Skip to main content
. 2023 Feb 9;89:104462. doi: 10.1016/j.ebiom.2023.104462

Table 1.

Study characteristics and predictive performance of studies included studies reporting on a machine learning and deep learning model.

Study characteristics
ML and DL modelling
Performance
Validation
Author n Subjects Study design Endpoint (Prevalence) Features Algorithm Sensitivity Specificity PPV NPV AUC Accuracy Internal validation External validation
Au-Yeung et al.15 788 Prophylactic ICD recipient (77.3% male) RCT Appropriate ICD shock (3.3%) HRV (non-linear domain, frequency-domain) SVM and RF∗ 74.0 74.0 N/A N/A 81.0 N/A 80% training, 20% test N/A
Do et al.38 1874 Hospitalised (66.9% male) Retrospective, case–control study IHCA (5.1%) Trend analysis (slope, change) RF∗, LR 94.6 63.2 N/A N/A 82.9 N/A 80% train, 20% test N/A
Lee et al.53 82 (104 recordings) Hospitalised (sex distribution unknown) Prospective cohort VT (50%) HRV (time-domain, non-linear Poincare, frequency-domain) ANN 70.6 76.5 75.0 72.2 75.0 N/A 60% train, 40% test N/A
Kwon et al.16 25 672 Hospitalised (53.1% male) Retrospective cohort IHCA (2.07%) N/A CNN 77.8 92.0 76.0 99.8 94.8 N/A 70% train, 30% test Yes (n = 10,728)
Gleeson et al.45 295 Prophylactic ICD (74.2% male) Retrospective cohort ICD implantation or mortality (16.6%) Spatial ECG parameters, complexity parameters and conventional ECG parameters DT N/A N/A N/A N/A 75.0 N/A 60%, 40% test N/A
Martinez-Alanis et al.56 91 ICD carriers (93.4% male) Prospective cohort study SCD (50%) HRV (frequency and time-domain) and Heartprint Indices SVM N/A N/A N/A N/A 68.0 67.65 10-fold CV Yes
Ong et al.17 925 ED admissions (61.9% male) Prospective cohort study IHCA (4.6%) HRV (time-domain, frequency-domain, and geometric parameters.) SVM 81.4 72.3 12.5 98.8 78.1 N/A LOOCV N/A
Ramirez et al.62 597 CHF (71.2% male) Prospective cohort study SCD (8.2%) ECG risk makers (repolarisation dispersion, TWA, HRT) SVM 18.0 79.0 N/A N/A N/A N/A 5-fold CV N/A
Rodriguez et al.64 91 Idiopathic dilated cardiomyopathy (sex distribution unknown) Prospective cohort study VT/VF or SCD (15.4%) HRV (time-domain, frequency-domain and non-linear Poincaré) SVM 92.9 98.0 N/A N/A 95.0 96.8 LOOCV N/A
Rogers et al.18 42 Ischaemic cardiomyopathy (97.8% male) Prospective cohort study VT/VF (30.9%) Mathematical timeserie features SVM∗, CNN 84.6 86.2 73.3 92.6 90.0 85.7 70% training, 30% testing N/A

ANN = artificial neural network, AUC = area under the curve, CNN = convolutional neural network, CHF = congestive heart failure, CV = cross validation, DT = decision tree, ECG = electrocardiography, ED = emergency department, RF = random forest, LOOCV = leave-one-out cross validation, LR = logistic regression, HRT = heart rate turbulence, HRV = heart rate variability, IHCA = in-hospital cardiac arrest, ICD = implantable cardioverter defibrillator, LOOCV = leave-one-out cross validation, N/A = not applicable, NPV = negative predictive value, PPV = positive predictive value, RCT = randomised controlled trial, SCD = sudden cardiac death, SVM = support vector machine, TWA = T-wave alternans, VT = ventricular tachycardia, VF = ventricular fibrillation.