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Summary
Background Ventricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent
causes of death and pose a high burden on public health systems worldwide. The increasing availability of electro-
physiological signals collected through conventional methods (e.g. electrocardiography (ECG)) and digital health
technologies (e.g. wearable devices) in combination with novel predictive analytics using machine learning (ML) and
deep learning (DL) hold potential for personalised predictions of arrhythmic events.

Methods This systematic review and exploratory meta-analysis assesses the state-of-the-art of ML/DL models of
electrophysiological signals for personalised prediction of malignant VA or SCD, and studies potential causes of
bias (PROSPERO, reference: CRD42021283464). Five electronic databases were searched to identify eligible
studies. Pooled estimates of the diagnostic odds ratio (DOR) and summary area under the curve (AUROC) were
calculated. Meta-analyses were performed separately for studies using publicly available, ad-hoc datasets, versus
targeted clinical data acquisition. Studies were scored on risk of bias by the PROBAST tool.

Findings 2194studieswere identifiedofwhich46were included in thesystematic reviewand32 in themeta-analysis.Pooling
of individual models demonstrated a summary AUROC of 0.856 (95% CI 0.755–0.909) for short-term (time-to-event up to
72 h) prediction and AUROC of 0.876 (95% CI 0.642–0.980) for long-term prediction (time-to-event up to years). While
models developed on ad-hoc sets had higher pooled performance (AUROC 0.919, 95% CI 0.867–0.952), they had a high
risk of bias related to the re-use andoverlapof smallad-hocdatasets, choices ofML tool and a lackof externalmodel validation.

Interpretation ML and DL models appear to accurately predict malignant VA and SCD. However, wide heterogeneity
between studies, in part due to small ad-hoc datasets and choice of ML model, may reduce the ability to generalise and
should be addressed in future studies.
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Introduction
Sudden cardiac death (SCD) and out-of-hospital cardiac
arrest are often precipitated by ventricular arrhythmias
(VA) and account for 400.000 deaths annually in the
United States alone.1,2 Risk stratification for SCD and
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malignant VA in clinical practice is currently based on left
ventricular (LV) systolic dysfunction.3–5 However, LV
dysfunction is inadequate as the sole surrogate marker for
the underlying dynamic and complex mechanisms
responsible for malignant VA.6,7 The majority of patients
, 1105 AZ, the Netherlands.
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Research in context

Evidence before this study
Sudden cardiac deaths (SCD) and malignant ventricular
arrhythmias (VA) represent a major public health problem
globally. Although risk factors for SCD and malignant VA have
been identified (e.g. a left ventricular ejection fraction ≤35%),
the majority of events occur in individuals without any risk
factors. Currently, there is no effective screening tool to identify
at-risk individuals of either SCD or malignant VA. The
emergence of artificial intelligence (AI) and increasing
availability of electrophysiological signals obtained non-
invasively using body-surface electrocardiography (ECG), intra-
cardiac devices and wearable sensors could facilitate
personalised prediction of SCD and malignant VA. We searched
the MEDLINE (Ovid), EMBASE (Ovid), Scopus, Web of Science
and Cochrane Library Databases electronic databases to identify
studies published before August 2021 that developed a
machine learning (ML) or deep learning (DL) model for
prediction of malignant VA or SCD using electrophysiological
signals. We found that the predictive performance of individual
ML and DL models were generally high, and in particular ML
and DL models derived from publicly available datasets had
superior accuracy. However, these studies were characterised by

a high risk of bias and methodological limitations that hinder
their potential translation to clinical practice.

Added value of this study
This systematic review and meta-analysis examines the
current state of AI-based models that use electrophysiological
signals to predict for SCD and malignant VA. Our systematic
assessment of ML and DL models revealed important
methodological limitations that could affect the potential
uptake of these models. We highlighted aspects necessary for
adoption of ML and DL models in clinical practice, including
external model validation, targeted model deployment,
explainable AI and model transparency.

Implications of all the available evidence
Predictive models developed using AI achieve high performance
and enable automated and personalised predictions. However,
methodological limitations have consequences for the
generalisability, clinical utility and reproducibility of these models.
In order for research on the intersection of medicine and AI to be
relevant and useful in clinical practice, it is essential that
future studies adhere to high methodological standards.
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who suffer an out-of-hospital cardiac arrest or SCD have
preserved left ventricular systolic function.8,9 New ap-
proaches to predict VA may be enabled by a combination
of artificial intelligence (AI) and the increasing availability
in electrophysiological signals obtained non-invasively
using body-surface electrocardiography (ECG), intra-
cardiac devices or wearable sensors. Machine learning
(ML) and deep learning (DL) facilitate detection of ECG
signatures and patterns that are unrecognizable by the
human eye and might indicate sub-clinical pathology.10

This extends the traditional identification of specific,
often manually extracted features analysed in isolation as
predictors of malignant VA and SCD.11–14 Over the past
decade, extensive research has been conducted on the use
of ML and DL to predict malignant VA and SCD, of
which the current state-of-the-art is unclear.15–18 The aim
of this systematic review and meta-analysis was to criti-
cally evaluate the merits and pooled accuracy of ML and
DL models that use electrophysiological signals to predict
malignant VA and SCD, and to explore the sources of
heterogeneity between studies.

Methods
This review was reported according to the Preferred
Reporting Items for Systematic Reviews andMeta-Analyses
(PRISMA). The study protocol was registered on the inter-
national prospective register of systematic reviews (PROS-
PERO, reference number: CRD42021283464). Below we
formulated the research question according to use the PI-
COTS system as provided by the CHecklist for critical
Appraisal and data extraction for systematic Reviews of predic-
tion Modelling Studies (CHARM)-checklist.19,20

Population
Subjects from whom electrophysiological signals were
obtained for the purpose of predicting the occurrence of
the outcome(s) of interest were included. Electrophysio-
logical signals considered eligible were ECG, intracardiac
device recorded electrograms (EGM), holter-ECG, signal-
averaged ECGs (SAECG), cardiac stress test ECG, and
electrophysiological studies. Studies investigating partic-
ipants <18 years old were excluded, no other criteria
regarding eligibility of the population were applied.

Index model
Supervised or semi-supervised ML or a DL model used
to predict the outcome of interest, or any combinations
thereof, were eligible. Studies were included regardless
of the type of prediction model according to the check-
list for CHARMS-checklist (i.e. development studies
with and without external validation, external model
validation with or without model updating).19 Studies
were included only if electrophysiological signals were
used as sole or primary model input.

Outcome(s)
The outcome of interest was one (or a combination) of
the following outcomes: (sustained) ventricular tachy-
cardia (VT), ventricular fibrillation (VF), sudden cardiac
death (SCD), in-hospital (IHCA) or out-of-hospital
www.thelancet.com Vol 89 March, 2023
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cardiac arrest (OHCA), or appropriate ICD therapy
(shock or antitachycardia-pacing (ATP). Binary and
time-to-event outcomes were considered both eligible.

Timing and setting
The timing of predictions was at the moment of
obtaining the electrophysiological signal, all prediction
horizons were eligible. There were no restrictions on the
setting the model was developed or validated in.

Literature search
The MEDLINE (Ovid), EMBASE (Ovid), Scopus, Web of
Science and Cochrane Library Databases electronic da-
tabases were systematically searched to identify studies
published before September 2021. Databases were
searched on September 1st 2021 using the following
terms: ‘implantable cardioverter defibrillator’, ‘sudden
cardiac death’, ‘machine learning’ and ‘electrocardiog-
raphy’. The full search strategy is provided in the sup-
plementary material (Supplementary Tables S1–S5).
Such strategy, including terms and limits, was designed
in collaboration with a medical information specialist.
The reference lists of relevant papers were hand-
searched to identify studies potentially missed by the
electronic search.

Study selection
The results from the electronic searches were imported
into a reference management software and de-
duplicated. Two review authors (M.K, B.D) conducted
screening of studies independently with disagreements
resolved through discussion or arbitration of a third
reviewer (F.T).

Risk of bias (quality) assessment
The risk of bias was assessed using PROBAST: A Tool to
Assess the Risk of Bias and Applicability of Prediction Model
Studies.21 All studies were scored on risk of bias for four
categories (i.e. participants, predictors, outcome, and
analysis). Low overall risk of bias was assigned if each
domain was scored as low risk. High overall risk of bias
was assigned if at least one domain was judged to be
high risk of bias. Unclear overall risk of bias was
assigned if at least one domain was judged unclear, and
all other domains as low. The risk of bias assessment
was performed independently by two authors (M.K,
B.D). In cases of disagreement, both authors attempted
to reach consensus. If no consensus was reached, a third
reviewer was consulted to settle the disagreement (F.T).

Synthesis of results
General study characteristics, study population and
baseline characteristics (including sex distribution), type
of electrophysiological signals used and analytical
methods (i.e. model selection, feature selection, valida-
tion techniques) were extracted. Second, we extracted
study estimates of sensitivity, specificity, positive
www.thelancet.com Vol 89 March, 2023
predictive value, negative predictive value, accuracy,
contingency tables and c-statistic (area under the curve).
If studies reported insufficient details to reconstruct
contingency tables, the respective authors were con-
tacted to provide the missing data. Data extraction was
performed by two independent reviewers (M.K, B.D).
Studies were classified based on the database(s) used for
model development in order to avoid overlap between
studies that results from the use of publicly available
datasets by multiple studies, and to reduce the potential
for optimistically biased pooled performance estimates
based on unrepresentative datasets. Databases that were
classified as ’ad-hoc’ met the following criteria:

- The dataset was publicly available and may have been
made available for challenges (e.g. the PhysioNet
ECG challenge22);

- The dataset was developed with the primary aim for
cooperative analysis and the development and eval-
uation of proposed new algorithms;

- The dataset may have been used as data source for
multiple individual studies with similar research
questions, leading to overlapping study populations;

- The dataset was considered unrepresentative (i.e.
the dataset has an imbalanced outcome of interest
that does not reflect a clinical setting, the datasets
consists of outdated data, there is insufficient infor-
mation on the origin of the data or population
characteristics)

Statistics
Exploratory meta-analysis was performed to reflect on
and explain variations in the predictive performances of
ML and DL models.23 Models were included in the meta-
analysis if sufficient information was provided to
reconstruct contingency tables consisting of true posi-
tive, false positive, true negative, and false negative re-
sults based on the specificity, sensitivity, prevalence and
sample size. Pooled estimates of the diagnostic odds
ratio (DOR) and the area under the summary receiver
operator curve (AUROC) were calculated, the sensitivity
and specificity were not pooled due to their dependency
on the probability threshold. The DOR describes the
odds of a positive prediction in those with the outcome
relative to the odds of a positive prediction in those
without the outcome. Summary receiver operator char-
acteristic (ROC) curves were constructed based on a
bivariate regression approach.24 Using parametric boot-
strapping, the 95% confidence intervals around the
AUROC were calculated.25 Pooled estimates of the pre-
dictive performance were calculated separately for
models developed on an ad-hoc dataset (or a combina-
tion of ad-hoc datasets), taking into account the distinct
differences in representativeness of these datasets. To
reduce the risk of overlapping populations from ad-hoc
databases between studies, the best performing model for
3
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each unique sample of subjects was selected and used to
calculate pooled estimates. The I2 statistic was calculated
to quantify the amount of inconsistency between studies.
In cases of high heterogeneity, a series of sensitivity ana-
lyses were performed to explore potential sources of het-
erogeneity. First, we employed a leave-one-out approach in
which we excluded one study at a time, to ensure that the
results were not simply due to one large study or a study
with an extreme result. Second, subgroup analyses were
performed to examine whether the pooled accuracy of
models varied by risk of bias, sample size, region of origin
and the ad-hoc dataset that was used. Publication bias was
visualised using funnel plots, Egger’s test was used to test
for publication bias. The trim and fill method proposed by
Duval and Tweedie was used to estimate the number of
studies missing from a meta-analysis and compute the
summary estimate based on the complete data.26 A P-value
of less than 0.05 was considered to be statistically signifi-
cant. R software, version 3.6.2 (R Core Team) was used to
analyse the pooled result, specifically the Meta-Analysis of
Diagnostic Accuracy and the General Package for Meta-
Analysis libraries.27–29

Ethics
This meta-analysis study is exempt from ethics approval
as data was collected and synthesised from previous
studies.

Role of the funding source
The funding source had no role in the study design, data
collection, data analyses, interpretation, or writing of
report.
Results
A total of 2486 studies were identified through the
MEDLINE (n = 685), EMBASE (n = 1208), Scopus
(n = 587) and Cochrane (n = 6) databases searches.
Another three studies were identified through scrutiny
of reference lists of relevant studies. After deduplication,
a total of 2197 studies remained. Fig. 1 displays a flow
diagram of the study selection process. Frequent rea-
sons for exclusion were: reporting on a diagnostic model
instead of a predictive model (n = 92), ineligible study
outcome (n = 67) and no ML or DL approach (n = 42).
Ultimately, a total of 46 studies were included in this
review.15–18,30–71 Out of these 46 studies, 36 used one or
more ad-hoc dataset(s) and were pooled in separate
meta-analysis.30–37,39–44,46–52,54,55,57–61,63,65–71

Machine learning and deep learning models
developed on clinically-defined datasets
The characteristics of studies are summarised in Table 1,
details on the electrophysiological signals used are dis-
played in SupplementaryMaterial Table S6.15–18,38,45,53,56,62,64

Two studies used intracardiac EGMs,15,56 seven used body
surface ECG recordings16,17,38,45,53,62,64 and one study used
ventricular monophasic action potentials (MAP) as
model input.18 ECGs ranged from 10 s till 24 h in dura-
tion and differed in number of leads (1-, 3-, 7- and 12-
leads) and sampling rate (125 Hz–1600 Hz). Support
vector machine classifiers were implemented as predic-
tion model in six studies,15,17,18,56,62,64 ensemble learning
methods (random forests, decision tree) in three
studies15,38,45 and artificial neural network in one study.53

Kwon et al. and Rogers et al. applied a deep learning
model based on a convolutional neural network
(CNN).16,18 Six studies developed a ML model for short-
term prediction (horizons within a range 1 min till
72 h before event), the other four studies used a baseline
recording as input to predict the event during a follow-up
period that ranged from 21 till 44 months (i.e. long-term
prediction). K-fold cross-validation and leave-one-out-
cross validation were used for model validation in four
studies validation,17,56,62,64 whereas a hold-out test set was
used in six studies.15,16,18,38,45,53 External validation of the
model was performed in two studies.16,56

Meta-analysis was performed for eight
studies,15–18,38,53,62,64 two studies did not report sufficient
information regarding the predictive performance of the
model to be able to reconstruct contingency tables.45,56

The sensitivity and specificity of these models ranged
between 0.647-0.929 and 0.181–0.980, respectively
(Supplementary Material Figs. S3 and S4). Prediction
horizons differed substantially between individual
studies, ranging from a time-to-event of minutes to
hours (i.e. short-term) to a time-to-event of months to
years (i.e. long-term). The pooled performance of five
models (20,479 patients) developed for short-term pre-
diction demonstrated a DOR of 21.45 (95% CI
11.42–40.29) and a summary AUROC of 0.856 (95% CI
0.755–0.909), with high heterogeneity (I2 = 89%) be-
tween studies (Figs. 2 and 3a). Subgroup analyses for
low vs. high risk of bias and sample size <500 vs. ≥500
subjects are displayed in the Supplementary Material
Figs. S5 and S6. Leave-one-out sensitivity analysis
showed each individual study to significantly affect the
pooled estimate of the DOR (P < 0.05) (Supplementary
Fig. S7). Three studies reported on a model developed
to predict on a median time-to-event of 28–44 months
(cumulative 702 patients), with a pooled DOR of 21.79
(95% CI 0.52–9.13.46, I2 = 93%) and a summary
AUROC of 0.876 (95% CI 0.642–0.980). No sensitivity
analyses were performed to explain heterogeneity
considering the low number of studies.

Funnel plots for publication bias were visualised and
are displayed in Supplementary Material Fig. S8,
Egger’s tests showed no evidence of publication bias.
The trim-and-fill method identified two additional
missing studies for short-term prediction that resulted
in a pooled DOR of 13.99 (95 CI% 6.85–28.54), which is
lower compared to the original analysis. Considering the
www.thelancet.com Vol 89 March, 2023
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(n=685)
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review (n=46)

Full-text articles 
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(n=336)
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(n=290)
- Reporting on a diagnostic model instead

of a predictive model (n=92)
- Ineligible study outcome (n=67)
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approach (n=42)
- Only abstracts available (n=41)
- Systematic review (n=17)
- Irrelevant to research question (n=14)
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(n=13)
- Animal study (n=2)
- Foreign language (n=1)
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Scopus 
database 
(n=587)

Screening on title and 
abstract (n=2197)
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database 

(n=6)

Other 
sources 

(n=3)

Studies included in 
meta-analysis

(n=33)

Fig. 1: Study selection flow chart showing the results in each step of the systematic search to identify studies.
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low number of studies (k < 10), this assessment may not
be reliable.

Machine learning and deep learning models
developed on ad-hoc datasets
The characteristics of ML and DL models developed
using an ad-hoc dataset are summarised in Table 2. A
total of 36 studies have been included, derived from
eight different ad-hoc datasets. Detailed descriptions
of the ad-hoc datasets are displayed in Table 3. The
MIT-BIH SCD Holter database (SCDH) and the normal
sinus rhythm database (NSRBD) were used in 27 and
28 studies, respectively.22 The SCDH database consists
of 23 24-h ECG recordings of patients who suffered a
sustained ventricular tachyarrhythmia (20 patients with
VF, 3 with VT). Other open dataset used were the
Creighton University ventricular tachyarrhythmia data-
base (CUDB, 6 studies),73 Spontaneous Ventricular
Tachyarrhythmia Database (MVTDB, 2 studies),22 AHA
Database for Evaluation of Ventricular Arrhythmia De-
tectors (AHADB, 2 studies),22 the Fantasia database
(1 study),22 Malignant Ventricular Arrhythmia Database
(VFDB, 1 study)75 and the Paroxysmal Atrial Fibrillation
Prediction challenge Database (PAFDB, 1 study).74
www.thelancet.com Vol 89 March, 2023
Supplementary Table S7 summarises the electrophysi-
ological features that were used as input to the predic-
tion models. Most commonly, studies used heart rate
variability as model input, in particular (a combination
of) features extracted the time-domain, frequency-
domain, time-domain, time-frequency-domain and non-
linear features. Other ECG features were related to the
ECG morphology, such as intervals and amplitude of
the QRS complex and ventricular repolarisation features
(e.g. T-wave alternans). None of the studies reported on
the external validation of a prediction model.

Overall, 24 studies (344 unique patients) that re-
ported on models developed using ad-hoc datasets pro-
vided sufficient information for meta-analysis of pooled
data. The sensitivity and specificity of these models
ranged between 0.750-1.000 and 0.171–1.000, respec-
tively (Supplementary Fig. S9). Predictions horizons
ranged from a time-to-event of 20 s until 3 h. The pooled
DOR of the seven best performing models for each of
the (combination of) datasets was 282.04 (95% CI
62.96–1263.40) and the summary AUROC was 0.919
(95% CI 0.867–0.952) (Fig. 4). Heterogeneity was mod-
erate (I2 = 49%) with all studies significantly changing
the pooled DOR if excluded in sensitivity analyses
5
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Study characteristics ML and DL modelling Performance Validation

Author n Subjects Study design Endpoint
(Prevalence)

Features Algorithm Sensitivity Specificity PPV NPV AUC Accuracy Internal
validation

External
validation

Au-Yeung
et al.15

788 Prophylactic ICD recipient
(77.3% male)

RCT Appropriate ICD
shock (3.3%)

HRV (non-linear domain, frequency-
domain)

SVM and
RF*

74.0 74.0 N/A N/A 81.0 N/A 80%
training,
20% test

N/A

Do et al.38 1874 Hospitalised (66.9% male) Retrospective,
case–control
study

IHCA (5.1%) Trend analysis (slope, change) RF*, LR 94.6 63.2 N/A N/A 82.9 N/A 80% train,
20% test

N/A

Lee et al.53 82 (104
recordings)

Hospitalised (sex distribution
unknown)

Prospective
cohort

VT (50%) HRV (time-domain, non-linear Poincare,
frequency-domain)

ANN 70.6 76.5 75.0 72.2 75.0 N/A 60% train,
40% test

N/A

Kwon
et al.16

25 672 Hospitalised (53.1% male) Retrospective
cohort

IHCA (2.07%) N/A CNN 77.8 92.0 76.0 99.8 94.8 N/A 70% train,
30% test

Yes
(n = 10,728)

Gleeson
et al.45

295 Prophylactic ICD (74.2%
male)

Retrospective
cohort

ICD implantation
or mortality
(16.6%)

Spatial ECG parameters, complexity
parameters and conventional ECG
parameters

DT N/A N/A N/A N/A 75.0 N/A 60%, 40%
test

N/A

Martinez-
Alanis
et al.56

91 ICD carriers (93.4% male) Prospective
cohort study

SCD (50%) HRV (frequency and time-domain) and
Heartprint Indices

SVM N/A N/A N/A N/A 68.0 67.65 10-fold CV Yes

Ong et al.17 925 ED admissions (61.9% male) Prospective
cohort study

IHCA (4.6%) HRV (time-domain, frequency-domain,
and geometric parameters.)

SVM 81.4 72.3 12.5 98.8 78.1 N/A LOOCV N/A

Ramirez
et al.62

597 CHF (71.2% male) Prospective
cohort study

SCD (8.2%) ECG risk makers (repolarisation
dispersion, TWA, HRT)

SVM 18.0 79.0 N/A N/A N/A N/A 5-fold CV N/A

Rodriguez
et al.64

91 Idiopathic dilated
cardiomyopathy (sex
distribution unknown)

Prospective
cohort study

VT/VF or SCD
(15.4%)

HRV (time-domain, frequency-domain
and non-linear Poincaré)

SVM 92.9 98.0 N/A N/A 95.0 96.8 LOOCV N/A

Rogers
et al.18

42 Ischaemic cardiomyopathy
(97.8% male)

Prospective
cohort study

VT/VF (30.9%) Mathematical timeserie features SVM*,
CNN

84.6 86.2 73.3 92.6 90.0 85.7 70%
training,
30% testing

N/A

ANN = artificial neural network, AUC = area under the curve, CNN = convolutional neural network, CHF = congestive heart failure, CV = cross validation, DT = decision tree, ECG = electrocardiography, ED = emergency department, RF = random
forest, LOOCV = leave-one-out cross validation, LR = logistic regression, HRT = heart rate turbulence, HRV = heart rate variability, IHCA = in-hospital cardiac arrest, ICD = implantable cardioverter defibrillator, LOOCV = leave-one-out cross validation,
N/A = not applicable, NPV = negative predictive value, PPV = positive predictive value, RCT = randomised controlled trial, SCD = sudden cardiac death, SVM = support vector machine, TWA = T-wave alternans, VT = ventricular tachycardia,
VF = ventricular fibrillation.

Table 1: Study characteristics and predictive performance of studies included studies reporting on a machine learning and deep learning model.
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Fig. 2: Summary ROC curves of five models developed to predict SCD or malignant VA on a short prediction horizon (time-to-event within
72 h). Point estimates are displayed for each individual study.
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(P < 0.05) (leave-on-out sensitivity analysis is shown in
Supplementary Material Fig. S15). The pooled summary
AUROCs per time period of publication were 0.906
(95% CI 0.833–0.940), 0.948 (95% CI 0.850–0.952) and
0.950 (95% CI 0.859–0.960), for studies published
before 2017, between 2017 and 2019 and studies be-
tween 2020 and 2021, respectively (Fig. 5a). The DOR
over time per study is displayed in Fig. 5b. All sensitivity
analysis are displayed in the Supplementary Material
Author(s)

Random effects model
Heterogeneity: I2 = 93%

Rodriguez et al. (2019)
Rogers et al. (2020)
Ramirez et al. (2015)

DOR (95 CI%)

21.79 [ 0.52;   913.46]

624.00 [36.50; 10666.79]
34.38 [ 5.46;   216.35]

0.86 [ 0.42;     1.78]

True positives

13
11
39

False negati

1
2
10

Author(s)

Kwon et al. (2020)
Lee et al. (2016)
Do et al. (2019)
Ong et al. (2012)
Au−Yeung et al. (2018)

Random effects model
Heterogeneity: I2 = 89%

DOR (95 CI%)

40.24 [23.72;  68.26]
36.63 [12.03; 111.54]
30.89 [19.22;  49.63]
13.46 [ 5.90;  30.66]

8.95 [ 6.61;  12.11]

21.45 [11.42;  40.29]

True positives

63
46
58
36
173

False negatives

18
6
33
7
58

a

b

Fig. 3: (a) Forest model of the diagnostic odds ratio (DOR) and 95% con
(time-to-event within 72 h). (b) Forest model of the diagnostic odds ratio
on a long horizon (time-to-event up to years).
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Figs. S11–S14 and S17 visualises the DORs per ML or
DL algorithm that was used. The funnel plot for publi-
cation bias is visualised in Supplementary Material
Fig. S16. Egger’s test showed evidence of publication
bias in favour of studies reporting higher DOR
(P = 0.003). The trim-and-fill method indicated four
potential missing studies and estimated a DOR of 66.97
(95% CI 13.21–339.58), which is substantially reduced
compared to the original analysis.
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fidence intervals of models developed to predict on a short horizon
(DOR) and 95% confidence intervals of models developed to predict
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Study characteristics ML and DL modelling Performance Validation

Authors No. cases/
controls

Database Algorithm Features Prediction
interval

Sensitivity Specificity PPV NPV AUC Accuracy Internal External

Acharya et al.31 20 SCD/18
controls

SCDH; NSRD DT, KNN, SVM* ECG (DWT decomposition, non-linear feature
extraction: FD, entropy)

2 min 100.0 97.2 97.5 100.0 N/A 98.7 10-fold CV N/A

Acharya et al.30 20 SCD/18
controls

SCDH; NSRD KNN*, PNN, SVM, DT HRV (RQA, non-linear) 4 min 94.4 80.0 N/A N/A N/A 86.8 10-fold CV N/A

Alfarhan
et al.32

20 SCD/20
controls

SCDH; NSRD KNN* and LDA HRV (frequency-domain, time-domain and QRS
complex features and VR features)

10 min N/A N/A N/A N/A N/A 97.0 10-fold CV N/A

Amezquita-
Sanchez et al.33

23 SCD/18
controls

SCDH; NSRD Enhanced probabilistic NN WPT to decompose data in frequency bands,
non-linear feature extraction (homogeneity index)

20 min N/A N/A N/A N/A N/A 95.8 50% train, 20%
validation, 30%
test

N/A

Bayasi et al.34 16 VA/18
controls

NSRD; SCDH; CUDB;
AHADB

LDA Segments (PQ, PS, RT, QP, SP) 3 h 98.9 N/A 98.4 N/A 99.9 99.1 10-fold CV N/A

Calderon
et al.35

16 SCD/20
controls

SCDH and Fantasia
database

DT, KNN, SVM, LR and
ANN*

Segments (PS,Q T, ST, PR and RR) 2 min 91.0 93.0 N/A N/A N/A 92.0 8-fold CV N/A

Cappielo
et al.36

32 VA/32
controls

CUDB; PTBDB Hybrid prediction index Phase-space portraits characteristics 354 ECG
beats

96.9 100.0 100.0 97.0 N/A 98.4 LOOCV N/A

Devi et al.37 18 SCD/18
controls/15
CHF

SCDH; BIDMC
Congestive Heart
Failure, NSRD

DT, KNN*, SVM HRV (CWT, time-domain, frequency-domain,
time-frequency and non-linear)

10 min 75.0 87.5 75.0 75.0 N/A 83.33 75% train, 25%
test

N/A

Ebrahimzadeh
et al.39

35 SCD/35
normal)

SCDH; NSRD MLP, KNN, SVM, ME
classifier*

HRV (time-domain, frequency-domain, time-
frequency, non-linear)

13 min 82.2 85.7 83.3 85.3 N/A 82.9 train 70%, test
30%

N/A

Ebrahimzadeh
et al.40

23 SCD/18
controls

SCDH; NSRD MLP HRV (time-domain, frequency-domain, time-
frequency, non-linear)

12 min 82.7 85.1 84.7 83.1 N/A 83.9 LOOCV N/A

Ebrahimzadeh
et al.42

35 SCD/35
normal

SCDH; NSRD MLP* and KNN HRV (time-domain, frequency-domain, time-
frequency and non-linear (DFA, Poincaré))

4 min 83.8 16.0 84.0 83.8 N/A 83.9 LOOCV N/A

Ebrahimzadeh
et al.41

35 SCD/35
controls

SCDH; NSRD ANN HRV (time-domain, frequency-domain, time-
frequency-domain)

2 min N/A N/A N/A N/A N/A 91.23 LOOCV N/A

Fairooz et al.43 18 SCD/18
normal

SCDH; NSRD SVM CWT transformation, subsequent feature
extraction (intervals, amplitudes, TWA)

30 min 100.0 100.0 100 100 N/A 100 Train 77.78%,
test 22.22%

N/A

Fujita et al.44 20 SCD/18
normal

SCDH; NSRD SVM*, DT and KNN HRV (DWT, non-linear features: Renyi entropy,
fuzzy entropy, Hjorths parameters and Tsallis
entropy)

4 min 95.0 94.4 95.0 94.4 N/A 94.7 10-fold CV N/A

Houshyarifar
et al.47

23 SCD/36
normal

SCDH; NSRD KNN, SVM* HRV (non-linear, spectrum HOS features and
time-domain)

4 min N/A N/A N/A N/A N/A 94.5 10-fold CV N/A

Houshyarifar
et al.46

23 SCD/36
normal

SCDH; NSRD KNN, SVM* HRV (non-linear recurrence and Poincaré plot) 4 min 84.25 96.8 N/A N/A N/A 93.3 10-fold CV N/A

Jeong et al.48 58 VF/60
controls

CUDB, MVTDB,
PAFDB and NSRDB

ANN HRV (time-domain and non-linear Poincare) 80 s N/A N/A N/A N/A N/A 88.18 10-fold CV N/A

Joo et al.49 78 ICD
patients

MVTB ANN (VF) HRV (time-domain, frequency-domain and non-
linear Poincaré)

5 min 88.9 92.9 72.7 97.5 N/A 92.9 66% train 33%
test

N/A

Khazaei et al.50 23 SCD/18
controls

SCDH; NSRD DT*, KNN, NB and SVM HRV (non-linear: RQA and increment entropy) 6 min 95.0 95.0 N/A N/A N/A 95.0 10-fold CV N/A

Lai et al.52 18 SCD/18
controls

SCDH; NSRD KNN*, DT, NB Ventricular repolarisation features 60 min 99.5 98.3 98.3 N/A N/A 98.9 5-fold CV N/A,

Lai et al.51 28 SCD/18
controls

AHADB; SCDH;
NSRD

KNN, DT, NB, SVM and
RF*

Ventricular repolarisation features* 30 min 99.8 99.0 99.4 99.6 N/A 99.5 5-fold CV N/A

Lopez-
Caracheo
et al.54

9 SCD/9
controls

SCDH; NSRD HFD, BD, and KFD
algorithms

HRV (Non-linear: Katz, Higuchi and Box
Dimension)

14 min N/A N/A N/A N/A N/A 91.4 50% train, 50%
test

N/A,

(Table 2 continues on next page)
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Study characteristics ML and DL modelling Performance Validation

Authors No. cases/
controls

Database Algorithm Features Prediction
interval

Sensitivity Specificity PPV NPV AUC Accuracy Internal External

(Continued from previous page)

Mandala
et al.55

22 VA/18
controls

NSRD; VFDB SVM, NB*, DT HRV (time-domain) and QRS complex features 25 min 93.3 86.7 N/A N/A N/A N/A 5-fold CV N/A

Mirhoseini
et al.57

19 SCD/18
controls

SCDH; NSRD SVM*, DT HRV (time-domain, frequency-domain, time-
frequency, non-linear)

1 min N/A 89.5 87.5 81.0 N/A 83.2 10-fold CV N/A

Murugappan
et al.58

18 SCD/18
controls

SCDH; NSRD SVM,* subtractive fuzzy
clustering, and neuro-
fuzzy classifier

HRV (Non-linear features: Largest Lyapunov
Exponent/approximate entropy/Sample entropy/
Hurst exponent)

5 min 97.1 97.1 100.0 97.6 N/A 100.0 10-fold CV N/A

Murugappan
et al.59

20 SCD/18
controls

SCDH; NSRD (40 vs
36 holter)

KNN* and fuzzy classifier HRV (time-domain) 5 min 92.2 95.3 95.4 N/A N/A 93.71 10-fold CV N/A

Murukesan
et al.60

23 SCD/18
controls

SCDH; NSRD SVM*, PNN DWT and HRV feature extraction (time-domain,
frequency-domain, time-frequency, non-linear)

2 min 93.3 100.0 N/A N/A N/A 96.4 train 70% test
30%

N/A

Parsi et al.61 78 ICD
carriers

MVTB (135 pre VT/
126 controls)

SVM, RF and KNN* HRV (time and frequency-domain, HOS features,
non-linear Poincaré)

5 min 88.8 94.2 N/A N/A N/A 91.5 LOOCV N/A

Riasi et al.63 40 VT/40
controls

SCDH; NSRD and
CUDB

SVM Morphological features (area under ascending/
descending/total T-wave and R-wave, beat to beat
correlations, intervals)

20 s 88.0 100.0 N/A N/A N/A 94.0 75% train 25%
test

N/A

Shi et al.65 20 SCD/18
controls

SCDH; NSRD KNN HRV (EMD for entropy parameters, time-domain
and frequency-domain)

14 min 97.5 94.4 N/A N/A N/A 96.1 10-fold CV N/A

Shen et al.69 23 SCD/20
controls

SCDH and database LSM*, DBNN, BPNN HRV (FFT and frequency-domain) 2 min 75.0 N/A N/A N/A N/A 87.5 46% train, 56%
test

N/A

Taye et al.66 78 ICD
carriers

MVTDB (135 pre
VT/126 controls)

1-D CNN N/A 60 s 83.2 86.4 N/A N/A 78.0 84.6 10-fold CV N/A

Taye et al.67 27 VF/28
controls

CUDB, PAFDB,
NSRDB

Fully connected ANN HRV (time-domain, frequency-domain, non-linear
Poincare), QRS complex features

30 s 98.4 99.0 N/A N/A 99.0 98.6 10-fold CV N/A

Tseng et al.68 81 CUDB 2D CNN, 2D-STFT N/A 5 min 98.0 N/A N/A N/A N/A 88.0 80% train and
20% validation

Two real
cases as
validation

Tsjui et al.70 20 SCD/20
controls

Not specified R-LLGMn HRV (time-domain) 5 min N/A N/A N/A N/A 90.0 82.5 LOOCV N/A

Vargas-Lopez
et al.71

23 SCD/18
controls

SCDH; NSRD MLP EMD, subsequent entropy and fractal dimension
feature extraction

25 min N/A N/A N/A N/A N/A 94.0 45% and 55%
validation

N/A,

AHADB = AHA Database for Evaluation of Ventricular Arrhythmia Detectors, ANN = artificial neural network, AUC = area under the curve, BPNN = back-propagation neural network, CNN = convolutional neural network, CUDB=Creighton University
ventricular tachyarrhythmia database, CV = cross validation, CWT=Continuous Wavelet Transform, DFA = detrended fluctuation analysis, DWT = Discrete wavelet transform, DBNN = decision-based neural network, DT = Decision Tree,
ECG = electrocardiography, EMD = empirical mode decomposition, EMG = intracardiac electrogram, FD= Fractal Dimension, FFT = fast Fourier transform, HOS = higher order spectral, HRV = heart rate variability, KNN = k-nearest neighbour,
LMS = least mean square, MVTDB = Spontaneous Ventricular Tachyarrhythmia Database, MLP = multi-layer perceptron, ME = maximum entropy, NSRBD = normal sinus rhythm database, PPV = positive predictive value, PAFDB = paroxysmal atrial
fibrillation prediction challenge database, PNN = probabilistic neural network, LOOCV = leave-one-out cross validation, LDA = linear discriminant analysis, NB = naïve Bayes, NPV = negative predictive value, RF = random forest, R-LLGMn = recurrent
log-linearised Gaussian mixture network, SCD = sudden cardiac death, SCDH = MIT-BIH SCD Holter database, SVM = support vector machine, RQA = recurrence quantification analysis, VFDB = Malignant Ventricular Arrhythmia Database,
VF = ventricular fibrillation, VT = ventricular tachycardia, VR=Ventricular repolarisation, WPT = wavelet packet transform, 2D-STFT = two-dimensional short-time Fourier transform.

Table 2: Study characteristics and predictive performance of studies reporting on a prediction model developed on one or more ad-hoc datasets.
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Name Subjects included in the database No. recordings Type Frequency

Massachusetts Institute of Technology-
Beth Israel Hospital SCD Holter database
(SCDH)22

Recordings of subjects before SCD or sustained VT onset as well as a few
seconds later. 18 subjects (8 female, 13 female, 2 unknown) had
underlying sinus rhythm (4 with intermittent pacing), 1 subject was
continuously paced, and 4 subjects were diagnosed with atrial fibrillation.
All subjects had a sustained ventricular and most had an actual cardiac arrest.

23 (20 subjects with VF) subjects
with 46 recordings (lead I and lead
II for each subject)

24-h ECG 250 Hz

Massachusetts Institute of Technology-
Beth Israel Hospital normal sinus rhythm
database (NSRBD)22

Subjects (5 male, 13 female) included in this database were found to have
had no significant arrhythmias. Ages between 20 and 50 years old.

18 subjects with 36 recordings
(lead I and lead II for each subject)

24-h ECG 128 Hz

Malignant Ventricular Arrhythmia
Database (VFDB)72

Subjects who experienced episodes of sustained ventricular tachycardia,
ventricular flutter, and ventricular fibrillation. No details on subject’s sex.

22 subjects with 22 recordings 30-min ECG 250 Hz

Creighton University ventricular
tachyarrhythmia database (CUDB)22,73

Subjects who experienced episodes of sustained ventricular tachycardia,
ventricular flutter, and ventricular fibrillation, 5 records were from paced
subjects. No details on subject’s sex.

35 subjects with 35 recordings 8-min ECG 250 Hz

AHA Database for Evaluation of
Ventricular Arrhythmia Detectors
(AHADB)22

Subjects with no ventricular ectopy, isolated unifocal PVCs, isolated
multifocal PVCs, ventricular bi- and trigemini, R-on-T PVCs, ventricular
couplets, ventricular tachycardia, ventricular flutter/fibrillation. No details
on subject’s sex.

80 subjects with 80 two-lead
recordings

3-h ECG
(2-channel)

250 Hz

Paroxysmal atrial fibrillation prediction
challenge database (PAFDB)74

Subjects who have paroxysmal atrial fibrillation and subjects with no
documented AF. No details on subject’s sex.

48 subjects with 50 recordings 30-min ECG 128 Hz

Spontaneous Ventricular Tachyarrhythmia
Database (MVTDB)22

Subjects with an ICD who experienced an episode of ventricular
tachycardia or ventricular fibrillation. No details on subject’s sex.

78 subjects with 135 pairs of RR
intervals

EGMs 1000 Hz

Fantasia22 Twenty young (21–34 years old) and twenty elderly (68–85 years old)
healthy subjects underwent 120 min of continuous supine resting while
continuous ECG (20 male, 20 female subjects).

40 individuals with 40 recordings 120-min ECG 250 Hz

ECG = electrocardiography, EGM = intracardiac electrogram, PVC = premature ventricular complex, SCD = sudden cardiac death, VF = ventricular fibrillation.

Table 3: Characteristics of the ad-hoc datasets used for the prediction of sudden cardiac death or malignant ventricular arrhythmias.
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Risk of bias assessment
The risk of bias assessment is presented in
Supplementary Figs. S1 and S2. The studies that re-
ported on a model developed using clinically-defined
data were scored as low (4 studies), high (2 studies)
and unclear risk of bias (4 studies). In studies that re-
ported on model development using ad-hoc datasets, 5
studies were scored as low risk, 24 as high risk and 7 as
unclear risk.
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Fig. 4: Summary ROC curves of best performing mode
Discussion
We systematically identified and summarised ML and
DL models that used electrophysiological signals to
predict malignant VA and SCD, and conducted explor-
atory meta-analyses to explain the sources of heteroge-
neity. AI has the potential to extract and process features
from high dimensional complex electrophysiological
signals and learn complex, hidden relationships be-
tween these features and the onset of malignant VA or
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Fig. 5: (a) Summary ROC curves of models developed on ad-hoc datasets per over the course of time. (b) Diagnostic odds ratio of models
developed using ad-hoc datasets between 2012 and August 2021.

Articles
SCD. Overall, ML and DL models showed high predic-
tive performance, with models developed using (a
combination of) ad-hoc datasets achieving particularly
excellent performance with a summary AUROC of
0.919 (95% CI 0.867–0.952). On the other hand, studies
were characterised by high risk of bias and considerable
heterogeneity in terms of model performance, electro-
physiological signals used, sample sizes and settings. In
addition, very few studies have reported on the perfor-
mance of a model when tested on an external patient
cohort, which is crucial for assessing its generalisation
ability. It is essential for these important methodological
www.thelancet.com Vol 89 March, 2023
considerations to be addressed in future studies in order
for AI models to be adopted in clinical practice.

Current barriers to clinical implantation: external
validation and model deployment
The majority of research activity in the field of VA
prediction using ML and DL has been undertaken in a
pre-clinical setting using ad-hoc datasets. In particular,
two ad-hoc datasets (SCDH and NSRD) comprising a
total of 41 patients have been exhaustively utilised for
model development (respectively 27 and 28 studies).
Publicly available datasets have stimulated progress in
11

www.thelancet.com/digital-health


Articles

12
model development over the past decades, by ensuring
quality control and circumventing barriers such as pa-
tient consent, quality control, costs and disparate data
sources.76 Nevertheless, these ad-hoc datasets were
limited in sample size and amount of electrophysio-
logical signals, making the derived models vulnerable to
overfitting. This may lead to overly optimistic estimates
of model performance. Moreover, the robustness of
these model may be jeopardised by the use of datasets
that do not accurately represent the target population,
leading to a model that is susceptible to approximate
noise in the training data rather than underlying pat-
terns of interest.77 Expanding current ad-hoc datasets
through the inclusion of more subjects and electro-
physiological signals, and subsequently conducting
external validation of derived models is paramount for
establishing the robustness, reproducibility and gener-
alizability.23 Second, ML and DL models could serve
distinct clinical purposes (e.g. early-warning system,
risk stratification, screening tool for general population),
and therefore require different integration within clin-
ical workflows. However, in order for ML models to
have a meaningful impact on clinical practice it is crit-
ical to integrate them into medical workflows so that
their impact on patients and clinicians can be assessed.
The ECG AI-Guided Screening for Low Ejection Fraction
(EAGLE) trial was among the first to specifically eval-
uate the use of an AI-tool for screening of heart failure
patients in an integrated, real-world workflow using
ECG.78 The EAGLE trial demonstrated that use of the
AI-ECG model increased the number of low LVEF di-
agnoses despite only a modest increase in the use of
echocardiography was observed. At present, no trial has
evaluated the impact of a ML-based model for the pre-
diction of malignant VA or SCD in clinical practice.
Finally, the impact of an ML or DL model on clinical
practice is largely dependent on epidemiological factors
such as the pre-test probability. For example, Au-Yeung
et al. performed a secondary analysis of patients
implanted with an ICD in the randomised-controlled
SCD-HeFT trial, using HRV features extracted from
EGMs for the prediction of appropriate ICD-therapy.15

Despite the reasonable AUROC of the developed
models (AUROC = 0.81), this still led to a dispropor-
tional absolute number of false positive predictions with
a prevalence of 3.3% of appropriate ICD therapy. In
addition, the model developed by Kwon et al. for pre-
dicting in-hospital cardiac arrest (prevalence of 0.78%),
resulted in 845 false positive predictions compared to 64
true positive predictions on an external dataset, despite
having an AUROC of 0.948 and specificity of 92.2%.16 In
other words, the clinical utility of ML models is limited
if used in a low prevalence setting, unless they are
designed to have very high specificity. This highlights
the importance of considering the prevalence of the
outcome being predicted when determining the clinical
utility of a model.
Explainability and model transparency
Models developed using ML and DL techniques are often
criticised for their lack of explainability of the predictions
they provide. The emerging field of explainable-AI is
rapidly evolving and could aid in providing human-
interpretable predictions. For example, Kwon et al. used
the saliency method to visualise the ECG regions used by
the model to predict IHCA, which showed model pre-
dictions predominantly based on QRS complex and the
T-waves.16 However, this encourages us to probe the causal
(pathophysiological) pathway, such as the presence of a
fibrotic tissue or abnormalities in intracellular calcium
homeostasis as the substrate for malignant VA onset.79 A
pipeline for mechanistic underpinning of model pre-
dictions was constructed by Rogers et al., who used the
morphology of individual ventricular MAPs in patients
with an ischemic cardiomyopathy to predict malignant VA.
Their findings showed that the arrhythmic risk was pre-
dicted by prolonged phase II repolarisation which poten-
tially reflects abnormal calcium handling, providing
clinicians with interpretable ML predictions. In addition,
considering the dynamic and complex nature of malignant
VA onset it is important for prediction models to take into
account persistent substrate as well as transient triggers for
arrhythmia onset. The potential of repeated electrophysi-
ological recordings per patients instead of features
measured once at baseline was assessed by Perez-Alday
et al., who found differences in short-term and long-
term predictive accuracy of ECG features for SCD.80

Leveraging ML techniques for survival predictions using
time-varying covariates has the potential to capture triggers
for malignant VA on top of baseline predictors.81

Limitations
An important limitation to this systematic review was the
high percentage of included studies that reported insuffi-
cient data to be added meta-analysis of included papers (14
studies reported insufficient data to calculate contingency
tables for meta-analysis), which could have affected the
pooled summary estimates. Given the exploratory nature
of the meta-analysis the pooled estimates are provided
primarily for reference, and should be considered as
hypothesis-generating. Second, this study did not include
conventional statistical methods which impedes compari-
sons between AI and statical approaches. Third, recent
population wide autopsy data published by Tseng et al.
illustrated that 40% of deaths attributed to stated SCD were
not sudden or unexpected, and nearly half of presumed
SCDs were not arrhythmic.82 The pooled results in this
meta-analysis could be imprecise considering both SCD
and malignant VA were eligible as prediction outcome.

Conclusion
Machine learning and deep learning have a potential for
personalised prediction of malignant ventricular ar-
rhythmias and could provide clinicians with early
warning-systems and risk-stratification tools. Despite a
www.thelancet.com Vol 89 March, 2023
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substantial number of studies using ML or DL models
to predict malignant VA and SCD, studies were pre-
dominately conducted using small ad-hoc datasets,
lacked an external validation and were in general char-
acterised by high risk of bias. It is pivotal that future
studies meet methodological standards, are derived
from multi-centric clinical datasets that capture suffi-
cient between-subject variation, and are integrated into
clinical work-flows in parallel with conventional care to
assess their reproducibility, generalisability and utility.
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