baseline, participants were
between 8 and 13 years of age and were overweight or obese based
on sex and age-specific body mass index (BMI) percentile >85%.
Participants were included in the study if they were Hispanic or
Latino based on all parents and grandparents self-reporting as
Hispanic or Latino and if they had a direct family history of type 2
diabetes. Participants were excluded from the study if they had
type 1 or type 2 diabetes or if they were on medications known to
influence glucose or insulin metabolism. For the present analysis,
participants were included if they completed a 2-h oral glucose tol-
erance test (OGTT) during their first or second visit, resulting in a
total sample size of 312 participants. The institutional review board
at the University of Southern California provided ethics approval
for this study, and participants and their guardians providedwritten
informed assent/consent prior to participation.

Southern California Children’s Health Study. To examine
the generalizability of findings from the SOLAR cohort to young
adults, we analyzed data from the Metabolic and Asthma
Incidence Research (Meta-AIR) study.52 Meta-AIR was a study
including 172 young adults between the ages of 17 and 23 years
of age who were part of the Southern California Children’s
Health Study (CHS).53 Meta-AIR participants were recruited for
a single clinical visit between 2014 and 2018. Clinical visits
occurred at the Clinical Trials Unit or the Diabetes and Obesity
Research institute at the University of Southern California, dur-
ing which participants performed a 2-h OGTT and completed
detailed questionnaires. CHS participants were selected for inclu-
sion in the Meta-AIR study if they had overweight or obesity
between 14 and 15 years of age. Overweight and obesity were
based on the U.S. Centers for Disease Control and the U.S.
Preventive Services Task Force guidelines, defined as having a
sex- and age-specific BMI percentile >85%.54 Participants were
excluded if they had a diagnosis of diabetes mellitus or if they
took any medications that could influence glucose metabolism or
insulin secretion. Meta-AIR participants were included in the
present study if they provided consent for future use of biospeci-
mens, resulting in a total sample size of 137. The University of
Southern California institutional review board provided ethics ap-
proval for this study, and participants (and their guardians if par-
ticipants were <18 years of age) provided written informed
assent/consent prior to participation.

Covariates
Detailed information on the measurement of covariates in the
SOLAR and CHS cohorts has been provided previously.16,49–53
Height (in meters) and weight (in kilograms) were measured at
each visit in both cohorts and were used to calculate BMI as kilo-
grams per meter squared. In both cohorts, participants completed
questionnaires related to sociodemographics and individual and
familial health history. In the SOLAR cohort, socioeconomic sta-
tus (SES) was characterized using a modified version of the
Hollingshead Four-Factor Index,55 as described previously.49 The
Hollingshead Four-Factor Index was modified to provide a single
score for children and takes into account the education, occupation,
and marital status of parents or primary caregivers.49 In the CHS
cohort, parental education was used to assess SES.52 For the pri-
mary analysis, SES scores were grouped into quantiles and ana-
lyzed numerically, with values ranging from 1 to 4, with 1
representing the lowest and 4 representing the highest quantile of
SES. In the SOLAR cohort, SES was unavailable for 11%
(n=35) of individuals. In these participants, we imputed the pop-
ulation median SES score; median imputation has been shown to
perform similarly to more complex imputation methods when the
proportion of missing values is relatively low.56 Further, as
described previously, participants with missing SES data did not
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differ in metabolic or physical attributes, including sex (tested
using a v2 test; p=0:35), age (tested using an independent
t-test; p=0:88), or BMI (tested using an independent t-test;
p=0:94).16,51

In the SOLAR cohort, Tanner stages were determined by a
physician during a physical exam to assess sexual maturity.57,58

Tanner stages range from 1 to 5 and were categorized as follows:
stage 1: prepuberty, which is the developmental stage before sec-
ondary sex characteristics begin to develop; stages 2–4: puberty,
which is the developmental stage when secondary sex character-
istics begin developing and menarche occurs for most females;
stage 5: postpuberty, the developmental stage where secondary
sex characteristics, including pubic hair and secondary sex organs,
reachmaturity.

Covariates included in models were selected using directed
acyclic graphs (DAGs; Figure S1) and included age (in years),
sex (male/female, coded numerically as 0/1), BMI (in kilograms
per meter squared), and SES (in quantiles, coded numerically as
1–4). In the SOLAR cohort, Tanner stage (Tanner stages 1–5,
coded numerically as 1–5) and study wave (Wave 1/Wave 2,
coded numerically as 0/1) were also included as covariates. No
covariates for statistical models contained missing data, except
SES in the SOLAR cohort (as described above).

Plasma PFAS
Six common PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and
PFDA) were quantified in plasma samples collected at the 2-h
OGTT time point. PFAS levels were quantified in batches of 70
study samples via liquid chromatography (LC) coupled to HRMS
(LC-HRMS). The specific LC-HRMS protocol used to measure
plasmas PFAS for this study has been described previously.59

Briefly, plasma samples were prepared by combining 40 lL of
plasma with 2:5 lL of an internal standard. The internal standard
contained thirty 13C-labeled PFAS to obtain a final 5 ng=mL con-
centration. Proteins were then precipitated by adding 80 lL of
cold acetonitrile, then vortexing and centrifuging at 18,000× g
for 15 min. LC-MS grade water was added to the resulting super-
natant to achieve a dilution ratio of 2:1. PFAS analysis was com-
pleted by reverse phase (RP) chromatography with negative
electrospray ionization, performed with a Thermo Scientific
Vanquish Flex ultra-high-performance LC system with binary
pump attached to a Thermo Scientific Q Exactive HF-X Orbitrap
mass spectrometry system (Thermo Fisher Scientific).

After analysis of samples from both the SOLAR and CHS
cohorts, peaks for PFAS and their corresponding 13C-labeled
PFAS were identified by matching mass m/z with a tolerance of
5 ppm, then extracted and integrated using TraceFinder 5.1
(Thermo Fisher Scientific). Quantification of PFASwas performed
by dividing the peak for a given PFASwith its corresponding inter-
nal standard and comparing this value to a calibration curve with
6 points created using charcoal-stripped plasma. Replicate meas-
ures of National Institute of Standards and Technology (NIST)
1957 and NIST 1958 standard reference material were performed
for every batch of 70 samples. Each batch also included instrumen-
tal and method blanks. The coefficient of variation for major PFAS
was <15%, whereas the analyte recoverywas >90%. The accuracy
of the method was assessed by comparing with NIST standard ref-
erencematerials.Method accuracywas also assessed by participat-
ing in the Center de toxicologie du Québec’s Arctic Monitoring
and Assessment Program Ring Test for Persistent Organic
Pollutants in Human Serum. The limits of detection (LODs) were
as follows: PFOS: 0:43 lg=L; PFHxS: 0:01 lg=L; PFHpS:
0:05 lg=L; PFOA: 0:01 lg=L; PFNA: 0:01 lg=L; and PFDA:
0:01 lg=L. PFDAwas the only PFAS included in the present study

that had values below the LOD; these values were imputed as LOD
divided by the square root of 2.

To contextualize exposure levels in the SOLAR and CHS
cohorts, we compared the geometric mean and 95% confidence
interval of PFAS concentrations to appropriate period- and age-
matched PFAS concentrations from the National Health and
Nutrition Examination Survey (NHANES).60 For the SOLAR
cohort, PFAS concentrations were compared with those in young
persons 12–19 years of age from the NHANES survey years
2007–2008, given that this was near the middle of the study pe-
riod for this cohort. For the CHS cohort, PFAS concentrations
were compared with those in young persons 12–19 years of age
from the NHANES survey years 2017–2018, which overlapped
in time with the CHS cohort and was the only survey year in
which PFHpS concentrations were reported.

Untargeted Plasma Metabolomics
Untargeted plasma metabolomics were measured using samples
collected at the 2-h OGTT time point. Previous studies have
shown that metabolite concentrations following a glucose chal-
lenge are potentially more informative when examining altera-
tions in metabolic pathways because the glucose challenge is a
physiological stressor that requires metabolic flexibility.61,62
Measuring untargeted metabolomics was performed using estab-
lished methods,63 as described previously.59 Briefly, LC-HRMS
was performed with RP and hydrophilic interaction LC (HILIC)
by employing a dual polarity/dual column approach. Analyses
were performed with a Thermo Fisher Vanquish Duo LC system
with dual pumps and columns with independent flow paths con-
nected to a Thermo Fisher Q Exactive HF-X Orbitrap MS sys-
tem. Samples were analyzed in RP and HILIC separately to allow
for the analysis of all four LC-HRMS modes.

Before analysis, samples for RPwere prepared using themethods
described above in the section “Plasma PFAS”.59 Samples for HILIC
were prepared using the methods described above, with minor altera-
tions in the volumes as described previously. Specifically, for HILIC
mode, 90 lL of acetonitrile was added to 30 lL of plasma before
processing was continued as described above. For HILIC mode,
30 lL of the processed supernatant was added to 90 lL 1:1 (vol/vol)
water/acetonitrile. As described previously, samples were analyzed
with both positive and negative ionization by optimizing mobile
phases.59 Separation for RP was performed using C18 (TARGA C18
5 lm 50×2:1 mm; Higgins Analytical), whereas separation for
HILICwas performed using a SeQuant ZIC-HILIC column (3:5 lm,
200A 4:6× 50 mm; MilliporeSigma) for positive mode, and an
Amide ethylene bridged hybrid (BEH) HILIC column (3:5 lm,
130A 3× 50 mm; Waters) in negative mode. Measurement of mass
spectral data was performed for a mass-to-charge ratio (m/z) scan
range of 85 to 1,275, and the resolution was 120,000 full width at half
maximum (FWHM). Additional details on this method are provided
byGoodrich et al.59

Following analysis of all samples from the SOLAR and CHS
cohorts, mass spectral peaks for metabolites were extracted with
apLCMS and xMSanalyzer.63,64 Extraction was performed across
all study samples concurrently and was performed separately for
each of the four LC-HRMS modes. After extracting LC-MS fea-
tures, adjustment for inter- and intra-batch variation was per-
formed using a random forest signal correction algorithm based
on quality control samples run in tandem with study samples.65
As part of the random forest signal correction algorithm, features
that were not detected in >25% of samples were removed from
further analysis. Features were also removed from further analy-
sis if the coefficient of variability in all quality control samples
post-correction was >30%. After LC-MS data processing, the
total number of features included in data analysis was 23,166,
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including 3,711 features from the C18-negative mode, 5,069 fea-
tures from the C18-positive mode, 7,442 features from the
HILIC-negative mode, and 6,944 features from the HILIC-
positive mode.

Statistical Analysis
Differences in PFAS levels and participant characteristics between
cohorts were examined using independent t-tests (for natural
log-transformed PFAS concentrations and continuous partici-
pant characteristics) and chi-square tests (for categorical partic-
ipant characteristics). Spearman correlation coefficients were
calculated to examine associations between PFAS levels within
each cohort. All analyses were performed with R (version 4.1.2;
R Development Core Team).

Metabolome-Wide Association Study
To examine associations between PFAS mixtures and each
metabolite, we performed a metabolome-wide association study
(MWAS) using a Bayesian hierarchical regression modeling
approach with g-computation (BHRM-g). We implemented a
Bayesian g-computation approach66,67 to obtain both individual
PFAS-specific estimates conditional on all other PFAS in the
model and a single mixture effect estimate for the overall PFAS
mixture. The approach is similar to quantile g-computation.68

Specifically, BHRM-g combines: a) a g-prior specification for
the corresponding exposure effects to provide robust estimation
of highly correlated exposures,69 b) a Bayesian stochastic selec-
tion procedure to estimate the posterior inclusion probability
(PIP) of each PFAS in the PFAS mixtures,67 and c) Bayesian
g-computation in a potential outcome framework for estimating
the overall mixture effect based on two hypothetical exposure
profiles (explained in further detail below).67 In contrast to
Bayesian Kernel Machine Regression, which uses Gaussian pro-
cess regression and models a nonlinear dose–response relation-
ship, BHRM-g estimates a mixture effect from the additive terms
from a regression model with each exposure and forces explicit
specification of nonlinear effects.70 We modeled the dose–
response with a linear function that allows for the calculation of a
single monotonic effect estimate that is not dependent on the
baseline exposure profile; this aids in interpretation and allows
for additional downstream analysis. In this analysis, we inde-
pendently fit the following model for each metabolite Y:

Yi = ap +
X
P

cpbpXp +
X
Q

dqUq + ei,

where Xp is a scaled variable for PFAS exposure p with corre-
sponding estimate bp; cp is a binary variable indicating the inclu-
sion of PFAS exposure p in the mixture; and Uq is a set of q
covariates with corresponding effect estimates dq.

To obtain robust estimates in the presence of highly correlated
exposures, we included a second-stage g-prior on the effect esti-
mates of the form b∼NPð0, gr2

YðX0XÞ−1Þ.71–74 Here, r2
Y is the

variance of the outcome; g is a scalar with a specified hyper-g
prior72,75,76; and X0X is the covariance matrix.77 In this model,
the scalar g controls the shrinkage toward the prior mean of zero
and the dispersion of the posterior covariance via a shrinkage fac-
tor of g=ð1 + gÞ. Similar to regularized regression approaches,
the resulting posterior estimate can be expressed as a function of
this shrinkage ~b = ½g=ð1 + gÞ�bb, where bb is the maximum likeli-
hood estimate.

To facilitate model selection, we included a binary variable
cp = f0,1g in the first-stage linear predictor component of the
model, indicating the inclusion of each PFAS.We included a beta-

binomial prior for model selection such that cp ∼BernoulliðpÞ.78
Within this framework, the PIP on the individual cp is the posterior
probability that the coefficient is nonzero. Inference for the
Bayesian model was achieved with Markov chain Monte Carlo
techniques using JAGs and the R package rjags.79,80 The model
was initialized in an adaptive mode with 4,000 iterations to
increase the efficiency, and we used Markov Chain for a burn-in
period with 1,000 iterations. To generate the posterior distribution
of the parameters, we updated themodel with 5,000 iterations.

Finally, we used g-computation to yield a single effect
estimate (i.e., a mixture effect) that captures the impact of
1-standard deviation ðSDÞ increase in levels of all exposures
simultaneously.66–68 This is performed by estimating the differ-
ence in the outcome between two hypothetical exposure profiles
based on the distribution of PFAS in the study samples. In this
study, the low exposure profile is defined as setting each log-
transformed and standardized PFAS at a Z-score of −0:5 (i.e., the
30.8 percentile) and the high exposure profile is defined as setting
each log-transformed and standardized PFAS at a Z-score of 0.5
(i.e., the 69.1 percentile). Specifically, we used posterior predictive
distributions to estimate a single mixture risk difference (wRD),
such that wRD =wx� =0:5 −wx� = − 0:5, where wx� =

X
P

cpbpx
�
p and

x� is the counterfactual profile for the log-transformed and standar-
dized exposures with all exposures set to “low” (30.8% levels with
an x� = − 0:5) and to “high” (69.1% levels with an x� =0:5). The
PFAS concentrations for the low and high exposure profiles in the
SOLAR andCHS cohorts are provided in Table S1.

Effect estimates from the BHRM-g models are reported as the
posterior mean and 95% Bayesian credible intervals (BCIs).
Associations between the PFAS mixture and individual metabo-
lites were selected for further analysis based on a 95% BCI not
containing zero. Inputs for the pathway enrichment analysis used
the PFAS mixture effect (wRD), dividing the posterior mean by
the posterior variance to obtain a Wald test statistic and corre-
sponding p-value. False discovery rate (FDR)–adjusted p-values
were calculated with the Benjamini–Hochberg method to account
for multiple comparisons.81 Adjusted p-values were calculated
within each cohort separately and are represented in the text as
q-values. Evidence of a significant association between the
PFAS mixture and individual metabolites was defined as a
95% BCI for the PFAS mixture effect not containing zero.
q<0:05 was considered as additional evidence of a significant
association.

Prior to the MWAS, raw intensity values of LC-MS features
were log2 transformed and normalized to a standard normal dis-
tribution to satisfy regression assumptions and obtain comparable
effect estimates across all metabolites. Because metabolite inten-
sity was log2 transformed and scaled prior to analysis, the effect
estimate (wRD) is also equivalent to a standardized mean differ-
ence calculated between a hypothetical group of individuals with
all PFAS at the ∼ 70th percentile vs. a hypothetical group of indi-
viduals with all PFAS at the ∼ 30th percentile.

Finally, for BHRM-g to provide a mixture effect estimate inter-
pretable as the change in the outcome when increasing all PFAS in
themixture by 1 SD, all exposures in themixture must be scaled to a
mean of zero and a standard deviation of one. In small sample sizes,
extremely positively skewed exposures can also cause instability,
and in our data, several PFAS, including PFHxS and PFNA, were
highly positively skewed. Therefore, before analysis, PFAS were
log2 transformed and scaled to a mean of zero and standard devia-
tion of one. The R code for performing a single BHRM-g regression
is provided in Supplemental Material, “Supplemental Code.” The R
code for all analyses performed in this study is available on GitHub
at https://github.com/chatzilab/PFAS_metabolomics_EHP_2022.
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Metabolite Annotation and Pathway Enrichment
Following the BHRM-gMWAS, we used the PFASmixture effect
estimate to perform a pathway enrichment analysis using the MS
peaks to pathways module from MetaboAnalyst (version 5.0).82
We used version 2 of the MS peaks to pathways module, which
accounts for retention time for more accurate metabolite annota-
tion.83 For this analysis, we included LC-MS features from both
positive and negative ionization. We used a 5:0-ppm mass toler-
ance, a 0.05 p-value threshold, and the Human reference pathways
of the MetaFishNet (MFN) database.84 We used the integrated
metabolic pathway enrichment analysis,85 which determines path-
way enrichment using an overrepresentation analysis86 and a Gene
Set Enrichment Analysis.87 Significance of metabolic pathways
across cohorts was determined by combining p-values using a
weighted Z-test.88 For the pathway enrichment analysis, statistical
significance was based on a p-value threshold of 0.05. Metabolic
pathways identified as significantly enriched were included in
follow-up analysis if they included at least four significant metabo-
lites in either the SOLARor CHS cohorts.

Sensitivity Analysis
Due to differences in the SOLAR and CHS cohorts, including dif-
ferences in developmental stages and exposure profiles, the pri-
mary method for combining results across the two cohorts in this
study was to perform a meta-analysis on the effect estimates
obtained from study-specific regression models with study-
specific covariates. This method avoids many of the potential pit-
falls of pooled analysis.89 However, to assess the impact of this
analytic choice, we conducted a sensitivity analysis by performing
the entire analytic workflow using pooled data from the two
cohorts. Because of differences in covariates between cohorts, a
minimal set of covariates was used for this analysis, including sex,
developmental stage (based on Tanner stage), parental education,
and study wave/cohort. Given that Tanner stage was not measured
in the CHS (young adult) cohort, Tanner stage was imputed as
stage 5 for all individuals from this cohort. For the pooled analysis,
study wave/cohort included three levels (Wave 1 SOLAR, Wave
2 SOLAR, and CHS) andwas included in the model as two numeric
dummy variables. For the pooled analysis, in addition to examining
metabolites associated with significantly enriched metabolic path-
ways, we also further examined associations of the PFAS mixtures
with individual metabolites associated with any of the significantly
enrichedmetabolic pathways from the individual cohort analysis.

Results

Characteristics of the Study Population
Participant characteristics for the SOLAR and CHS cohorts are pre-
sented in Table 1, and plasma PFAS concentrations for the SOLAR
and CHS cohorts are provided in Table 2. In both cohorts, PFOS,
PFHxS, PFHpS, PFOA, and PFNAwere detected in all participants.
PFDAwas detected in 99.4% of participants from the SOLARcohort
and 98.5% of participants from the CHS cohort. PFAS levels ranged
from uncorrelated to strongly positively correlated, with Spearman
correlation coefficients between 0.01 and 0.93 in the SOLAR cohort
and between 0.10 and 0.93 in the CHS cohort (Figure S2).
Concentrations of all PFAS were significantly higher in the SOLAR
cohort compared with the CHS cohort (Table 2). In both cohorts,
PFAS concentrations were similar to those reported in the appropri-
ate time period and age-matchedNHANES (Table S2).60

PFAS Exposure Was Associated with Metabolic Pathways
In the SOLAR and CHS cohorts, we performed a MWAS with all
23,166 untargeted metabolite features to examine their association

with a single mixture of all six PFAS compounds. In the SOLAR
cohort, the MWAS identified 463 metabolite features associated
with the PFASmixture, defined as having a 95%BCI for themixture
effect not containing zero (Excel Table S1). Functional pathway
analysis of the MWAS results identified significant enrichment of
11 metabolic pathways (Figure 1; Table S3). These pathways were
primarily related to the metabolism of aromatic amino acids, nonar-
omatic amino acids, lipids, and cofactors and vitamins.

In the CHS cohort, 200 metabolite features were associated
with the PFAS mixture (Excel Table S2). Functional pathway
analysis identified the tyrosine metabolism pathway, an aromatic
amino acid, as significantly enriched (p=0:02; Figure 1; Table S3).
In addition, four nonaromatic amino acid metabolism pathways,
two lipid metabolism pathways, and one pathway related to the me-
tabolism of cofactors were identified in the functional pathway
enrichment analysis as having at least one metabolite associated
with the PFAS mixture, although these pathways did not meet the
threshold for statistical significance.

Meta-analysis of the p-values from the pathway enrichment
analysis from both cohorts identified seven statistically significant
metabolic pathways, including one aromatic amino acid metabo-
lism pathway (tyrosine metabolism), four nonaromatic amino acid
metabolism pathways (glutathione, urea cycle/amino group, argi-
nine and proline, and lysine metabolism), one lipid metabolism
pathway (de novo fatty acid biosynthesis), and one pathway related
to metabolism of cofactors (porphyrin metabolism). In total, PFAS
exposure was associated with alterations in 14 unique metabolic
pathways across four super pathways in the SOLAR cohort, the
CHS cohort, or in themeta-analysis (Figure 1; Table S3).

For the aromatic amino acid metabolism pathway, PFAS ex-
posure was associated with several metabolites linked to impor-
tant tyrosine metabolism subpathways across both cohorts. In the
SOLAR cohort, 18 unique metabolites were linked to aromatic
amino acid metabolism pathways, and seven of these associations
remained significant after adjusting for multiple comparisons

Table 1. Participant characteristics of adolescents from the Study of Latino
Adolescents at Risk (SOLAR) cohort (recruited between 2001 and 2012)
and young adults from the Southern California Children’s Health Study
(CHS; recruited between 2014 and 2018).

General characteristics SOLAR CHS p-Value

Sample size (n) 312 137 —
Sex [female; n (%)] 133 (40) 61 (40) 0.79
Age [y (mean± SD)] 11:3± 1:7 19:4± 1:3 —
BMI [kg=m2 (mean±SD)] 28:2± 5:8 29:6± 4:7 0.0051
Puberty status [n (%)] —
Prepuberty (Tanner stage 1) 99 (32) —
Puberty (Tanner stages 2–4) 193 (62) —
Postpuberty (Tanner stage 5) 20 (6) —

Ethnicity [n (%)] <2× 10−16

Hispanic 312 (100) 79 (58)
Non-Hispanic 0 (0) 58 (42)

Study wave [n (%)] —
Wave 1 (2001–2003) 234 (75) —
Wave 2 (2010–2012) 78 (25) —

Socioeconomic status
Modified Hollingshead Four-
Factor Index (mean± SD)

17:9± 10:1 — —

Household education level [n (%)] 7:6× 10−31

Did not graduate high school 146 (47) 25 (18)
High school graduate 89 (29) 21 (15)
Partial college (≥1 y) or
specialized training

36 (12) 36 (26)

Completed college/university 0 (0) 37 (27)
Graduate professional training 3 (1) 14 (10)
Missing 34 (11) 4 (3)

Note: p-Values not reported for variables that were only measured in one cohort. —, not
applicable; BMI, body mass index; NA, not applicable; SD, standard deviation.
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(Figure 2A; Table S4). In the CHS cohort, seven unique metabo-
lites were linked to aromatic amino acid metabolism pathways,
and one remained significant after adjusting for multiple compari-
sons (Figure 2B; Table S4). To gain additional insight about the
functional implications of alterations in these metabolites, we
grouped metabolites by subpathways within aromatic amino acid
metabolism. These subpathways included catecholamine biosyn-
thesis and degradation, tyrosine metabolism and degradation,
thyroid hormone biosynthesis, phenylalanine metabolism, and
melanin biosynthesis. Three key metabolites were positively
associated with PFAS exposure in both cohorts. These included
thyroxine (T4), the main thyroid hormone in circulation; L-glutamic
acid, an amino acid associated with tyrosine metabolism; and hip-
puric acid, an acyl glycine associated with phenylalanine metabo-
lism. Two metabolites were negatively associated with PFAS
exposure in the SOLAR cohort but positively associated with
PFAS exposure in the CHS cohort; these included vanylglycol,

a methoxyphenol generated from the degradation of catechol-
amines, and acetoacetic acid, a product of the catabolism of ty-
rosine to fumaric acid.

In both the SOLAR and the CHS cohorts, PFAS exposure was
also associated with key metabolites associated with lipid metabo-
lism. In the SOLAR cohort, 14 unique metabolites were linked to
lipidmetabolism pathways, and 3 remained significant after adjust-
ing for multiple comparisons (Figure 3A; Table S4). In the CHS
cohort, 4 unique metabolites were linked to lipid metabolism path-
ways, and 2 remained significant after adjusting for multiple com-
parisons (Figure 3B; Table S4). Across the two cohorts there were
similar positive associations between PFAS exposure and metabo-
lites associated with de novo fatty acid biosynthesis and metabo-
lites associated with prostaglandin formation from arachidonate.
Of these metabolites, the most consistent association was observed
with arachidonic acid, which was positively associated with PFAS
exposure in both cohorts (Figure 3; Table S4).

Figure 1.Metabolic pathways associated with exposure to a mixture of six PFAS in adolescents from the SOLAR cohort (n=312) and young adults from the
CHS cohort (n=137). Metabolic pathways are grouped into super pathways as indicated on the right of the plot. Meta-analysis p values are provided for path-
ways identified as being associated with PFAS in both cohorts. Dot size for the SOLAR and CHS cohorts are proportional to the number of significant metabo-
lites associated with each pathway. Only pathways that were significant in either the SOLAR cohort, the CHS cohort, or the meta-analysis are presented here;
for complete results see Table S3. Note: CHS, Children’s Health Study; EPA, eicosapentaenoic acid; PFAS, per- and polyfluoroalkyl substances; Sig,
Significant; SOLAR, Study of Latino Adolescents at Risk.

Table 2. PFAS Concentrations (lg=L) in overweight and obese adolescents from the SOLAR cohort and young adults from the CHS cohort.

PFAS subclass PFAS name

SOLAR (n=312) CHS (n=137)

p-Value
Geometric
mean±GSD

Arithmetic
mean± SD

Median
(IQR)

Geometric
mean±GSD

Arithmetic
mean±SD

Median
(IQR)

Perfluorosulfonic acids PFOS 11:8± 2:2 15:4± 9:8 15.1 (14.1) 3:31± 1:58 3:67± 1:78 3.13 (1.90) 2:1× 10−68

PFHxS 1:44± 2:00 1:97± 2:60 1.35 (1.20) 1:05± 2:10 1:43± 1:46 0.95 (1.00) 2:2× 10−5

PFHpS 0:37± 1:74 0:43± 0:22 0.42 (0.31) 0:18± 1:46 0:19± 0:08 0.17 (0.10) 6:2× 10−46

Perfluorocarboxylic acids PFOA 3:29± 1:75 3:82± 2:14 3.45 (2.46) 1:34± 1:43 1:42± 0:48 1.34 (0.67) 8:6× 10−64

PFNA 0:59± 1:40 0:63± 0:31 0.57 (0.21) 0:48± 1:32 0:49± 0:14 0.46 (0.15) 1:2× 10−11

PFDA 0:23± 1:60 0:25± 0:12 0.23 (0.11) 0:19± 1:81 0:22± 0:10 0.20 (0.12) 0.0012

Note: p-Value was calculated for the differences in PFAS concentrations between cohorts using independent t-tests on log-transformed PFAS concentrations. CHS, Children’s Health
Study; GSD, geometric standard deviation; IQR, interquartile range; PFAS, per- and polyfluoroalkyl substances; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptanesulfonic
acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; SD, Arithmetic standard deviation;
SOLAR, Study of Latino Adolescents at Risk.
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PFAS exposure was also associated with alterations in metab-
olites associated with the metabolism of nonaromatic amino
acids (Figure 4; Table S4). In the SOLAR cohort, eight unique
metabolites were linked to nonaromatic amino acid metabolism
pathways, and four remained significant after adjusting for multi-
ple comparisons (Figure 4A; Table S4). In the CHS cohort, three
unique metabolites were linked to nonaromatic amino acid me-
tabolism pathways, although none remained significant after
adjusting for multiple comparisons (Figure 4B; Table S4). Across
cohorts, themost consistent associations were observedwith amino-
adipic acid, which was positively associated with PFAS exposure in
both cohorts.

In the SOLAR cohort, PFAS exposurewas also positively asso-
ciated with four metabolites linked to the metabolism of cofactors,
including porphyrin metabolism and pyridoxine metabolism. Two
of these associations remained significant after adjusting for multi-
ple comparisons (Figure 5; Table S4).

Contribution of Individual PFAS on Individual Metabolites
To examine the potential contribution of individual PFAS to the over-
allmixture effect, we examined the PIP for all PFASwith eachmetab-
olite. The PIP is the posterior probability that the coefficient for each
individual PFAS in the mixture is nonzero. PFAS that do not contrib-
ute to the overall mixture effect should have a PIP reflecting the prior
probability of inclusion and = 1=P, where P is the total number of
PFAS in themixture. In the present analysis, this corresponds to a PIP
of 0.167. PIPs >0:167 indicate a greater likelihood that the individual
PFAShas a nonzero effect on the overallmixture.

In the SOLAR cohort, the PIPs for individual exposures
across all 44 significantly altered metabolites from enriched path-
ways ranged from 0.04 to 1.0 (Figures S2–S5). For 41 of the 44
metabolites (93%), two or more PFAS exhibited PIPs >0:167,
indicating that for these metabolites, at least two PFAS had a
nonzero effect on the overall mixture. Further examination of

Figure 2. Associations between PFAS mixtures and metabolites associated with aromatic amino acid metabolism in (A) adolescents from the SOLAR cohort
(n=312) and (B) young adults from the CHS cohort (n=137). Metabolites are grouped by tyrosine metabolism subpathways as indicated on the right of the
plot. Effect estimates for PFAS mixture (w) and the 95% Bayesian credible interval (BCI) estimate the change in metabolite levels (SD of the log-transformed
feature intensity) when increasing all PFAS in the mixture from the 30th percentile to the 70th percentile. This estimate is also equivalent to a standardized
mean difference calculated between a hypothetical group of individuals with all PFAS at the ∼ 70th percentile vs. a hypothetical group of individuals with all
PFAS at the ∼ 30th percentile. Corresponding p-values and q-values are presented in Table S4. Note: CHS, Children’s Health Study; PFAS, per- and polyfluor-
oalkyl substances; SD, standard deviation; SOLAR, Study of Latino Adolescents at Risk.
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these PIPs revealed that no individual PFAS appeared to drive
these associations across all metabolites, although some PFAS
seemed more involved than others. Overall, PFDA and PFOS
exhibited PIPs >0:167 for 73% and 71% of the significant metab-
olites, indicating that these PFAS played a role in the mixture
effect for the majority of metabolites. In contrast, PFNA exhib-
ited PIPs >0:167 for only 37% of metabolites, indicating that this
PFAS may play less of a role in the association between PFAS
exposure and alterations in metabolic pathways. Results were
generally consistent within each super pathway (Figures S2–S5).

In the CHS cohort, the PIPs for individual exposures across all
14 significantly altered metabolites from enriched pathways
ranged from 0.10 to 0.97. For 12 of the 14 metabolites (86%), two
or more PFAS exhibited PIPs >0:167, indicating that for these
metabolites, at least two PFAS had a nonzero effect on the overall
mixture. Three PFAS exhibited PIPs >0:167 for >70% of metabo-
lites, including PFHxS, PFHpS, and PFNA (Figure S3–S6).

Sensitivity Analysis
Results for the pooled analysis were similar to those of the meta-
analysis. TheMWAS on the pooled individual level data identified
464 metabolite features associated with the PFASmixture, defined
as having a 95% BCI for the mixture effect not containing zero
(Excel Table S3). Functional pathway analysis of the MWAS
results identified three metabolic pathways with four or more sig-
nificant empirical compounds, two of which were significantly
enriched (Table S5). These included tyrosine metabolism
(p=0:02; significant in both cohorts individually) and urea cycle/
amino group metabolism (p=0:04; significant in the meta-
analysis). T4 and hippuric acid, two of the three key tyrosine
metabolites associated with PFAS exposure in both cohorts,
remained significantly associated with the PFAS mixture in the
pooled analysis (Table S4).

Discussion
To our knowledge, this is the first study to comprehensively
examine the effects of exposure to PFAS mixtures on human met-
abolic pathways. In two independent cohorts of children and
young adults, we observed associations between PFAS exposure
and alterations in aromatic amino acid metabolism, nonaromatic
amino acid metabolism, and lipid metabolism pathways. These
associations were present despite differences in levels of PFAS
exposure between cohorts. Alterations in aromatic amino acid
metabolism included changes in metabolites associated with cate-
cholamine and thyroid hormone biosynthesis; alterations in non-
aromatic amino acid metabolism included changes in metabolites
related to arginine, proline, and lysine metabolism; and altera-
tions in lipid metabolism included changes in metabolites related
to de novo fatty acid biosynthesis and prostaglandin formation
from arachidonate. Together, these results provide evidence that
PFAS exposure is associated with alterations in several important
metabolic pathways in children and young adults.

Previous studies examining metabolic perturbations of PFAS
in humans have primarily relied on single exposure models. In
reality, humans are exposed to a mixture of several PFAS com-
pounds that may have synergistic effects.48 Although single expo-
sure models provide insight into the health effects of individual
PFAS compounds, these models do not account for co-exposure
to multiple potentially correlated environmental exposures that
may have synergistic effects. Here, we present the results of an
innovative analytic strategy to examine the effects of exposure to
chemical mixtures on human metabolic pathways. We used a
Bayesian hierarchical regression modeling approach with a g-
prior specification and Bayesian g-computation,66,67 which pro-
vided a flexible framework for obtaining robust mixture effect
estimates in the presence of highly correlated exposures. In addi-
tion to providing a framework for future studies looking to

Figure 3. Associations between PFAS mixtures and metabolites associated with lipid metabolism in (A) adolescents from the SOLAR cohort (n=312) and (B)
young adults from the CHS cohort (n=137). Effect estimates for PFAS mixture (w) and the 95% Bayesian credible interval (BCI) estimate the change in
metabolite levels (SD of the log-transformed feature intensity) when increasing all PFAS in the mixture from the 30th percentile to the 70th percentile. This
estimate is also equivalent to a standardized mean difference calculated between a hypothetical group of individuals with all PFAS at the ∼ 70th percentile vs.
a hypothetical group of individuals with all PFAS at the ∼ 30th percentile. Corresponding p-values and q-values are presented in Table S4. Note: CHS, Children’s
Health Study; EPA, eicosapentaenoic acid; HPOT, hydroperoxyoctadecatrienoic acid; LysoPC, lysophosphatidylcholines; OxoODE, Octadecanienoic acid; PFAS,
per- and polyfluoroalkyl substances; SD, standard deviation; SOLAR, Study of Latino Adolescents at Risk.
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examine the associations between exposure mixtures and omics
scale data, our findings have important public health implications.
Specifically, we did not find evidence that individual PFAS drove
the associations between the PFAS mixture and metabolic path-
ways. Rather, alterations in metabolic pathways were primarily
driven by mixtures of PFAS. Further, these effects were consist-
ent across cohorts with different levels of exposure. As a result of
changes in the regulation of PFAS in the United States starting in
the early 2000s, the SOLAR cohort had higher levels of exposure
to PFAS than the CHS cohort.90 These changes were especially
pronounced for PFOS and PFOA, which saw decreases of >50%
between cohorts. Despite this, we found similar, although slightly

attenuated, results in the CHS cohort vs. the SOLAR cohort. This
trend may suggest that the toxicological effects of PFAS exposure
are more related to total PFAS levels, rather than individual
PFAS compounds. Given the associations of PFAS exposure and
metabolic pathways related to aromatic amino acid metabolism,
nonaromatic amino acid metabolism, and lipid metabolism, our
findings lend support to the argument that PFAS should be regu-
lated as a chemical class rather than being regulated on a
chemical-by-chemical basis.91

It is well established that PFAS exposure impacts thyroid
function, but the downstream metabolic consequences of PFAS-
associated thyroid toxicity is not well characterized.11,92 In both

Figure 4. Associations between PFAS mixtures and metabolites associated with nonaromatic amino acid metabolism in (A) adolescents from the SOLAR
cohort (n=312) and (B) young adults from the CHS cohort (n=137). Effect estimates for PFAS mixture (w) and the 95% Bayesian credible interval (BCI) esti-
mate the change in metabolite levels (SD of the log-transformed feature intensity) when increasing all PFAS in the mixture from the 30th percentile to the 70th
percentile. This estimate is also equivalent to a standardized mean difference calculated between a hypothetical group of individuals with all PFAS at the
∼ 70th percentile vs. a hypothetical group of individuals with all PFAS at the ∼ 30th percentile. Corresponding p-values and q-values are presented in Table
S4. Note: CHS, Children’s Health Study; PFAS, per- and polyfluoroalkyl substances; SD, standard deviation; SOLAR, Study of Latino Adolescents at Risk.

Figure 5. Associations between PFAS mixtures and metabolites associated with metabolism of cofactors in adolescents from the SOLAR cohort (n=312). No
significant associations were observed in the CHS cohort. Effect estimates for PFAS mixture (w) and the 95% Bayesian credible interval (BCI) estimate the
change in metabolite levels (SD of the log-transformed feature intensity) when increasing all PFAS in the mixture from the 30th percentile to the 70th percen-
tile. This estimate is also equivalent to a standardized mean difference calculated between a hypothetical group of individuals with all PFAS at the ∼ 70th per-
centile vs. a hypothetical group of individuals with all PFAS at the ∼ 30th percentile. Corresponding p-values and q-values are presented in Table S4. Note:
CHS, Children’s Health Study; PFAS, per- and polyfluoroalkyl substances; SD, standard deviation; SOLAR, Study of Latino Adolescents at Risk.
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cohorts, we observed a positive association between PFAS and
T4, the main thyroid hormone in circulation, which is consistent
with previous human and animal studies.93 Thyroid hormones are
key regulators of metabolism, including the regulation of anabo-
lism and catabolism of lipids, carbohydrates, and proteins.94

Thyroid hormones upregulate de novo fatty acid biosynthesis
through the transcription of lipogenic genes, including Acc1,
Fasn, Me1, and Thrsp.95 In the present study, we observed posi-
tive associations between PFAS exposure and increased de novo
fatty acid biosynthesis. Increased de novo fatty acid biosynthesis
is a hallmark of metabolic disorders and can lead to obesity, insu-
lin resistance, nonalcoholic fatty liver disease, and cancer.96

These diseases have also been associated with PFAS exposure11

and thyroid hormones.95,97–99 Together, our findings raise the
possibility that increased risk of metabolic disorders associated
with PFAS exposure are caused by alterations in thyroid hor-
mones and mediated by changes in lipid metabolism.

Several animal studies have reported associations between
PFAS exposure and catecholamine biosynthesis, but human data
is lacking.29,100–106 Notably, exposure to an environmentally rele-
vant PFAS mixture has been previously shown to alter dopamine
levels, one of the three main catecholamines, in mice and in wild
Bank voles.102,103 In mice, PFAS exposure has also been linked
to alterations in the activity of tyrosine hydroxylase,103 which is
the rate-limiting enzyme in the biosynthesis of catechol-
amines.107 Exposure to individual PFAS, including PFOS and
PFOA, has also been shown to decrease tyrosine hydroxylase ac-
tivity in pheochromocytoma (PC12) cells.108 Although previous
animal studies have focused on the association of PFAS exposure
on dopamine levels in brain regions, tyrosine hydroxylase is also
expressed in the peripheral nervous system and the adrenal me-
dulla, where a majority of peripheral catecholamine biosynthesis
occurs.109 In addition to the potential metabolic consequences of
alterations in peripheral catecholamine biosynthesis,110 altera-
tions in central catecholamine biosynthesis could play a role in
the potential neurotoxic effects of PFAS exposure.111

One of the proposed mechanisms linking PFAS exposure with
a variety of diseases is an increase in inflammation and oxidative
stress.11,112,113 In the present study, we observed positive associa-
tions of PFAS exposure with arachidonic acid, aminoadipic acid,
and hippuric acid in both cohorts, each of which is associated with
inflammation or oxidative stress. Arachidonic acid is a polyunsatu-
rated fatty acid that contributes to inflammation and plays a role in
carcinogenesis and cardiovascular disease.114,115 Aminoadipic
acid is an amino acid involved in lysine metabolism that is a poten-
tial biomarker of oxidative stress and has been linked to a variety of
diseases including type 2 diabetes.116,117 Hippuric acid is a gut-
derived amino acid that disrupts redox homeostasis and contributes
to oxidative stress, and which has been shown to be a uremic
toxin.118,119 Together, these results lend support to the hypothesis
that PFAS exposure impact inflammation and oxidative stress.

One factor that could play a role in our findings is diet. Although
each of the metabolites identified in this study can be synthesized
endogenously, some can also be obtained in the diet. For example,
both arachidonic acid and metabolites associated with de novo fatty
acid biosynthesis can be obtained via diet.120–122 However, previous
literature has linkedPFASexposurewith alterations in lipidmetabo-
lism and de novo lipogenesis in a variety of experimental studies,
which suggests that PFAS are impacting the regulation of these fatty
acids in circulation. PFAS exposure alters the expression of genes
related to de novo lipogenesis in the liver of mice, resulting in an
increase in circulating serum triglycerides.29,123 Similar results have
been observed in rats,124 zebrafish,125 and chicken embryos.126

Mechanistically, in addition to PFAS-associated alterations in T4 lev-
els, PFAS also interact with several peroxisome proliferator-activated

receptors (PPARs) including PPAR-a and PPAR-c,11 both of which
are key nuclear receptors associated with the regulation of de novo
lipogenesis in the liver.127 PPAR-c also regulates the expression of
D6-desaturase,128 the enzyme responsible for converting dietary lino-
leic acid to arachidonic acid. In conjunction with our findings, these
studies suggest that PFAS exposure is associated with dysregulated
lipid metabolism via alterations in PPAR activity. However, it is also
possible that dietary intake of specific fatty acids may interact with
PFAS exposure to cause further dysregulation of lipidmetabolism,129

which should be examined in future studies.
Although many of the associations between PFAS mixtures

and alterations in metabolic pathways were similar in the SOLAR
and CHS cohorts, we also identified several differences, especially
for lipid metabolism pathways. In the SOLAR cohort, three meta-
bolic pathways (linoleate metabolism, fatty acid metabolism, and
anti-inflammatory metabolite formation from eicosapentaenoic
acid) were reported only in the SOLARcohort. One possible expla-
nation is that participants from the SOLAR cohort were either
undergoing puberty or prepuberty, whereas participants in the
CHS cohort were young adults postpuberty. Exposure to PFAS
compounds during sensitive periods of development, such as ado-
lescence, may be more likely to lead to deleterious health effects,
including dyslipidemia, given that this is an important period of de-
velopment for many metabolic tissues.12–15 These results are con-
sistent with previous studies showing that PFAS exposure in
childhood is associated with dysregulated lipid and fatty acid me-
tabolism, which can greatly increase the risk ofmetabolic disorders
and cardiovascular disease later in life.130

This study has some limitations. First, when using untargeted
metabolomics, accurate identification of metabolites is often diffi-
cult because of the limited number of authentic standards available.
Although we applied functional pathway enrichment that combines
biological relationships among pathways to improve annotation
confidence, in the present study the majority of metabolite annota-
tions are limited to level 4, indicating accurate mass matching and
molecular formula without informing on chemical structure.131 This
is in contrast to targeted metabolomics, which have annotation lev-
els 1 or 2, indicating a confirmed chemical structure. However,
untargeted metabolomics has distinct advantages over targeted
methods, including greater coverage of metabolites.132 This is ideal
for hypothesis-generating studies, and allows for robust interpreta-
tion of functional activity at the pathway level.86 Second, it is diffi-
cult to assume temporality of associations because of the cross-
sectional design. This also raises the possibility of exposuremisclas-
sification if plasma PFAS concentrations exhibit large changes in
short periods of time. However, the half-life in plasma for PFAS
included in this study is in years,133 which suggests that a single
plasma measurement is likely to provide an accurate indication of a
person’s long-term PFAS exposure. Third, the cohorts included in
this study are relatively unique, which may limit generalizability to
other populations. The SOLAR andCHS cohorts included primarily
Hispanic overweight and obese children and young adults, and addi-
tional studies are required to determine whether these associations
are generalizable to other populations. Fourth, there is a possibility
that an unknown or unmeasured confounder could have impacted
our results. For example, diet could be confounding the relationship
between PFAS exposure and certain metabolites. However, dietary
patterns only appeared to be a small portion of the total PFAS expo-
sure in the general U.S. population between 2003 and 2014,134

which reduces the possibility that diet was a confounder for our
study. Other potential confounders could be factors related to PFAS
levels, such as plasma albumin levels,135 blood volume,136 menstru-
ation,137 or kidney function.138 Finally, differences in covariates
between cohorts may have caused some differences in the results
between cohorts. For example, the measures of SES were different
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between cohorts. However, in the pooled analysis, which used a
reduced set of covariates, we observed similar findings as those in
the individual cohort analysis, especially those related to alterations
in aromatic amino acid metabolism. Despite these limitations, we
observed similar results across different populations with varied
background characteristics and levels of PFAS exposure. Our find-
ings are in line with previous experimental models in animals, lend-
ing additional validity to our results. The similarity of findings
across different cohorts with distinct background characteristics
suggests that metabolic perturbations associated with PFAS expo-
sure are not restricted to a single cohort. In summary, this study pro-
vides evidence that PFAS exposure is associated with alterations in
several keymetabolic pathways, which could be an important medi-
ating factor explaining the associations of PFAS exposure with risk
of various diseases in humans.
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