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Abstract 

Background:  Protein–protein interaction (PPI) data is an important type of data used 
in functional genomics. However, high-throughput experiments are often insufficient 
to complete the PPI interactome of different organisms. Computational techniques are 
thus used to infer missing data, with link prediction being one such approach that uses 
the structure of the network of PPIs known so far to identify non-edges whose addition 
to the network would make it more sound, according to some underlying assump-
tions. Recently, a new idea called the L3 principle introduced biological motivation into 
PPI link predictions, yielding predictors that are superior to general-purpose link predic-
tors for complex networks. Interestingly, the L3 principle can be interpreted in another 
way, so that other signatures of PPI networks can also be characterized for PPI predic-
tions. This alternative interpretation uncovers candidate PPIs that the current L3-based 
link predictors may not be able to fully capture, underutilizing the L3 principle.

Results:  In this article, we propose a formulation of link predictors that we call 
NormalizedL3 (L3N) which addresses certain missing elements within L3 predictors in 
the perspective of network modeling. Our computational validations show that the 
L3N predictors are able to find missing PPIs more accurately (in terms of true positives 
among the predicted PPIs) than the previously proposed methods on several datasets 
from the literature, including BioGRID, STRING, MINT, and HuRI, at the cost of using 
more computation time in some of the cases. In addition, we found that L3-based 
link predictors (including L3N) ranked a different pool of PPIs higher than the general-
purpose link predictors did. This suggests that different types of PPIs can be predicted 
based on different topological assumptions, and that even better PPI link predictors 
may be obtained in the future by improved network modeling.

Keywords:  Protein–Protein Interaction, Link Prediction, L3 Principle, Network 
Modeling, Complex Network, Graph Theory

Introduction
In the post-genomic era, high-throughput techniques are being developed to meas-
ure and analyze high-level molecular activities. This includes static assays like mRNA 
sequencing that can capture the differential expression of biological processes at a time 
point[1], or single-cell RNA sequencing to map out the progressive shift in cellular het-
erogeneous activities based on cell populations[2]. One of the oldest and most important 
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contributions to the field has been the development of large-scale characterizations of 
protein interactions[3]. The abundance of available protein interaction datasets and their 
integration has in turn led to the creation of Protein–Protein Interaction (PPI) networks 
[4, 5], which can be used as reference interactomes that display the interactions between 
the proteins of a particular organism. A PPI network is a form of complex network in 
which every node represents a protein and every edge indicates that two proteins can 
interact with each other. Since PPIs describe signal transduction of protein physical 
docking[6], large-scale studies can provide insights into the molecular machinery of liv-
ing systems[7]. On a basic level, researchers can abstract biological components such 
as signaling pathways as a chain of PPIs[8], or protein complexes as graph clusters[9] 
for network analysis. In larger-scale studies, PPI networks can even be used as building 
blocks that associate with other biological networks for better prioritization of candidate 
disease proteins or improved drug repurposing[10, 11].

The basis of meaningful and comprehensive discoveries is a complete and reliable PPI 
network. However, measurement errors or incomplete experimental data may lead to 
some parts of the constructed PPI network having the wrong structure. For this rea-
son, computational tools have been developed to evaluate the accuracy of the proposed 
edges in an existing PPI network or to find good candidates for new edges whose addi-
tion to the network would make it more biologically sound. The most direct approaches 
use protein sequences data[12, 13], since protein sequences compare proteins’ functions 
genetically. Some of the other approaches include the use of protein structures, RNA co-
expression, and protein annotations[14][15]. Undoubtedly, the success of these methods 
stems from utilizing features to describe proteins, subsequently characterizing PPIs. A 
recent survey of existing approaches to PPI predictions can be found in [16].

On the other hand, general-purpose link prediction techniques have been developed 
for complex networks such as computer networks, recommender systems, and social 
networks[17]. These link predictors can also be applied to PPI data, but they are usu-
ally not specific enough to characterize PPIs well and there are no guarantees on their 
correctness and reliability. Due to this concern, Kovács et al.[18] introduced a novel link 
predictor based on a biological motivation that they called the L3 principle. It relies on 
the principle that, from a structural perspective, two proteins that share many common 
neighbors are likely to have a similar interaction interface. Consequently, two proteins 
linked by many different paths of length three will have a higher likelihood of also inter-
acting directly with each other. Observe that this contrasts with the general network 
principle known as the triadic closure principle[19] or Common Neighbor[20], which 
typically assumes that the number of paths of length two between two nodes is corre-
lated to the likelihood of them also being directly connected by a single edge. Assuming 
that the L3 principle holds, the L3 link predictor infers new PPIs by assigning a score 
to every pair of non-adjacent nodes based on information about paths of length three 
between them, and letting those node pairs with the highest scores be the candidate 
PPIs. The study by Kovács et al.[18] also showed computationally that the L3 link predic-
tor outperforms a vast number of general link predictors, including Common Neighbor. 
Since then, various studies have already successfully improved existing network biology 
techniques by incorporating the L3 principle, including drugs-disease network analy-
sis[21] and protein fold recognition[22].
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Despite the strength of the L3 principle, some researchers claim that our understand-
ing of the L3 link predictor is limited and that it was derived empirically rather than 
from any theoretical knowledge[23]. Indeed, it would be more appropriate to regard the 
L3 link predictor as an approximation since its normalization term (the use of a square 
root) was derived empirically. While normalization is generally a part of any link predic-
tor and each one has a different way of addressing it, the definitions are often supported 
by their corresponding biological motivations, which is not the case in the normalization 
in the L3 predictor.

An alternative approach would be to evaluate the fitness to the L3 principle by charac-
terizing and modeling neighborhoods of PPIs more precisely, namely to reward desirable 
graph structures such as paths of length three, and penalize undesirable graph structures 
such as paths of length two. In this article, we define the link predictor in a way that 
more accurately corresponds to the biological motivation behind the L3 principle. Our 
method is named NormalizedL3 (L3N). We demonstrate computationally that L3N is 
better at inferring unknown PPIs than the previous methods, which gives further evi-
dence that the structure of PPI networks can be accurately reconstructed from partial 
data by using link predictions.

We would like to remark here that the preliminary conference version of this arti-
cle[24] contains an error in the presented formula for P(L3E)

xy  (Formula  (4) in [24]) and 
that the experimental results were obtained using a slightly different (and correct) ver-
sion of the formula that was implemented as intended in the program code that was 
provided. In this article, we have corrected the error and also generalized the formula 
to further improve the performance of our link predictor; see Formulas (6) and (7) in 
Sect. 4.2 below.

The article is organized as follows. Section 2 reviews some known general and PPI-
specific link prediction techniques. Then, we provide the problem definition and the for-
mulation of L3N in Sect.  3 and Sect.  4, respectively. Using the materials described in 
Sect. 5, we evaluate the performance of the link predictors on simulated datasets of a 
particular structure in Sect. 6. In Sect. 7, we then evaluate the predictive power and bio-
logical significance of L3N using statistical metrics, and present some observations on 
the differences between L3N and other link predictors. Finally, in Sect. 8, we summarize 
our findings and discuss potential future improvements of PPI link prediction.

Previous work
Link prediction infers new edges based on the properties of the nodes as well as the 
overall topology of the existing edges[17]. Many classes of link prediction approaches 
exist, and this article will focus on similarity-based link predictions, where candidate 
edges are selected based on the similarity of nodes’ immediate or extended neighbor-
hoods by iterating every pair of nodes. Some link predictors of this type are reviewed 
next. From here on, for any node a, let N(a) denote the set of neighbor nodes of a, and 
for any set A of nodes, let N (A) = a∈A N (a) . There are also many different general link 
prediction approaches that model the problem beyond iterating candidate edges, for 
example it has been modified as a random walk problem[25], a linear optimization prob-
lem[26], and more. For a more comprehensive review, see [17].
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General link prediction

The Common Neighbors (CN) concept originates from social networks[20]. It mod-
els a social phenomenon: the more friends two individuals share, the more likely they 
are to also be friends of each other. Then, the CN score of any two nodes a and b is 
|N (a) ∩ N (b)| . The assumption here is that the higher the CN score, the more confident 
we can be that the two nodes should be adjacent. In the context of PPIs, a high CN score 
of two proteins implies that they have similar functions[27]. That is, if two proteins inter-
act with a similar set of proteins then their functions should be similar.

However, a high-degree node will contribute to the CN scores of many more node 
pairs than a low-degree node will. To reduce the influence that a single node may have, 
one can penalize high-degree nodes in some way. To do so, the Resource Allocation (RA) 
algorithm[28] makes high-degree nodes contribute less by using the following formula 
instead for every pair of nodes a and b: 

∑

z∈N (a)∩N (b)
1

|N (z)| . In addition to RA, there exist 
many other normalization schemes. In the Adamic-Adar (AA) Index[29], a logarithmic 
modifier (whose motivation comes from social networks mining) is used to do the nor-
malization: 

∑

z∈N (a)∩N (b)
1

log(|N (z)|)
 . For a survey of the normalization schemes used in 

many other general link predictors, see[17].

PPI‑specific link prediction

Link predictors can also consider parts of the network beyond the immediate neighbor-
hoods of nodes. For example, in the context of PPI networks, [30] applies random walks 
to identify and connect pairs of nodes with similar distances to the other nodes in the 
network.

In another study, Nakajima et al.[31] used protein complex datasets on top of PPI data-
sets to investigate how many PPIs might be missing from those PPI datasets. Assuming 
that each protein complex must induce a connected subgraph in the corresponding PPI 
network, the minimum number of edges that have to be added to ensure that this condi-
tion holds in the network thus gave lower bounds on the number of missing PPIs in vari-
ous databases. This also shows how PPI datasets can be augmented with external feature 
data, utilizing the biological context.

Finally, in the study of our focus[18], Kovács et  al. presented the so-called L3 algo-
rithm, which is biologically motivated by the following observation: Since a physical PPI 
is the physical docking of two proteins, it can only occur if the interfaces of the two pro-
teins are compatible. Now, if nodes x and y in a PPI network share many neighbors, it 
can be expected that the interface of x is similar to the interface of y. Two proteins with 
identical or nearly identical interfaces are usually not compatible (they cannot dock with 
each other), which means that the PPI network will not have an edge between x and y 
in this case. See Fig. 1a for an illustration. On the other hand, if there are many paths 
of length 3 between x and y in the network then x and y are likely to be compatible, as 
shown in Fig. 1b. Following standard graph theory notation, P3 will denote an undirected 
length-2 path consisting of three nodes and two edges, and P4 will denote an undirected 
length-3 path consisting of four nodes and three edges. Using this notation, the obser-
vation above can be stated as: the more P4-subgraphs and the fewer P3-subgraphs that 
connect a pair of nodes x and y, the more certain it is that x and y should be connected 
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by an edge. From here on, we shall refer to this principle as the L3 principle. Note that 
the actual formulation of the L3 link predictor also involves a normalization term that 
will be explained in the next section.

After the L3 principle was proposed[18], other researchers have taken inspiration from 
it to formulate new link predictors for PPI networks. This includes CH2_L3 (abbreviated 
as CH2 below)[23], a link predictor that extends the general link predictor CRA​[32], as 
well as the Sim[33] link predictor. Both of these are similarity-based link predictions that 
use information from L3 neighborhoods, just like our method L3N. For this reason, they 
are also included in the experimental comparison below. The mechanisms of CH2 and 
Sim are described in more detail in Sect. 4.1 and Sect. 5.2.

Preliminaries
Problem definitions

Given an undirected graph G = (V ,E) , the task is to determine, for each pair of non-
adjacent nodes in V, whether or not an edge between them should be added to E. Every 
non-adjacent node pair {x, y} will be assigned a score Pxy that measures, in a relative 
sense, the confidence with which one can say that x and y should be connected by an 
edge. In other words, among all non-adjacent node pairs, the pair {x, y} will be con-
sidered to be the best PPI candidate if Pxy is larger than Px′y′ for all other node pairs 
{x′, y′} . As mentioned in Sect. 2.2, predictions assuming the L3 principle require count-
ing the number of P4-subgraphs between pairs of nodes. For this purpose, define 
U = N (x) ∩ N (N (y)) and V = N (y) ∩ N (N (x)) , i.e., let U be the set of neighbors of x at 
distance 2 from y and analogously for V. Then, every P4-subgraph between x and y is an 
undirected simple path of the form (x, u, v, y), where u ∈ U  and v ∈ V  . Note that a node 
may belong to N(x) as well as N(y) and also to both U and V, in which case it will be able 
to take the role of either u or v in a P4-subgraph. With these definitions, one can count 
the number of P4-subgraphs between x and y using Formula (1). This kind of double 
summation will be abbreviated as in Formula (2) to simplify the notation from now on.

Fig. 1  Principles behind link prediction in PPI networks. (a) and (b) illustrate conditions that would lead CN 
and the L3 principle, respectively, to predict that an edge between the two non-adjacent nodes x and y is in 
fact missing. (c) A graphical representation of the occurrence of a physical PPI between protein x and protein 
y. (d) Using the abstraction in (c), if the PPIs are arranged as shown on the left, we can infer the existence of a 
PPI between protein y and protein x as shown on the right
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In a link predictor, normalization is usually applied to compensate for possible issues 
introduced by relying on a particular principle. E.g., in the case of L3-based link predic-
tors, since high-degree nodes in the sets U and V will contribute to many more P4-sub-
graphs than low-degree nodes, this may give them a disproportionate influence on the 
value of P(1)

xy  . Hence, Formula (2) could be adjusted to penalize high-degree nodes. The 
L3 link predictor [18] does this by using a square root modifier according to Formula (3) 
below.

Our contributions

We observe that the normalization modifier in Formula (3) does not completely imple-
ment the L3 principle. More precisely, Formula (3) only uses the set U, the set V, and the 
node degrees to evaluate an xy-node pair. Not only does it not take P3-subgraphs into 
account, it may also give an undeservedly low score to some good xy-node pair simply 
because its intermediate u- and v-nodes happen to have high degrees. L3N addresses 
these problems by employing an alternative approach to normalization by network mod-
eling. Instead of attributing the weighting of each P4 to the square root term as in For-
mula (3), we consider whether the neighborhood of each xy-node pair is ideal under the 
L3 principle, i.e. compared to a model network that fully follows L3 principle. For exam-
ple, in a P4 consisting of four nodes (x, u, v, y), a high-degree node v could provide strong 
evidence for the existence of an xy-link if N (v) = N (x) , since this implies that x and v are 
structurally similar, and therefore x is structurally compatible with y (and symmetrically, 
v is compatible with y). By exhaustively considering all the possible conditions like the 
one above that we gave as an example, we can evaluate how strongly the P4 s between a 
candidate PPI follow the L3 principle. These evaluations also prevent high-degree nodes 
being undeservedly normalized, since our formulations directly compare the relative 
(and hence normalized) difference between neighborhoods comprehensively. This yields 
a normalized L3 predictor that we call L3N.

Detailed formulation of L3N
To describe the properties that characterize the L3 principle, we define an ideal L3 
graph as a model graph that can be obtained by taking a complete bipartite graph 
with two parts U and V, and attaching a new node x as a neighbor of all nodes in U 
and attaching a new node y as neighbor of all nodes in V. This results in a graph with 
the four basic L3-elements: node x, node y, set U, and set V, which are the fundamen-
tal components of an ideal L3 graph. Figure 2a illustrates an example ideal L3 graph. 

(1)P(1)
xy =

|U |
∑

i=1

|V |
∑

j=1

{

1 ifui ∈ N (vj)
0 otherwise

(2)P(1)
xy =

∑

U ,V

1

(3)P(L3)
xy =

∑

U ,V

1
√

|N (ui)| · |N (vj)|
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Its nodes have been colored white and black in such a way that no pair of nodes with 
the same color are adjacent and every pair of nodes with different colors (except x and 
y) are adjacent. Then, to model real PPI networks, we need to consider non-ideal L3 
graphs that can deviate from ideal L3 graphs in the following ways:

•	 An edge between x and U is missing, or an edge between y and V is missing.
•	 An edge between U and V is missing.
•	 An edge between two nodes in U, or between two nodes in V, exists.
•	 An edge between x and V exists, or an edge between y and U exists.

Recall that we defined U = N (x) ∩ N (N (y)) and V = N (y) ∩ N (N (x)) in Sect. 3. These 
definitions induce, for any specified pair of nodes x and y, the L3-elements of an L3 
graph whose fitness to the L3 principle can be evaluated by measuring how well the 
following conditions are met: 

	 I	 N (x) = U and N (y) = V  (see Fig. 2b-1)
	 II	 N (v) \ {y} = U for every v ∈ V  and N (u) \ {x} = V  for every u ∈ U (see Fig. 2b-

2)

Fig. 2  By modeling an ideal L3 graph, we illustrate the conditions using that would lead the L3 principle to 
assign the maximum possible score to Pxy (relative to Pxy obtained in non-ideal L3 graphs). a An example of 
an ideal L3 graph with the four L3-elements x, U, V, and y. b Three measures of how well a (possible non-ideal) 
L3 graph fits the L3 principle based on its L3-elements
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	III	 N (x) = N (v) \ {y} for every v ∈ V  and N (y) = N (u) \ {x} for every u ∈ U (see 
Fig. 2b-3)

As an example, consider a non-ideal L3 graph obtained by inserting a single edge of the 
form {ui,uj} into an ideal L3 graph. Then, N (ui) \ {x} �= V  and N (uj)\{x} �= V  hold, thus 
violating condition II. Also, N (y)  = N (ui)\{x} and N (y)  = N (uj)\{x} , which violates con-
dition III. However, this graph is still quite close to being an ideal L3 graph, so we would like 
our link predictor to assign a relatively high score when measuring how well conditions I, II, 
and III are met. Moreover, due to the incomplete nature of PPI networks, our link predictor 
should also be robust against false negatives that could incorrectly suggest the existence of 
an L3 neighborhood. Next, we review two so-called similarity metrics that will be used in 
the formal definition of our new link predictor.

Similarity metrics

Similarity metrics are formulas that score the similarity of two sets with appropriate penali-
zation so that the size of the two sets has a minimum effect on the score. In the case of PPI 
networks, the sets would be node subsets such as the neighborhood of a node. Such metrics 
allow us to formalize the relationships in Fig. 2b as mentioned above. In the following sec-
tions, we review two well-studied similarity metrics that will be included in our improved 
link predictor. (See the summary in Table 2 in Sect. 5.2 for their precise formulas.)

Simple ratio

Given two sets A and B, one of the simplest possible metrics is the Simple Ratio in Formula 
(4), which measures the size of the intersection relative to the size of one of the sets.

To give an example, the CRA​ link predictor[32] utilizes this to extend the CN principle 
for general link prediction (including PPI networks). CRA computes the link prediction 
score of node x and y by first extracting the common neighbors, A = N (x) ∩ N (y) . Then, 
each node a ∈ A is evaluated according to f1(N (a),A) . The sum of these scores, which is 
∑

a∈A f1(N (a),A) , will then be the link prediction score for nodes x and y. It is defined in 
this way because CRA is only interested in if N(a) is a subset of A, regardless of the size 
of set A.

Jaccard coefficient

Formula (5) is the Jaccard coefficient [34] for set A and set B. Note that it uses a different 
denominator than the one in Sect. 4.1.1.

This evaluation assumes that both sets are equally important and that the maximum 
possible score can only be obtained when A = B . (In comparison, in Formula (4) in 
Sect. 4.1.1, the best score can be obtained even if A � B or B � A .) This idea is utilized 
in the Sim link predictor[33]. To be precise, Sim independently scores the similarity of 

(4)f1(A,B) =
|A ∩ B|

|A|

(5)f2(A,B) =
|A ∩ B|

|A ∪ B|
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node x and nodes v using f2(N (x),N (v)) , and node y and nodes u using f2(N (y),N (u)) . 
The summation of these scores then become the link prediction score for the corre-
sponding node x and y.

Normalized L3 formulations

Using any similarity metric f, we can quantify how close a non-ideal L3 graph is to being 
ideal by accounting for conditions I, II, and III described at the beginning of this section 
as follows:

•	 Condition N (x) = U : use f(N(x), U)
•	 Condition N (y) = V  : use f(N(y), V)
•	 Condition N¬x(u) = V  for every u ∈ U : use 

∑

U f (N¬x(u),V )

•	 Condition N¬y(v) = U for every v ∈ V  : use 
∑

V f (N¬y(v),U)

•	 Condition N (x) = N¬y(v) for every v ∈ V  : use 
∑

V f (N (x),N¬y(v))

•	 Condition N (y) = N¬x(u) for every u ∈ U : use 
∑

U f (N (y),N¬x(u))

where the notation N¬b(a) is a shorthand for N (a) \ {b} . Then, we complete the for-
mulation by combining them as in Formula (6). We define the link prediction score for 
any non-adjacent node pair {x, y} as a sum taken over all pairs of nodes (u, v) for u ∈ U  
and v ∈ V  since each P4 that increases the likelihood of the edge between x and y cor-
responds to one such (u, v). Intuitively, the formula balances the influence of the number 
of P4 ’s and the quality of each P4 : a high score will be obtained if there are many P4 ’s 
between x and y and the subgraph induced by x, U, V, and y is an ideal L3 graph. Note 
that f(N(x), U) and f(N(y), V) can be evaluated outside of the inner sum since they do not 
depend on both u and v at the same time.

Figure 3 gives a graphical explanation of Formula (6) using the similarity metric f1 from 
Sect. 4.1.1. From now on, the link predictor obtained by letting f = f1 in Formula (6) will 
be denoted by L3N( f1 ); similarly, plugging in f2 from Sect. 4.1.2 into Formula (6) gives a 
link predictor that we will refer to as L3N( f2).

To illustrate the L3N formulation with an example, consider the non-ideal L3 graph 
mentioned previously in this section that was obtained by inserting a single edge of the 
form {ui,uj} into an ideal L3 graph. For this graph, uj ∈ N (ui) although uj /∈ V  , which 
means that N¬x(ui) and V are not completely identical and the third term in For-
mula (6) will be slightly smaller than its maximum possible value. Moreover, the fact 
that N¬x(uj) �= V  will also contribute to the third term not being maximized, and 
N (y)  = N¬x(ui) and N (y)  = N¬x(uj) will prevent the sixth term from being maximized.

As another example, consider what happens if a single edge of the form {ui, y} is 
inserted into an ideal L3 graph, thus creating a P3 (x,ui, y) . By definition, ui ∈ U  and 
ui /∈ V  still hold. However, N(y) will no longer be equal to V since N(y) now also 
includes ui , N¬x(ui) will not be equal to V, and N(y) will not be equal to N¬x(ui) , 

(6)
P
(L3N (f ))
xy = f (N (x),U) · f (N (y),V ) ·

∑

U ,V

f (N¬x(u),V )

· f (N¬y(v),U) · f (N (x),N¬y(v)) · f (N (y),N¬x(u))
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which prevents the second, third, and sixth terms in Formula (6) from achieving their 
maximum possible values.

Formula (6) uses neighborhoods with the node x or y excluded (e.g., N¬x(u) ). For 
normalization purposes, it may in fact be advantageous to include x or y in the neigh-
borhoods. For example, suppose that we are evaluating (x, y) and that N (ui) = Vi ∪ {x} 
and N (uj) = Vj ∪ {x} for two nodes ui,uj ∈ U  and Vi,Vj ⊆ V  with |Vi| < |Vj| . Then 
f (N¬x(ui),Vi) = f (N¬x(uj),Vj) is possible although it would be better to have 
f (N¬x(ui),Vi) < f (N¬x(uj),Vj) because the larger size of Vj provides stronger evi-
dence that uj and Vj are compatible. Here, if we use neighborhoods that include x then 
we would get f (N (ui),Vi) < f (N (uj),Vj) , which gives an offset of one (since having 
just the node x in N(u) is what prevents the two terms from being equal) and might 
be preferable. In fact, similar modifications also appear in other link predictors. For 
instance, in the CH2 predictors[23], there are also numerical offsets of one added to 
denominator of fractions to keep the terms from being maximized. As another exam-
ple, CRA[32] includes a unit offset in the denominators of fractions, again for the 
purpose of keeping them from being maximized.

Fig. 3  The idea behind Formula (6). a An L3 graph with L3-elements x, U, V, and y. b1–b3 Each of the six 
parts of Formula (6) corresponds to one of the six conditions used to measure how close the graph is to 
being an ideal L3 graph. Here, the Simple Ratio f1 from Sect. 4.1.1 has been selected as the similarity metric. 
c Combining all six parts yields Formula (6) for the score PL3N(f1)xy
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Formula (7) below introduces an alternative L3N formulation based on this observa-
tion, which we shall refer to as L3N’ in the evaluations in later sections. In particular, 
L3N’( f1 ) and L3N’( f2 ) will refer to the link predictors obtained by selecting f = f1 and 
f = f2 , respectively, in Formula (7).

Time complexity

Let n denote the number of nodes in G, m the number of edges in G, and k the average 
degree of the nodes in G. Also, let 〈k2〉 and 〈k3〉 be the average of the squares of the node 
degrees and the average of the cubes of the node degrees, respectively. According to pre-
vious studies, the CN link predictor can be implemented to run in O(n〈k2〉) time [35, 
36], and the L3 link predictor in O(n〈k3〉) time [36].

To analyze the time complexity of L3N and L3N’, we proceed as follows. First, the sets 
U and V for every pair {x, y} of non-adjacent nodes are constructed by checking, for 
each a in N(x) and each b in N(y), if the edge {a, b} exists in G; if so, a is included in U 
and b is included in V. This step takes O(|N (x)| · |N (y)|) time for each {x, y} , and sum-
ming over all {x, y} yields a total contribution of this step to the total running time that is 
∑

x

∑

y O(|N (x)| · |N (y)|) = O(
∑

x |N (x)| ·
∑

y |N (y)|) = O(m2).
Next, either Formula (6) or Formula (7) is evaluated for each pair {x, y} of non-adjacent 

nodes. For each such pair, O(|N (x)| · |N (y)|) factors of the form f(A, B) are multiplied 
together. As above, summing over all {x, y}-pairs shows that in total, O(m2) f(A, B)-values 
need to be computed and multiplied. To compute the individual f(A, B)-values efficiently, 
all graph neighborhoods, U-sets, and V-sets are preprocessed and stored in hash tables 
(one hash table for each set) using O(m2) time, after which checking if a node belongs to 
any set of the form N(a), U, or V takes O(1) time. Then, the set intersection operation 
A ∩ B can be implemented by looking up each of the elements of the smaller set in the 
hash table for the larger set, thus taking O(min{|A|, |B|}) time. For the set union opera-
tion A ∪ B , one has to access all elements of both sets if the intersection is empty, which 
takes O(|A| + |B|) time. This means that for f = f1 or f = f2 , since every f(A, B) applies 
the intersection and union operations to sets of size at most n, the value of any f(A, B) 
can be obtained in O(n) time.

In summary, the time complexity of L3N and L3N’ is O(m2 +m2 +m2 · n) = O(m2n) . 
Since m = 1

2 · n · k , the time complexity can also be expressed as O(n3k2).

Materials
In this section, we will give a brief overview of the PPI datasets that were used in our 
computational validations and the other link predictors that were compared to L3N.

Datasets

Our computational validations involved three types of datasets. The first one, the 
primary datasets, consisted of datasets based on systemically curated PPIs from the 
literature, namely Lit-NB-13[42], Lit-BM-13[42], BioGRID[38], STRING[39], and 

(7)
P
(L3N ′(f ))
xy = f (N (x),U) · f (N (y),V ) ·

∑

U ,V

f (N (u),V )

· f (N (v),U) · f (N (x),N (v)) · f (N (y),N (u))
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MINT[40]. For BioGRID, STRING, and MINT, we selected two organisms from 
these three datasets that represented small-scale and large-scale data, respectively: 
the well-studied model yeast (Saccharomyces cerevisiae, strain S288C), and human 
(Homo sapiens). Lit-NB-13 and Lit-BM-13 consist only of human PPIs. We included 
multiple primary datasets because the methodology used to obtain them and their 
confidence thresholds often differ[44]. For example, STRING includes predicted PPIs, 
unlike the other datasets. The second type of datasets we considered were reference 
interactome screened and generated from a single experimental source. This includes 
(ordered by their publication date) HI-II-14[42], Hein et  al.[43], and HuRI[41]. All 
the PPIs in the reference interactomes are human PPIs. The third type of dataset 
was a synthetic dataset. To be precise, we used a synthetic dataset provided by the 
“International Network Medicine Consortium Protein–Protein Interactions Predic-
tion Challenge”[37] that had been generated based on the gene duplication-mutation 
model[45].

For some primary datasets, which are not necessarily binary PPIs, we used the data-
sets’ annotations to extract the binary PPIs only as follows: ’physical’ for BioGRID; 
’binding’ for STRING; ’direct interaction’, ’physical association’, and ’association’ for 
MINT. Lit-NB-13 contains non-binary PPIs only but was previously preprocessed in 
the study[42] so that it can be represented by binary PPIs. (This dataset of non-binary 
PPIs was included here in order to make a comparison to the L3 link predictor since 
this dataset was also used in [18].) For the reference interactomes and the synthetic 
dataset, all the PPIs were binary interactions. Next, every directional PPI was con-
verted into a non-directional PPI, and all duplicate PPIs (due to multiple evidence in 
the literature) were excluded. The file size and the number of nodes, PPIs, candidate 
PPIs, and self-interacting proteins for each dataset are listed in Table 1.

Table 1  Overview of the PPI datasets used in the experiments

“Cand. PPIs” refers to the mean number of candidate PPIs for its ten sampled datasets

“SIPs” refers to the number of self-interacting proteins

*Denotes the combined file size of multiple essential metadata files

**Indicates that the (pre-processed) dataset was downloaded from the repository of the study by Kovács et al.

Dataset \Number of Size (MB) Nodes PPIs Cand. PPIs SIPs

Synthetic PPI dataset

Wang et al.[37] 0.547 8,272 52,922 29,816,060.1 480

Saccharomyces cerevisiae (Yeast)

BioGRID[38] 316 7085 113,116 20,045,849.4 1739

STRING[39] 85.5* 4673 94,529 9,212,026.6 0

MINT[40] 38.3 4049 16,927 5,980,266.7 0

Homo sapiens (Human)

BioGRID[38] 166 24,760 452,684 220,833,040.0 2900

STRING[39] 717* 15,668 308,614 88,982,499.1 12

MINT[40] 55.0 7,534 22,324 15,493,875.9 0

HuRI[41] 161 8109 51,127 21,899,033.2 0

HI-II-14[42] 0.185** 4298 13,868 5,165,263.5 518

Hein et al.[43] 0.368** 5457 28,780 10,939,287.2 1127

Lit-BM-13[42] 0.135** 5545 11,045 8,147,585.2 890

Lit-NB-13[42] 0.064** 3391 4906 2,738,996.0 518
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Link predictors

The L3N and L3N’ predictors, using each of the two similarity metrics f1 and f2 from 
Sect.  4.1, were compared to five other link predictors in the literature, along with an 
extra negative-control predictor that selected PPIs uniformly at random. Table 2 sum-
marizes the link predictors used in the experiments. The link predictors in our study can 
be classified as CN-based or L3-based link predictors. The former compute Pxy using 
primarily information derived from traversing the immediate common neighbor sub-
graph, whereas the latter iterate over P4-subgraphs. The mechanisms of these link pre-
dictors can be summarized as follows: CN infers edges according to the principle shown 
in Fig.  1a; CRA infers edges using the f1 similarity metric as explained in Sect.  4.1.1; 
L3 infers edges based on the principle shown in Fig. 1b; Sim infers edges using the f2 
similarity metric defined in Sect. 4.1.2; and CH2 rewards edges for which the nodes in 
U and V are connected to many other nodes in U ∪ V  but not connected to many nodes 
outside of U ∪ V .

Statistical analysis

The following standard statistical methods were employed. All statistical significance 
tests (p-values) were implemented by using a two-tailed independent two-sample t-test 
in the Python Scipy package[46]. All precision-recall (PR) curves[47] that evaluate PPI 
predictions were computed using the number of true-positive PPIs (tp), false-positive 
PPIs (fp), and false-negative PPIs (fn), where the precision is defined as tp

tp+fp , and the 
recall is defined as tp

tp+fn . The area under curve (AUC) of any arbitrary curve was com-
puted using the trapezoidal rule in the scikit-learn package[48] in Python. In the figures 
presented in the following sections, error bars denote standard deviation unless other-
wise stated.

Evaluating link predictors in simulated L3 graphs
In this section, we present the results of our first set of computational validations, 
designed to test how well the L3N link predictors realized the L3 principle compared to 
the other predictors in Table 2 in some simulated scenarios. The goal here is to deter-
mine, as a starting point of our investigations, how sensitive our approach is to changes 
in ideal L3 graphs, as compared to the other existing link predictors. Note that since real 
PPI networks are not ideal L3 graphs in practice, the results in this section alone do not 

Table 2  Overview of the link predictors used in the experiments. In the table, A = N(x) ∩ N(y) and 
c = U ∪ V  . (For the other definitions, refer to Sects. 2 and 3)

Type Link predictor Score function Pxy =

CN-based Common Neighbors (CN)[20] |N(x) ∩ N(y)|

CRA[32] ∑

a∈A
|N(a)∩A|
|N(a)|

L3-based L3[18]
∑

U,V
1√

|N(ui )|·|N(vj )|

CH2_L3 (CH2)[23] ∑

U,V

√
(1+|N(u)∩c|)·(1+|N(v)∩c|)

√
(1+|N(u)\c)\{x ,y}|)·(1+|N(v)\c)\{x ,y}|)

Sim[33] ∑

V
|N(v)∩N(x)|
|N(v)∪N(x)| +

∑

U
|N(u)∩N(y)|
|N(u)∪N(y)|

NormalizedL3 (L3N) predictors Plug in either f1 or f2 into Formula (6) or (7)

control rand Rank the edges uniformly at random
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directly imply that our approach will work well on real datasets; the performance on real 
datasets will be evaluated in Sect. 7 below.

The methodology is as follows. We start with an ideal L3 graph G (recall the defini-
tions from Sect.  4) consisting of two non-adjacent nodes x and y, 50 nodes in the set 
U, and 50 nodes in the set V. Then, in the simulations, we add or remove edges from G 
that induce changes in the Pxy-scores computed by the link predictors. By modifying an 
ideal L3 graph in this way, we can see the relative sensitivity of each link predictor when 
dealing with changes that make G diverge from its ideal form. From here on, an edge of 
the form {ui, vj} , where ui ∈ U  , vj ∈ V  , and i  = j , will be referred to as a compatible edge. 
Similarly, an edge of the form {ui,uj} where ui,uj ∈ U  and ui  = uj , or of the form {vi, vj} 
where vi, vj ∈ V  and vi  = vj , or of the form {x, vi} where vi ∈ V  , or of the form {y,ui} 
where ui ∈ U  , is called an incompatible edge.

To compare different link predictors, since the range of scores for each link predictor 
may differ, we normalize all their scores to values between zero and one. The rand link 
predictor is not considered here since it cannot generate a link prediction score, so we 
use an alternative control predictor that simply counts the number of P4 ’s between the 
two given nodes x and y instead. CN-based predictors are also not considered here, since 
their goal is not to evaluate features of P4 , so whether they are sensitive to changes in an 
L3 graph does not matter. (The results for the CN-based link predictors are still included 
in Additional file 1: Fig. S1 for completeness.)

Removing compatible edges

Our first simulation started with the ideal L3 graph G and removed one of the com-
patible edges, chosen uniformly at random, from G in each iteration until all the 
(50 · 50)− 50 = 2450 compatible edges had been removed. Since the 50 edges of the 
form {ui, vi} were never removed, the four L3-elements x, y, U, and V remained the same 
throughout the simulation. In every iteration, Pxy for each link predictor were computed. 
This was repeated ten times, and the variance (in terms of the minimum and maximum 
values) was calculated.

Figure 4a shows the results. (The results for L3N are plotted separately in Additional 
file 1: Fig. S1a since they overlap with L3N’.) As can be seen by looking at the curve for 
the control predictor, the number of P4 ’s decreases as the number of remaining com-
patible edges decreases. Therefore, the Pxy-score of a well-functioning L3 link predic-
tor should decrease at the same rate as or faster than the control predictor, achieving 
a smaller AUC. Here, L3N’( f2 ) outperformed all the other predictors, and CH2 and 
L3N’( f1 ) also did quite well. The same applies for L3N( f1 ) and L3N( f2 ) in Additional 
file 1: Fig. S1a.

Interestingly, L3 was less sensitive than the control predictor, and this can be attrib-
uted to the following: in early iterations, many pairs of nodes from U and V contribute to 
the score, and since these nodes have a high node degree, each pair has a low L3 score. 
Their individual contributions are consequently very small, which means that when one 
edge is deleted, the score computed by L3 remains close to its initial score. In contrast, 
in later iterations, few pairs of nodes from U and V contribute (and these nodes have a 
lower degree), so deleting an edge affects the score more. This indicates that the L3 link 
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predictor fails to fully implement the L3 principle in the sense that it is insensitive to 
minor changes inside an ideal L3 graph with high-degree nodes.

Adding incompatible edges

The second simulation was complementary to the one in Sect.  6.1. Starting from the 
ideal L3 graph G, one incompatible edge was inserted into G in every iteration until all 

the 
(

50
2

)

+

(

50
2

)

+ 50+ 50 = 2550 incompatible edges had been inserted. Each edge 

to be inserted was chosen uniformly at random among the incompatible edges that had 
not been inserted yet. The simulation was also repeated ten times and the results are 
plotted in Fig.  4b. (As above, the results for L3N are plotted separately in Additional 
file 1: Fig. S1b since they overlap with L3N’.)

In this simulation, one might expect to see strictly decreasing scores as additional 
edges are inserted into G, disrupting its ideal L3 structure. However, as shown by the 
control predictor, the addition of incompatible edges increases the number of P4 ’s 
non-linearly because the more edges that already exist in G, the more P4 ’s between x 
and y will be created for each additional edge. Therefore, any L3-based predictor will 
eventually show an increasing score. Yet, L3-based predictors with proper penaliza-
tion should still be less sensitive than the control predictor. By this, we mean that 
for a link predictor, the partial AUC starting from the point on the x-axis where its 
minimum y-value occurs should be smaller than that of the control predictor. Here, 
L3N’( f1 ) and L3N’( f2 ) outperformed all the other predictors: all L3 predictors show 
an initially decreasing score as expected, but L3N is the least sensitive during the 
increase in scores as demonstrated by it having the smallest partial AUC. (The same 

Fig. 4  Changes in scores for different link predictors when an ideal L3 graph is modified by: a removing 
compatible edges; and b adding incompatible edges. The shaded regions denote the variance (the minimum 
and maximum values) among repeated simulations, and the solid lines denote the medians. The AUC bar 
charts correspond to the respective plots. In b, a Savitzky-Golay filter using a polynomial of degree 3 and a 
window size of 21 was applied to make the curves smoother
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applies for L3N( f1 ) and L3N( f2 ) in Additional file 1: Fig. S1b.) Once again, L3 had the 
highest AUC and was the least sensitive to changes of the form of incompatible edges 
being added. This is because L3 normalizes based on the node degrees rather than 
according to specific properties like the presence of incompatible edges. In short, the 
results of the simulations in this section show that among the different link predic-
tors, L3N is the most sensitive to small changes in an ideal L3 graph.

Link prediction in PPI datasets
In this section, we computationally evaluate the predictive power and biological sig-
nificance of L3N using real PPI datasets. Applying different link predictors to datasets 
prepared by Monte Carlo sampling, we computed the scores of all non-neighboring 
pairs of nodes x and y (called candidate edges) and ranked them according to their 
scores. Unless otherwise noted, we then selected the k top-ranked candidate edges to 
be the set of predicted edges, where k denotes the number of edges that were removed 
from that dataset in the sampling preprocessing step. (In other words, the accuracy, 
precision, and recall would all be 100% if and only if the predicted edges were exactly 
those that had been removed earlier.) Finally, the performance of the various link pre-
dictors was evaluated by analyzing the sets of edges that they had predicted.

To compare the performance of link predictors, we use PR curves; see Sect. 5.3 for 
definitions. In general, the larger the AUC of such a curve (referred to as PR AUC 
from here on), the better[49].

Comparing L3N to L3 on previous datasets

Our first computational comparison between L3 and L3N used the same datasets and 
conditions as the study that introduced L3[18]. To do the computational cross-valida-
tion, they first downloaded two primary datasets and two reference interactomes, and 
prepared ten sample datasets for each full dataset by removing 50% of the PPIs uni-
formly at random (Monte Carlo sampling). After obtaining the link prediction scores 
for all candidate PPIs, they calculated the precision and recall of the link predictors 
by validating each predicted PPIs in the order of their scores, until they reached a 
recall of 10%. Then, they compared their results with CN. In our study, we compared 
their results to L3N’ and the outcome is shown in Fig. 5 (results for L3N can be found 
in Additional file 1: Fig. S2).

According to Fig. 5, L3N’( f1 ) beats L3 in one case (Hein et al.), L3 beats L3N’( f1 ) 
in two cases (Lit-BM-13 and Lit-NB-13), and L3N’( f1 ) and L3 exhibit a similar per-
formance in one case (HI-II-14). Considering that L3N evaluates xy node pairs using 
not only the properties of existing PPIs, but also PPIs that are absent, PPI networks 
that are highly incomplete will likely give false information to L3N, leading to the 
predictions being ineffective. This would explain why L3N performs slightly better in 
Fig. 5d), corresponding to the dataset with the most PPI coverage among the four. The 
next subsection will compare the link predictors’ performance on various datasets 
that systemically curated PPIs from the literature.
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Statistical significance of L3N link predictions in primary datasets

Motivated by the results above, we conducted further computational experiments under 
the same setup using three primary datasets of yeast: BioGRID, STRING, and MINT. To 
expand the scope, the other link predictors mentioned in Sect. 5.2 were also included. 
Figure 6a shows the PR curves and PR AUC-values of the link predictors. Note that the 
results for the negative-control link predictor (rand) have been deferred to the Addi-
tional file 1 and omitted from Fig. 6 because its PR AUCs are too insignificant to visual-
ize. We removed self-interacting proteins (SIPs) in these datasets because we are only 
interested in binary PPIs of different proteins. For completeness, the SIPs have been 
included in Additional file 1: Fig. S3 and it can be seen that the difference to Fig. 6a is 
minimal because the number of SIPs is actually very small (see Table 1). Comparing the 
results in Fig. 6a to Fig. 5, we found that now L3N’ not only performs better than L3 in 
all scenarios, but also better than most of the other link predictors in terms of PR AUC. 
Moreover, L3N’ is slightly better than L3N (see Additional file 1: Fig. S4), so we will focus 
on L3N’ from here on.

Adding false information into primary datasets

In Sect. 7.1, we hypothesized that false information may affect the performance of L3N, 
so we further investigated this issue by modifying the sampled datasets above by replac-
ing 5%, 10%, 15%, 20%, and 25% of the positive (real) PPIs with negative (non-) PPIs and 
then performing link predictions in the same way. Figure 6b shows the PR-AUC of each 
such dataset plotted against the percentage of PPIs replaced by negative PPIs. (Full PR 
curves in Additional file 1: Fig. S5, the p-values of all the predictors against the rand pre-
dictor in Additional file 1: Table S2, and the PR AUC of the rand predictor in Additional 
file 1: Table S3). As shown in the figure, the PR AUC of most link predictors decrease 
as there are more negative PPIs in the datasets, which is an expected outcome since the 

Fig. 5  Precision-Recall (PR) curves of the link predictors computed in the datasets used in the study[18] 
under the same methodology (50% of the PPIs removed, computations repeated 10 times, shaded regions 
indicate the standard deviations, PR is calculated until the recall reaches 10%). The accompanying bar charts 
show the predictors’ PR AUC-values (the larger, the better)
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scores of the candidate PPIs are computed based on more and more false information. 
The relative performance of different link predictors is also similar to that of Fig. 6a, and 
the precision appears to remain largely unaffected compared to the recall (Additional 
file 1: Fig. S5). However, examining the mean changes of PR AUC w.r.t. the changes in 
the ratio of negative PPIs (abbreviated as �AUC) reveals some interesting patterns. In 
short, a negative �AUC means the PR AUC generally decreases as there are more nega-
tive PPIs in the datasets. Therefore, a low �AUC implies the link predictor being more 
sensitive to negative PPIs and the quality of its prediction drops. Undoubtedly, among 
the L3 predictors, L3N has the highest �AUC across all three datasets, suggesting that 
indeed false information influence L3N more due to our approach, where we exhaus-
tively evaluate conditions that constitute an ideal L3 graph.

L3N link predictions in other human datasets

Next, we further expanded our analysis using the same setup as in Sect. 7.1 and using the 
remaining primary human datasets (BioGRID, STRING, and MINT) and a human refer-
ence interactome (HuRI), which is an updated version of the four datasets used in Fig. 5. 
As shown in Fig. 7, L3N’ has the best overall performance among the link predictors on 
the yeast datasets. This further supports our claim that L3N is good at predicting PPIs.

Fig. 6  Precision-recall (PR) curves and its AUC-values (PR AUCs) of the link predictors computed with a 50% 
of the PPIs removed in the datasets. The solid lines show the median values and the shaded regions indicate 
the variance (the minimum and maximum values). The accompanying bar charts show the predictors’ PR 
AUC-values (the larger, the better). b Using these datasets, either 5%, 10%, 15%, 20%, or 25% of the PPIs are 
replaced with negative (non-) PPIs. For each these datasets, the PR AUCs computed by a link predictor are 
extracted at each data point and interpolated as a dotted line. The mean relative change of PR AUC w.r.t. the 
changes in the ratio of negative PPIs are obtained and denoted as “mean relative � PR AUC” (the lower, the 
worse)
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We also tested a synthetic dataset from a recent International PPI challenge[37]. Due 
to the way that the dataset was modeled and generated, L3-based predictors have a sig-
nificant advantage over CN-based predictors and L3N was indeed the top predictor (see 
Additional file 1: Fig. S6).

L3N link predictions in different sizes of datasets

In Sect. 7.1, we mentioned that PPI coverage of a dataset could affect the performance 
of PPI link prediction. While we cannot assess the influence of PPI coverage on link pre-
dictions since we cannot know in advance how many of the PPIs remain undiscovered, 
we can nevertheless validate how different sizes of PPI networks affect link prediction. 
We ran the computational validations again on all the datasets using the same setup in 
Fig. 6a, except this time instead of removing 50% of the edges for Monte Carlo sampling, 
we removed either 40%, 30%, 20%, or 10% of the edges to prepare the sample datasets. 
The computed PR curves and PR AUC-values are plotted in Additional file 1: Figs. S7–
S10, and the outcome is similar to that of Fig. 6a.  (The p-values of the PR AUC of all 
predictors against the  rand predictor in Additional file  1: Table  S1 and S4.) To give a 
summary of Additional file  1: Figs. S7–S10, we extracted the PR AUC for each of the 
predictors in the computational experiments, and plotted them in Fig.  8 to show the 
changes in PR AUC as the number of edges removed in the dataset decreases. As shown 
in Fig. 7, L3N’( f1 ) outperforms all the other link predictors in most datasets with high 
statistical significance, indicating that L3N remains a good predictor as the size of the 
datasets grow. Another observation is that the PR AUC along the x-axis decreases, which 
may be because of the rapid drop in precision-recall or the drop in maximum recall as 

Fig. 7  Precision-Recall (PR) curves of the link predictors using the same experiment setup as in Fig. 6a, except 
here the datasets are human datasets: a–c primary human datasets and d a human reference interactome. 
Specifically, the setup is to remove 50% of PPIs for each datasets for ten times randomly at uniform to 
generate ten sample datasets, where the shaded regions illustrate the variance in terms of minimum and 
maximum value, solid line as the median, and the accompanying bar charts for PR AUC-values (the larger, the 
better)
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the percentage of removed edges in the datasets decreases (see Additional file 1: Figs. 
S7–S10). To investigate the reason for this, we evaluated the PR AUC of the random 
predictor as a negative control (Additional file 1: Table S5). There is a gradual decrease in 
the PR AUC as the number of removed PPIs decreases, suggesting that if fewer PPIs are 
removed then it is more difficult for a predictor to pick a real PPI at random.

Computation time of link predictors

In addition to the predictive power, another important aspect to consider in the evalu-
ation of link predictors is the computation time. Table 3 summarizes the computation 
times taken by the experiments in Fig. 7. The experiments were conducted using a setup 
of 14 cores and 32GB RAM. A larger setup consisting of 24 cores and 128GB RAM was 
used for the BioGRID Human and STRING Human datasets due to their massive size. 
For L3N’, the computation time increases more rapidly than for the simpler predictors 
CN, L3, and CRA as the datasets scale up (e.g., BioGRID Yeast and Human), in accord-
ance with the time complexity analysis in Sect.  4.3. Yet, if L3N’ is compared to other 

Fig. 8  Illustrating how the PR AUC of the link predictors changes as the percentage of PPIs removed from the 
datasets decreases. The dotted curves are interpolations of the data points (50%, 40%, 30%, 20%, and 10%). 
The bar charts show the AUCs of the PR AUCs, i.e., the total area under each dotted line (the larger, the better)
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non-trivial L3-based predictors (CH2, Sim), it can be seen that L3N’( f1 ) is able to obtain 
larger AUC-values (sometimes twice as large, according to Fig. 7) using much less time 
than CH2 and roughly the same amount of time as Sim. As for L3N’( f2 ), it’s slower in 
practice than L3N’( f1 ) although both methods have the same theoretical time complex-
ity (see Sect. 4.3).

Influence of data sampling to PPI link predictions

The final aspect that we considered here was the sampling approach used to prepare our 
datasets. We employed a Monte Carlo sampling approach, varying the sampling size 
(50%, 60%, 70%, 80%, and 90%), but another popular sampling approach is the K-Fold 
cross-validation (CV)[16]. To test whether the sampling approach has a significant effect 
on the performance, we tested a subset of the datasets (BioGRID Yeast, STRING Yeast, 
MINT Yeast) using the 5-fold CV. As shown in Additional file 1: Fig. S11, since 5-fold 
CV samples 80% of the dataset as the training set, it leads to a similar performance as 
in Additional file  1: Fig. S9, which also samples 80% of the datasets (except that it is 
repeated ten times). This demonstrates that the choice of sampling approach has a mini-
mum impact on the final outcome.

Overall, the above findings lead us to conclude that L3N’( f1 ) has the best predictive 
power in terms of precision-recall across datasets of different sample sizes, with trade-
offs in terms of the influence from false information (negative PPIs), at the cost of an 
increase in the computation time in some of the cases.

PPI confidence scores for L3N predictions in primary datasets

In addition to the statistical significance of L3N’ in PPI link prediction, we are also 
interested in computationally validating the biological evidence of the predicted PPIs. 
The first measure that we consider is the STRING confidence score[39]. The STRING 

Table 3  Average computation times (in minutes) with standard deviation (denoted by ±) for the 
experiments in Fig. 7

CN CRA​ L3 CH2_L3 Sim L3N’(f1) L3N’(f2)

BioGRID yeast

2.65± 0.06 2.51± 0.03 5.76± 0.08 46.9± 1.54 12.4± 0.24 11.9± 0.55 52.8± 1.18

STRING yeast

1.22± 0.11 1.2± 0.01 2.96± 0.88 10.3± 0.71 3.81± 0.07 6.35± 0.46 13.0± 0.6

MINT yeast

0.82± 0.03 0.81± 0.01 0.88± 0.01 0.91± 0.03 0.91± 0.02 0.9± 0.02 0.98± 0.06

BioGRID human

1.25± 0.01 1.12± 0.04 16.1± 0.37 117± 4.78 35.5± 3.6 27.9± 0.89 130± 5.00

STRING human

0.42± 0.01 0.45± 0.01 6.72± 0.09 25.3± 0.5 9.61± 0.17 12.0± 0.19 31.5± 0.71

MINT human

2.03± 0.14 1.93± 0.02 2.12± 0.11 2.17± 0.02 2.12± 0.02 2.13± 0.02 2.27± 0.04

HuRI human

2.87± 0.1 2.73± 0.03 3.28± 0.09 3.6± 0.06 3.41± 0.04 3.41± 0.04 3.74± 0.04

Synthetic

3.57± 0.07 3.38± 0.01 3.85± 0.03 4.13± 0.33 4.92± 0.07 4.92± 0.05 4.3± 0.14
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confidence score estimates the confidence of a PPI by evaluating evidence for the 
two proteins such as whether their genes co-express, whether the proteins co-occur 
phylogenetically, whether the proteins appear together frequently in the literature, 
and more. We extracted the STRING confidence scores from the STRING datasets, 
interpreting every null score as a zero. Figure 9a shows the mean STRING confidence 
scores of the predicted PPIs across different sample sizes of all datasets for every pre-
dictor. The random predictor (rand) has been omitted from the figure due to its insig-
nificance. According to the plots, L3N’ is the best predictor for the human dataset 
and the second-best predictor for the yeast dataset (after CRA). This validates com-
putationally that PPIs predicted by L3N’ are biologically relevant.

To investigate whether there is a correlation between the ranking of a predicted PPI 
and its STRING confidence score, we plotted the moving mean (window size of 100, 
10 steps forward in each iteration) of the STRING confidence score along with the 
ranking of the predicted PPIs in Fig. 9b for datasets with 50% of the PPIs removed. 
The figures for the rest of the sample sizes are included in Additional file 1: Figs. S12 
and S13. The moving mean shows that for every predictor, the predicted PPIs that 

Fig. 9  a The mean STRING confidence score across all sample sizes, and b the moving means of the STRING 
confidence scores for sample size 50%. The shaded regions in Fig. 8b illustrate the variance (the minimum 
and maximum values) in STRING confidence scores
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are ranked higher indeed have a higher STRING confidence score than those that are 
ranked lower. The difference between L3N’ and the other predictors is that, like in the 
situation in Fig. 9a, L3N’ is the best predictor for the human dataset where the pre-
dicted PPIs in general have higher confidence scores, and the second-best predictor 
for the yeast dataset.

Next, we computed the gene ontology (GO) Semantic Similarity (GOSemSim) scores 
of the predicted PPIs. The GOSemSim score estimates the similarity of two proteins 
based on the similarity of their so-called GO annotations that describe proteins in terms 
of their role as a cellular component, their role in molecular functions, and their role 
within biological processes. The implementation that we used was a GOSemSim pack-
age written in the R programming language [50] based on Wang’s method [51] with 
the BMA strategy; null GOSemSim scores are ignored in the computations. Additional 
file 1: Fig. S14 shows the GOSemSim scores of the predicted PPIs of all predictors across 
the datasets of different sample sizes. The link predictors are separated for comparison 
according to the principle they are based on (Table 2: CN-based, L3-based, or control). 
While the differences between predictors are less striking than in the experiments above, 
we can observe that the CN-based predictors have better GOSemSim scores than the 
L3-based predictors in general. This is natural because CN characterizes protein pairs 
with similar functions (Sect. 2.1). Among the L3-based predictors, we can see that L3N’ 
beats the others with statistical significance (in terms of AUC-values using student’s 
t-test) for four of the seven datasets. Hence, PPIs that are ranked highly by L3N’ may 
possess some functional bias that is encouraged by GOSemSim, e.g., physical PPIs with 
high L3 scores may reside in neighboring cellular components.

Differences in PPIs predicted by CRA and L3N

The CRA predictor, a CN-based predictor, is one of the best link predictors in the above 
computational validations but with a huge variance in its performance. For example, it 
appears to outperform L3N in some datasets as shown in Fig. 8 and Fig. 9, but it is also 
easily influenced by negative PPIs as shown in Fig. 6b. We hypothesized that this is due to 

Table 4  Overlap ratios of predicted PPIs between different types of link predictors for datasets with 
50% of the PPIs removed (Table S6 and S7 show the complete data)

’CN-based’ and ’CRA & L3N’(f1 )’ denotes the overlap ratio of the predicted PPIs between CN and CRA, and between CRA and 
L3N’(f1 ) respectively. For ’L3-based’, since there are multiple L3-based predictors (L3, CH2, Sim, L3N’(f1 ), and L3N’(f2)), they 
calculated the overlap ratio for each pair of predictors. We then took the mean of these ratios as the final value, and also 
computed the standard deviation. The same applies to ’CN & L3-based’ where a CN predictor is compared to an L3-based 
predictor. Blue color denotes a relatively higher overlap ratio and red a relatively smaller overlap. Ratios are rounded to 
nearest integers

Overlap ratio of predicted PPIs between types of link predictors

Dataset \overlap between CN-based L3-based CN & L3-based CRA & L3N’(f1)

BioGRID Yeast 69% 79 ± 10 % 30 ± 6 % 35%

STRING Yeast 89% 92 ± 2 % 72 ± 6 % 74%

MINT Yeast 43% 72 ± 8 % 32 ± 2 % 34%

BioGRID Human 64% 69 ± 4 % 38 ± 4 % 37%

STRING Human 54% 58 ± 4 % 44 ± 3 % 44%

MINT Human 37% 71 ± 10 % 4 ± 2 % 5%

HuRI 64% 79 ± 7 % 24 ± 3 % 23%
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the different paradigms adopted by L3N and CRA in their respective network modeling, 
so we further investigated the similarity between the pools of PPIs predicted by CRA 
and L3N’( f1 ), i.e., the ratio of the overlap. Surprisingly, as shown in Table 4, these two 
predictors show a lower overlap ratio compared to the mean overlap ratios of L3-based 
predictor pairs or CN-based predictor pairs. A lower overlap ratio can also be seen even 
if we compute overlap ratios of pairs where one predictor is CN-based and another is 
L3-based predictor. This implies that the PPIs predicted by L3N are similar to those pre-
dicted by other L3 predictors, although L3N is better at ranking them (see Sect.  7.2). 
Furthermore, this suggests that since L3N and CRA predict differing sets of PPIs with 
competing performance based on different assumptions, the two methods could perhaps 
be used together in a complementary way to obtain even better link predictions.

Discussion
We have proposed a way to implement the L3 principle in link predictors that we call 
NormalizedL3 (L3N). Using the L3N predictors, we are able to deal with hypothetical 
PPI subgraphs much better than other L3 link predictors (Sect.  6). L3N can also pre-
dict PPIs with strong statistical significance (Sect. 7.2) and sufficient biological relevance 
(Sect. 7.3). In summary, we have demonstrated that the L3N predictors are effective pre-
dictors of missing protein–protein interactions that are better than previous methods.

The modeling strength of L3N comes from two main ideas, the realization that the L3 
principle can be decomposed into a series of computations that compare graph neigh-
borhoods, and that these comparisons can be computed using similarity metrics. These 
address what the other L3 predictors are lacking: the original L3 predictor[18] simplifies 
the L3 principle without sufficiently considering the compatibility of protein interfaces; 
the CH2 predictors[23] merely adopt the modeling approach of the CRA predictor in 
L3 subgraphs, which again does not address protein compatibility; and the Sim predic-
tor[33] models protein compatibility using the Jaccard coefficient but only partially since 
it lets the sets U and V contribute to the final score independently, ignoring the biologi-
cal motivation of the L3 principle (see also Fig. 1d).

Apart from the improved link prediction performance of L3N, these predictors can 
also be used as a heuristic to narrow down candidate proteins for biological problems. 
A study by Liu et al.[22] improves protein folding recognition by constructing a protein 
similarity network based on the L3 principle to identify proteins that could fold in simi-
lar ways as the query protein. Since adding network data yields better performance than 
using protein sequence and profile data only, we believe that L3N could also be used in 
other similar scenarios.

The focus of the present study was CN- and L3-based link predictors. In general, PPI 
link predictors are not limited to these principles, nor do they have to rely on topologi-
cal properties only; e.g., as mentioned in Sect. 2, there are methods besides iterating and 
scoring candidate edges. However in PPI link predictions, prior biological knowledge is 
perhaps more important to obtain accurate characterizations. For example, if the goal is 
to reveal undiscovered PPIs based on high-throughput binary PPI data, it is important to 
also ensure the reliability of the underlying data. To this end, advances have been made 
integrating node-centric data like protein sequence data[52] and gene ontology data[53] 
to improve PPI prediction. The idea here is that, instead of experimentally evaluating 
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each candidate PPI to complete the PPI interactome, we focus on generating data related 
to the proteins (nodes) and use this data to help predict PPIs computationally, which 
could be less time-consuming as there are more candidate edges to check than nodes 
to check. For example, protein sequence data can also be generated by high-throughput 
methods, which can provide supporting data for PPI predictions in a timely manner.

We anticipate that the use of biological network data will become even more prevalent 
in various biological problems. Therefore, methods such as L3N may turn out to be use-
ful for many other applications beyond link prediction in protein–protein interaction 
networks in the future.
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