Skip to main content
. 2023 Feb 9;89:104462. doi: 10.1016/j.ebiom.2023.104462

Table 2.

Study characteristics and predictive performance of studies reporting on a prediction model developed on one or more ad-hoc datasets.

Study characteristics
ML and DL modelling
Performance
Validation
Authors No. cases/controls Database Algorithm Features Prediction interval Sensitivity Specificity PPV NPV AUC Accuracy Internal External
Acharya et al.31 20 SCD/18 controls SCDH; NSRD DT, KNN, SVM∗ ECG (DWT decomposition, non-linear feature extraction: FD, entropy) 2 min 100.0 97.2 97.5 100.0 N/A 98.7 10-fold CV N/A
Acharya et al.30 20 SCD/18 controls SCDH; NSRD KNN∗, PNN, SVM, DT HRV (RQA, non-linear) 4 min 94.4 80.0 N/A N/A N/A 86.8 10-fold CV N/A
Alfarhan et al.32 20 SCD/20 controls SCDH; NSRD KNN∗ and LDA HRV (frequency-domain, time-domain and QRS complex features and VR features) 10 min N/A N/A N/A N/A N/A 97.0 10-fold CV N/A
Amezquita-Sanchez et al.33 23 SCD/18 controls SCDH; NSRD Enhanced probabilistic NN WPT to decompose data in frequency bands, non-linear feature extraction (homogeneity index) 20 min N/A N/A N/A N/A N/A 95.8 50% train, 20% validation, 30% test N/A
Bayasi et al.34 16 VA/18 controls NSRD; SCDH; CUDB; AHADB LDA Segments (PQ, PS, RT, QP, SP) 3 h 98.9 N/A 98.4 N/A 99.9 99.1 10-fold CV N/A
Calderon et al.35 16 SCD/20 controls SCDH and Fantasia database DT, KNN, SVM, LR and ANN∗ Segments (PS,Q T, ST, PR and RR) 2 min 91.0 93.0 N/A N/A N/A 92.0 8-fold CV N/A
Cappielo et al.36 32 VA/32 controls CUDB; PTBDB Hybrid prediction index Phase-space portraits characteristics 354 ECG beats 96.9 100.0 100.0 97.0 N/A 98.4 LOOCV N/A
Devi et al.37 18 SCD/18 controls/15 CHF SCDH; BIDMC Congestive Heart Failure, NSRD DT, KNN∗, SVM HRV (CWT, time-domain, frequency-domain, time-frequency and non-linear) 10 min 75.0 87.5 75.0 75.0 N/A 83.33 75% train, 25% test N/A
Ebrahimzadeh et al.39 35 SCD/35 normal) SCDH; NSRD MLP, KNN, SVM, ME classifier∗ HRV (time-domain, frequency-domain, time-frequency, non-linear) 13 min 82.2 85.7 83.3 85.3 N/A 82.9 train 70%, test 30% N/A
Ebrahimzadeh et al.40 23 SCD/18 controls SCDH; NSRD MLP HRV (time-domain, frequency-domain, time-frequency, non-linear) 12 min 82.7 85.1 84.7 83.1 N/A 83.9 LOOCV N/A
Ebrahimzadeh et al.42 35 SCD/35 normal SCDH; NSRD MLP∗ and KNN HRV (time-domain, frequency-domain, time-frequency and non-linear (DFA, Poincaré)) 4 min 83.8 16.0 84.0 83.8 N/A 83.9 LOOCV N/A
Ebrahimzadeh et al.41 35 SCD/35 controls SCDH; NSRD ANN HRV (time-domain, frequency-domain, time-frequency-domain) 2 min N/A N/A N/A N/A N/A 91.23 LOOCV N/A
Fairooz et al.43 18 SCD/18 normal SCDH; NSRD SVM CWT transformation, subsequent feature extraction (intervals, amplitudes, TWA) 30 min 100.0 100.0 100 100 N/A 100 Train 77.78%, test 22.22% N/A
Fujita et al.44 20 SCD/18 normal SCDH; NSRD SVM∗, DT and KNN HRV (DWT, non-linear features: Renyi entropy, fuzzy entropy, Hjorths parameters and Tsallis entropy) 4 min 95.0 94.4 95.0 94.4 N/A 94.7 10-fold CV N/A
Houshyarifar et al.47 23 SCD/36 normal SCDH; NSRD KNN, SVM∗ HRV (non-linear, spectrum HOS features and time-domain) 4 min N/A N/A N/A N/A N/A 94.5 10-fold CV N/A
Houshyarifar et al.46 23 SCD/36 normal SCDH; NSRD KNN, SVM∗ HRV (non-linear recurrence and Poincaré plot) 4 min 84.25 96.8 N/A N/A N/A 93.3 10-fold CV N/A
Jeong et al.48 58 VF/60 controls CUDB, MVTDB, PAFDB and NSRDB ANN HRV (time-domain and non-linear Poincare) 80 s N/A N/A N/A N/A N/A 88.18 10-fold CV N/A
Joo et al.49 78 ICD patients MVTB ANN (VF) HRV (time-domain, frequency-domain and non-linear Poincaré) 5 min 88.9 92.9 72.7 97.5 N/A 92.9 66% train 33% test N/A
Khazaei et al.50 23 SCD/18 controls SCDH; NSRD DT∗, KNN, NB and SVM HRV (non-linear: RQA and increment entropy) 6 min 95.0 95.0 N/A N/A N/A 95.0 10-fold CV N/A
Lai et al.52 18 SCD/18 controls SCDH; NSRD KNN∗, DT, NB Ventricular repolarisation features 60 min 99.5 98.3 98.3 N/A N/A 98.9 5-fold CV N/A,
Lai et al.51 28 SCD/18 controls AHADB; SCDH; NSRD KNN, DT, NB, SVM and RF∗ Ventricular repolarisation features∗ 30 min 99.8 99.0 99.4 99.6 N/A 99.5 5-fold CV N/A
Lopez-Caracheo et al.54 9 SCD/9 controls SCDH; NSRD HFD, BD, and KFD algorithms HRV (Non-linear: Katz, Higuchi and Box Dimension) 14 min N/A N/A N/A N/A N/A 91.4 50% train, 50% test N/A,
Mandala et al.55 22 VA/18 controls NSRD; VFDB SVM, NB∗, DT HRV (time-domain) and QRS complex features 25 min 93.3 86.7 N/A N/A N/A N/A 5-fold CV N/A
Mirhoseini et al.57 19 SCD/18 controls SCDH; NSRD SVM∗, DT HRV (time-domain, frequency-domain, time-frequency, non-linear) 1 min N/A 89.5 87.5 81.0 N/A 83.2 10-fold CV N/A
Murugappan et al.58 18 SCD/18 controls SCDH; NSRD SVM,∗ subtractive fuzzy clustering, and neuro-fuzzy classifier HRV (Non-linear features: Largest Lyapunov Exponent/approximate entropy/Sample entropy/Hurst exponent) 5 min 97.1 97.1 100.0 97.6 N/A 100.0 10-fold CV N/A
Murugappan et al.59 20 SCD/18 controls SCDH; NSRD (40 vs 36 holter) KNN∗ and fuzzy classifier HRV (time-domain) 5 min 92.2 95.3 95.4 N/A N/A 93.71 10-fold CV N/A
Murukesan et al.60 23 SCD/18 controls SCDH; NSRD SVM∗, PNN DWT and HRV feature extraction (time-domain, frequency-domain, time-frequency, non-linear) 2 min 93.3 100.0 N/A N/A N/A 96.4 train 70% test 30% N/A
Parsi et al.61 78 ICD carriers MVTB (135 pre VT/126 controls) SVM, RF and KNN∗ HRV (time and frequency-domain, HOS features, non-linear Poincaré) 5 min 88.8 94.2 N/A N/A N/A 91.5 LOOCV N/A
Riasi et al.63 40 VT/40 controls SCDH; NSRD and CUDB SVM Morphological features (area under ascending/descending/total T-wave and R-wave, beat to beat correlations, intervals) 20 s 88.0 100.0 N/A N/A N/A 94.0 75% train 25% test N/A
Shi et al.65 20 SCD/18 controls SCDH; NSRD KNN HRV (EMD for entropy parameters, time-domain and frequency-domain) 14 min 97.5 94.4 N/A N/A N/A 96.1 10-fold CV N/A
Shen et al.69 23 SCD/20 controls SCDH and database LSM∗, DBNN, BPNN HRV (FFT and frequency-domain) 2 min 75.0 N/A N/A N/A N/A 87.5 46% train, 56% test N/A
Taye et al.66 78 ICD carriers MVTDB (135 pre VT/126 controls) 1-D CNN N/A 60 s 83.2 86.4 N/A N/A 78.0 84.6 10-fold CV N/A
Taye et al.67 27 VF/28 controls CUDB, PAFDB, NSRDB Fully connected ANN HRV (time-domain, frequency-domain, non-linear Poincare), QRS complex features 30 s 98.4 99.0 N/A N/A 99.0 98.6 10-fold CV N/A
Tseng et al.68 81 CUDB 2D CNN, 2D-STFT N/A 5 min 98.0 N/A N/A N/A N/A 88.0 80% train and 20% validation Two real cases as validation
Tsjui et al.70 20 SCD/20 controls Not specified R-LLGMn HRV (time-domain) 5 min N/A N/A N/A N/A 90.0 82.5 LOOCV N/A
Vargas-Lopez et al.71 23 SCD/18 controls SCDH; NSRD MLP EMD, subsequent entropy and fractal dimension feature extraction 25 min N/A N/A N/A N/A N/A 94.0 45% and 55% validation N/A,

AHADB = AHA Database for Evaluation of Ventricular Arrhythmia Detectors, ANN = artificial neural network, AUC = area under the curve, BPNN = back-propagation neural network, CNN = convolutional neural network, CUDB=Creighton University ventricular tachyarrhythmia database, CV = cross validation, CWT=Continuous Wavelet Transform, DFA = detrended fluctuation analysis, DWT = Discrete wavelet transform, DBNN = decision-based neural network, DT = Decision Tree, ECG = electrocardiography, EMD = empirical mode decomposition, EMG = intracardiac electrogram, FD= Fractal Dimension, FFT = fast Fourier transform, HOS = higher order spectral, HRV = heart rate variability, KNN = k-nearest neighbour, LMS = least mean square, MVTDB = Spontaneous Ventricular Tachyarrhythmia Database, MLP = multi-layer perceptron, ME = maximum entropy, NSRBD = normal sinus rhythm database, PPV = positive predictive value, PAFDB = paroxysmal atrial fibrillation prediction challenge database, PNN = probabilistic neural network, LOOCV = leave-one-out cross validation, LDA = linear discriminant analysis, NB = naïve Bayes, NPV = negative predictive value, RF = random forest, R-LLGMn = recurrent log-linearised Gaussian mixture network, SCD = sudden cardiac death, SCDH = MIT-BIH SCD Holter database, SVM = support vector machine, RQA = recurrence quantification analysis, VFDB = Malignant Ventricular Arrhythmia Database, VF = ventricular fibrillation, VT = ventricular tachycardia, VR=Ventricular repolarisation, WPT = wavelet packet transform, 2D-STFT = two-dimensional short-time Fourier transform.