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Abstract

Positron emission tomography (PET) is a highly sensitive and versatile molecular imaging 

modality that leverages radiolabeled molecules, known as radiotracers, to interrogate biochemical 

processes such as metabolism, enzymatic activity, and receptor expression. The ability to probe 

specific molecular and cellular events longitudinally in a non-invasive manner makes PET imaging 

a particularly powerful technique for studying the central nervous system (CNS) in both health 

and disease. Unfortunately, developing and translating a single CNS PET tracer for clinical use 

is typically an extremely resource intensive endeavor, often requiring synthesis and evaluation of 

numerous candidate molecules. Existing experimental approaches and methods begin to address 

this challenge by working to predict likelihood of success prior to costly in vivo PET studies, 

however, most require significant investment of resources and possess substantial limitations. In 

the context of CNS drug development, significant time and resources have been invested into 

development and optimization of computational methods, particularly involving machine learning, 

to streamline the design of better CNS therapeutics. Analogous efforts developed and validated 

for CNS radiotracer design are however conspicuously limited. In this perspective article we 

overview the requirements and challenges of CNS PET tracer design, survey the most promising 

computational methods for in silico CNS drug design, and bridge these two areas by discussing the 

potential applications and impact of computational design tools in CNS radiotracer design.
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1. Background and Significance

Radiochemistry can be broadly defined as the practice of appending radioactive isotopes 

to bioactive molecules. The resulting compounds, known as radiopharmaceuticals, are 

frequently used as molecular imaging tools and therapies in basic science and clinical 

research. One key application of radiochemistry entails radiolabeling molecules with 

short-lived positron (β+) emitting radioisotopes (e.g. fluorine-18, carbon-11, gallium-68, 

copper-64). These radiopharmaceuticals, also referred to as positron emission tomography 

(PET) tracers, are subsequently administered to animals or human patients and detected 

via a PET scanner. PET imaging allows for extraordinarily sensitive and non-invasive 

in vivo visualization of many various cellular and biochemical processes including 

metabolism, enzymatic activity, biodistribution, and receptor occupancy. These attributes 

make PET a highly effective modality for detecting, monitoring, and studying pathological 

processes in numerous clinical contexts, such as cancer, heart disease, neurological disease, 

and infection.1–3 More recently, the practice of pairing diagnostic PET agents with 

complementary probes labeled with therapeutic radionuclides has given rise to the rapidly 

growing area of theranostics for detecting and treating cancer.4 The growing impact of PET 

imaging and radiotherapy is reflected in a recent uptick in approval of radiopharmaceuticals 

by the Food and Drug Administration (FDA): to date, twenty-four radiopharmaceuticals 

have been approved by the FDA, with eighteen of which having gained clearance in the past 

decade.5
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Despite a recent surge in approval and clinical use of radiopharmaceuticals, design and 

translation of novel, clinically impactful small molecule PET tracers remains hampered by 

an intrinsically resource-intensive development process with limited throughput and a high 

rate of attrition (Figure 1).6–10 Each step in the radiopharmaceutical development process 

presents unique, nontrivial challenges: lead compound identification is typically followed by 

multi-step synthesis and characterization of both the non-radioactive reference standard and 

one or more radiosynthetic precursors. Although currently available tools such as in vitro 
assays and high throughput screening (HTS) methods are useful in the preliminary design of 

candidate molecules and de-risking candidates early on by screening individual aspects of in 
vivo success (e.g. affinity, metabolism11,12, PgP-efflux13–15, etc.), comprehensive evaluation 

of novel tracer candidates ultimately requires radiolabeling and preclinical in vivo imaging 

studies.16–18 To that end a suitable radiosynthetic methods must be developed and applied to 

radiolabeling the precursor molecule, often requiring prolonged screening and optimization 

of reaction conditions to yield specialized automated synthetic methods for reproducibly 

producing high quality radiopharmaceuticals. The development of radiolabeling methods, 

requires the need to handle radioactivity while minimizing radiation dose to the chemist; 

these considerations necessitate specialized equipment and mean that radiosynthesis must 

either be automated or performed at a small scale if performed manually, effectively 

negating application of traditional high throughput reaction optimization approaches to 

radiosynthesis. Cumulatively, applying in vitro drug design methodology in conjunction 

with the unique challenges presented by radiosynthesis creates a workflow that is extremely 

resource intensive, which can be a particularly challenging hurdle in the context of academic 

research.

While presently available de-risking approaches are useful in the early stages of tracer 

development, an appreciable number of tracer candidates are still carried through and 

ultimately fail during in vivo evaluation after significant investment of resources, due 

to factors that are challenging to accurately predict in vitro, such as metabolic stability, 

biodistribution, and the kinetics of uptake and efflux.7,8 Lead molecule design and 

optimization is particularly challenging for tracers targeting biomarkers within the central 

nervous system (CNS), where the stringent nature of the blood-brain barrier (BBB) 

adds additional considerations and further reduces likelihood of success.19,20 It is thus 

imperative to establish fast, resource-efficient methods that complement currently available 

approaches to effectively identify promising tracer candidates and determine appropriate 

radiolabeling conditions for radiopharmaceutical synthesis. Such methods would both 

enhance efficiency and productivity in industrial research settings, as well as improve 

efficiency and accessibility in academic research settings which typically have different 

infrastructure, resource pools, and end goals. Ultimately, this would help drive a surge in 

design and translation of clinically impactful CNS PET tracers.

While a wealth of published research focuses on in silico computational and modeling 

approaches for therapeutic small molecule development, unique aspects of radiochemistry 

necessitate the creation and validation of analogous yet specialized methods to augment 

radiotracer design and radiosynthetic method optimization.7,8,21–25 Machine learning (ML), 

a computational approach that applies various automated algorithms to data of interest to 

form models and uncover underlying patterns, has a rapidly growing number of applications 
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in therapeutic design and synthetic methodology; however, this exciting area of research 

has not yet been extensively explored in radiochemistry.21,25,26,27 Broadly, ML approaches 

can be divided into three categories: supervised, unsupervised, and reinforcement learning.26 

Selection of the appropriate approach for a given application is largely context dependent, 

and combinations of all three are often highly effective. In supervised learning, datasets 

are further sub-divided into discrete training and test sets. ML algorithms are given the 

training set, which consists of data with inputs (features) and corresponding desired outputs 

or labels (a class or a numerical target for a classification or regression task, respectively).26 

Different algorithms and internal variables (hyperparameters) can be evaluated by either 

internal cross-validation (performance on a randomly selected subset) of the training set, 

or application of the resultant model to the test set. Upon final selection of a model 

and associated algorithm, good practice dictates that the performance of the system be 

confirmed by assessing a validation set, a separate dataset comprised of data similar but 

distinct from both training and test sets to which the models and algorithms have never 

been exposed. Unsupervised learning, in contrast, leverages a variety of algorithms to extract 

attributes from, visualize clusters, detect anomalies, and identify internal associations in 

large unlabeled datasets.26 This approach can identify high dimensional patterns beyond the 

readily observable and transform the data to make those patterns apparent. Reinforcement 

learning is not an analytical method but rather a vehicle for exploring and extrapolating upon 

known data: In reinforcement learning systems, the learning actor, an agent representing 

the iteratively evolving algorithm, interacts with an environment in which a number of 

choices are available.26 In this process, the actor is rewarded or penalized based on its choice 

and, over many choices, ultimately develops a policy in which rewards are maximized and 

penalties minimized, as knowledge of the environment is accumulated.26

Various aspects of radiopharmaceutical science, including clinical radiology and nuclear 

medicine (e.g. image recognition and enhancement), are beginning to utilize ML.28,29 

Despite success in these areas, there is a conspicuous lack of ML utilization in the earliest 

stages of the radiopharmaceutical development process.28 We have previously explored in 

depth the significant potential impact of ML in optimizing radiosynthetic methodology.21 

This perspective article will identify the current state-of-the-art and prominent challenges in 

radiotracer design, summarize key relevant applications of ML in therapeutic drug design, 

and bridge these two topics by exploring the immediate potential applications and benefits of 

incorporating ML in CNS radiotracer design.

2. Design and Optimization of CNS Penetrant Small Molecules

2.1. Approaches and Challenges in CNS PET Tracer Design.

Given the costly and time-intensive radiopharmaceutical development process and the high 

attrition rate of candidate small molecules, early identification of promising candidates is 

a challenging yet crucial aspect of novel radiopharmaceutical translation. This challenge 

is particularly salient when designing PET tracers for use within the CNS, where the 

stringent and complex nature of the BBB presents a significant obstacle (Figure 2).19,20 

Generally, a successful CNS PET tracer exhibits high binding potential (BP, as often 

defined as Bmax/KD, with preferred values being ≥10), high quantities of tracer present 
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in the brain, in addition to selective and specific binding to the target of interest.30 The 

amount of tracer present within the brain is impacted by factors including permeability 

across the BBB (ideally without active transporter [e.g. via P-glycoprotein {PgP}, breast 

cancer resistant protein {BCRP}] mediated efflux), metabolic stability, and plasma protein 

binding (PPB).19,20,31,32 Key pitfalls in radiotracer design include insufficient BP, high 

PPB, low/no passive BBB permeability (CNS uptake), active CNS efflux, high non-

specific binding (NSB), and/or significant off-target binding. Off-target binding typically 

manifests as non-selective or non-specific binding. Non-selective binding refers to binding 

of tracer to known receptors other than the target of interest and can be screened for 

through in vitro assays. Non-specific binding (NSB) is a highly prevalent, imaging-specific 

phenomenon that occurs when radiotracer binding is non-saturable (or cannot be blocked) 

and is observed as high background signal unrelated to target biomarker expression. 

NSB is extremely hard to predict without ex vivo tissue work or in vivo imaging 

studies but is generally thought to be correlated with high lipophilicity.8 These nuanced 

considerations in tracer design have been discussed at length in the literature and careful 

consideration has gone into leveraging this collective knowledge to establish best practices 

for radiopharmaceutical design; unfortunately, current workflows still demand synthesis and 

evaluation of numerous molecules to translate a single clinical radiopharmaceutical.6–8,30,33 

Appreciable physiological differences between mice and higher species such as non-human 

primates and humans (e.g. rodents express higher levels of promiscuous PgP, while 

primates have higher levels of BRCP) further limit the extent to which in vitro work and 

rodent models can de-risk a given compound prior to costly primate studies and clinical 

translation.19,20,31,32

In light of these numerous challenges, novel methods that allow researchers to identify and 

prioritize a refined group of only the most promising candidate molecules for synthesis and 

evaluation may significantly enhance the success rate of radiopharmaceutical development. 

While numerous in silico methods have been established for CNS drug development, there 

are relatively few analogous methods for radiopharmaceutical design.34,35 In one early 

effort, Pfizer leveraged computed physicochemical attributes (e.g., cLogP, polar surface 

area [tPSA], pKa, molecular weight [MW]) from a large library of well-characterized 

CNS therapeutic small molecules to develop mathematical algorithms to predict in vivo 
behavior and absorption, distribution, metabolism, and excretion (ADME) properties of 

62 successful and 15 unsuccessful CNS radiotracers.34,36,37 While this method is intuitive 

and straightforward to implement, the underlying dataset (containing few negative controls) 

limits the utility of the method for CNS tracer design. More recently, a second method from 

AstraZeneca attempted to differentiate successful CNS tracers from those limited by high 

NSB using in vitro measurements (binding affinity, NSB in brain tissue, and target protein 

expression) to calculate the predicted fraction of target-bound radiotracer in the brain.35 This 

tool effectively screened out tracers with high NSB, but the need for in vitro data limits the 

generalizability and throughput of this method.

The general principles, concepts, and workflow of these early efforts demonstrate the 

potential promise of well-designed in silico methods for CNS tracer design, while the 

method design and execution highlight significant challenges that must be addressed. The 

Pfizer methodology highlights the importance of careful dataset assembly, as the training 

Jackson et al. Page 5

ACS Chem Neurosci. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set used to develop this method is comprised solely of marketed small molecule therapeutic 

CNS drugs and drug candidates, as opposed to known CNS tracers.34 Given the appreciable 

differences in target parameters for orally administered CNS therapeutics in milligram 

scale doses vs. intravenously administered radiotracers (typically in nanogram-microgram 

scale doses), leveraging any given principle or concept to develop methods for CNS PET 

tracer design necessitates a robust underlying dataset of known, well-characterized CNS 

PET radiotracers.7,8 While further research is needed to fully elucidate and quantify the 

fundamental differences between therapeutics and tracers, building methods for tracer design 

from therapeutic molecule data risks biasing results towards molecules ideal for use as 

drugs but not necessarily as radiotracers. Accordingly, thoughtful compilation of suitable 

datasets is a key hurdle in method development: therapeutic drug development tools rely 

on libraries of hundreds to tens of thousands of well-characterized small molecules for 

design and validation, while the number of existing molecules that have been radiolabeled 

and published as PET radiotracers is orders of magnitude smaller in comparison.22–24,34–39 

Notably, bias against publishing negative results makes it especially challenging to identify 

unsuccessful tracer candidates for characterization and incorporation into both training/test 

and validation datasets. The Pfizer and AstraZeneca methods were both limited in this sense, 

since validation sets for both methods represented a relatively narrow subset of successful 

and unsuccessful tracers, only including successful tracers and unsuccessful candidates 

with prohibitively high NSB.34,35 While high NSB is a common pitfall in CNS tracer 

design, in silico tools must be designed and validated to examine other key considerations 

including passive CNS uptake and active efflux through assessment of both successful and 
unsuccessful tracers. A major hurdle and important component in addressing some of the 

above shortcomings is assembling requisite large and diverse datasets that include extensive 

in vivo data on known successful and unsuccessful CNS tracers: effective development and 

implementation of any novel approaches inspired by the work and concepts described herein 

will require cross-validation with in vivo data on CNS tracers.

2.2. In Silico Computational Tools for Design of Small Molecule CNS Therapeutics.

A number of user-friendly tools and methodologies have been developed for in silico 
delineation of desirable physicochemical property ranges and values for predicting CNS 

uptake and ‘druglikeness’ of therapeutic small molecules.22–24,36,40,41 By taking a range 

of approaches from statistical function-based assessments to ML, these methods use 

easily measured or calculated physicochemical properties to identify promising therapeutic 

candidates with high likelihood of in vivo utility. It is critical to note that, given the 

staggering complexity of in vivo biodistribution and metabolism, particularly in the CNS, 

conception of tools capable of predicting every facet of in vivo function is highly unlikely. 

However, studies in therapeutic drug development demonstrate that simple computational 

parameters and more complex aggregate functions based on these parameters have utility as 

in silico surrogates for key aspects of in vivo behavior (e.g., passive CNS uptake vs. active 

protein mediated transport across the BBB, metabolism).23,24

A seminal Pfizer study examined 119 CNS marketed drugs and 108 Pfizer clinical 

candidates and crafted a set of desirability functions based upon six fundamental 

physiochemical properties.36,37 These functions, combined into a facile algorithm dubbed 
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Multi-Parameter Optimization (MPO), used trends in physicochemical properties gleaned 

from the dataset to delineate ideal property ranges for each parameter and assess overall 

likelihood of suitability for use as a CNS drug. Notably, this work was also the foundation 

for the CNS PET tool from Zhang and colleagues, described above. Ghose et al. built on the 

original MPO work to develop a Technically Extended MPO (TEMPO), defining improved 

boundaries for ideal properties and considering an expanded set of eight parameters.40 

Further modifying the basic concept of MPO, Gunaydin proposed a probabilistic variation, 

pMPO, that took a different approach to analyzing five physiochemical parameters in order 

to describe likelihood of CNS uptake.41

Beyond MPO-inspired methods, several other tools have been developed to aid in 

drug design. Bickerton and co-workers leveraged the distributions of 8 physicochemical 

properties for 771 orally absorbed small molecules to develop an algorithm called the 

Quantitative Estimate of Druglikeness (QED).22 While this method did not focus exclusively 

on CNS drugs, the general approach is readily applicable to focus specifically on the 

CNS. SwissADME is a web-based drug design tool with a user-friendly interface and 

suite of calculated parameters comprehensively predicting key ADME properties for in 
vivo behavior. This method leverages WLOGP and tPSA as measures of lipophilicity and 

polarity to predict CNS uptake.42 Most recently, Gupta and colleagues published two papers, 

the BBB Score and Brain Exposure Efficiency (BEE) score, to distinguish “preferentially 

CNS and non-CNS active” molecules, and active transport across the BBB (influx, efflux), 

respectively.23,24 Cumulatively, these assorted methods provide a robust foundation and 

excellent source of inspiration for development of similar in silico tools specialized for CNS 

tracer design. While appreciable differences in lead molecule criteria mean that these tools 

cannot be directly applied to CNS tracer development, a combination of well-constructed 

datasets as well as inspiration taken from the general approaches and principles described 

above will provide an extremely strong basis for future method development for CNS tracer 

design.

2.3. ML Approaches to Small Molecule Design for CNS Therapeutic Development.

Supervised ML serves as a natural extension of these statistical and function-based 

approaches: ML is well-suited for interpreting data in high-dimensional information spaces 

that extend beyond what can easily be visualized, allowing simultaneous evaluation of 

numerous variables and interaction terms beyond one or two dimensions. This has been 

successfully applied to many individual aspects of therapeutic drug development, such as 

predicting sites for and products of metabolism.12,43 Several datasets have been generated 

for CNS drug development and numerous supervised learning algorithms applied to 

predicting penetrance across the BBB, and partitioning in the CNS vs. periphery.44–52 

While these predictive models consider several traditional physicochemical descriptors (e.g. 

MW, HBD/HBAs, rotatable bonds) as input descriptors for determining CNS uptake, the 

methodology used to acquire the experimental data to categorize individual datapoints 

imposes key limitations on the applicability of the corresponding dataset to building models 

for predicting CNS uptake of radiopharmaceuticals in humans. Some of these models 

explicitly define CNS uptake based on observed pharmacological effect within the CNS 

(i.e. ‘sedative’ or ‘antidepressant’ effects), failing to account for CNS penetrance that occurs 

Jackson et al. Page 7

ACS Chem Neurosci. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



without corresponding effect or below therapeutic threshold, and failing to distinguish CNS 

uptake from central effects occurring downstream of target-ligand interactions that take 

place outside of the brain in the periphery.53,54 Still other models determine experimental 

data for brain uptake by administering the compound of interest to rodents, sacrificing the 

animals post-injection, and determining the equilibrium concentration of analyte in the brain 

or the brain/blood partition.55 Because the conditions under which brain uptake is measured 

(i.e., a static timepoint ex vivo) and the appreciable physiological differences between mice 

and higher order species, these datasets intrinsically limit the generalizability of the resulting 

ML model built from this data.19,20,31,32 Without information sets directly relevant to CNS 

radiopharmaceuticals, there will be a persistent discrepancy between application of such 

models and in vivo results.

Careful cultivation of relevant datasets will address this issue by enabling cross-validation 

of any future methods with in vivo data. The quality of datasets will be directly correlated 

to the potential impact and power of emerging methods. Design of large robust and diverse 

datasets including experimental data on aspects if in vivo performance such as CNS uptake, 

PPB, NSB, and active efflux will allow for development and assessment of methods for 

predicting these same features. Finally, care should be taken to build datasets in such a 

way that accounts for differences across species when compiling available in vivo data: 

while human data represents the gold standard and is, by definition, available for successful 

tracers, oftentimes unsuccessful tracers are rightfully terminated prior to translation. In these 

cases, any conclusions drawn from this data should be carefully examined for relevance 

before inclusion in these datasets. For example, while CNS uptake into the brain in rodent 

models is generally representative of passive permeability across the BBB, known inter-

species differences in efflux pump expression (e.g., PgP, BCRP) means that the presence or 

absence of active efflux in rodents should not be extrapolated to higher species. Although 

assembling such datasets will certainly be both time and potentially resource intensive, the 

immense potential impact of novel approaches to CNS tracer design merits meeting this 

challenge.

Following the construction of an appropriate dataset and modeling through ML, a second 

challenge arises in interpreting the resulting model for optimizing prospective tracers. One 

strength of MPO scoring methods is that they enable facile interpretation of how various 

properties can impact the overall score of a tracer candidate.22–24,36,41 However, this often 

comes at the cost of overall accuracy in correctly categorizing test compounds.26 While 

ML models typically display increased accuracy, this comes at the cost of interpretability. 

Notable exceptions are linear-model based-ML classification and regression methods.26 

These models indicate the relative importance of variable terms from the magnitude of 

the variable’s coefficients, while decision tree-based algorithms can be interpreted by 

visualizing the model’s decision tree to elucidate how predictions were determined. While 

the most complex algorithms, such as neural networks, are considered “black boxes” in 

that they are difficult to interpret, the relative importance of descriptor variables can 

also be evaluated by permutation importance. In this statistical approach, all the values 

for a given variable are randomly permuted. A model is retrained on this single mixed 

variable dataset and the resulting drop (or lack thereof for low importance variables) in 

performance accuracy indicates how an input variable determines the outcome;56 however, 
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little indication of a target value or range of values for a property is provided to optimize 

towards, making it challenging to use from a human chemist perspective. Despite this, these 

high accuracy, low transparency models hold tremendous power as in silico surrogates for in 
vivo behavior.

It is readily apparent that large libraries of molecules can be rapidly screened to identify 

promising tracer candidates likely to meet a desired biochemical outcome, without the 

necessity of (radio)synthesis and preclinical evaluation (Figure 3). The less apparent 

but more powerful application arises in utilizing these models in a reinforcement 

learning system to “evolve” from the original candidate and allow generation of novel 

candidates optimized to satisfy the model (i.e., if lipophilicity is a problem for BBB 

penetrance, increase lipophilicity to achieve BBB crossing). In recent years, programmatic 

exploration of chemical space to generate novel molecules has been intensely studied for 

pharmaceutical development.57 In these instances, automatic manipulation of text-based 

(SMILES58–60, SMARTS61, SELFIES62) or graph-topology63,64 (scaffold65 or fragment66 

based) representations of molecules has been demonstrated to produce novel molecules 

and provide the basis for molecular manipulation choices available to a reinforcement 

learning agent. Multiple generative adversarial models for reinforcement have been 

previously demonstrated, in which one model competes to produce a novel molecule that 

is indistinguishable from a set of molecules with desired properties, in an effort to trick a 

second model trained to identify dissimilar molecules.57 More recently, reports have detailed 

approaches for generating novel, similar molecules from seeds (initial lead molecule).63,64,66 

In a particularly salient example, Zhou et. al. demonstrated the application of a deep 

learning neural network, known as a deep Q network, to estimate the future reward for 

a given choice by an agent in combination with reinforcement learning to maximize multiple 

properties, such as similarity to the seed molecule (maximizing Tanimoto similarity), while 

simultaneously optimizing drug-likeness (maximizing QED22).64 This approach mirrors how 

a chemist would intuitively adjust a molecule, albeit with the key benefit of being able to 

iteratively evaluate produced molecules upon generation in silico. Functionally, this implies 

that, upon development of a model that can accurately predict an objective function (i.e. 

BBB permeability or binding affinity) for a novel chemical entity, further iterative structural 

optimization can rapidly occur in silico. Molecules that display desired in vitro properties 

but suffer poor in vivo performance in other aspects can be automatically manipulated in 

both predictable and non-intuitive ways towards achieving desirable in vivo performance. 

Even molecular scaffolds that have been discarded due to poor permeability or binding 

potential may find renewed interest after in silico modification. In short, development of 

predictive models for radiochemistry affords not only enhanced predictivity for molecule 

translation success, but also an unprecedented opportunity to automatically generate and 

optimize novel structures without laborious synthesis and evaluation of each candidate.

3. Conclusion

Cumulatively, the work described here illustrates the high potential for optimized in 
silico methodology, particularly applications of ML initially established for therapeutic 

drug development, to streamline development of successful CNS radiopharmaceuticals. 

Extending and tailoring the concepts described above will accelerate and improve design, 
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development, and translation of clinically impactful CNS radiopharmaceuticals. Statistical 

function-based and ML-based approaches have complementary strengths and shortcomings, 

necessitating further investigation of both approaches and their potential synergy for future 

applications in radiopharmaceutical development. While statistical methods are highly 

transparent (i.e., they provide important insights into key properties and trends impacting in 
vivo behavior and thus enable facile method optimization), ML methods are comparatively 

opaque, often a “black box,” but offer an automated, scalable, and potentially less biased 

approach. Combining such methods with reinforcement learning models will provide the 

foundation for simulation-based optimization of novel entities, enabling time- and resource-

efficient design of novel CNS radiotracers.

Realizing the potential of these techniques will require overcoming a number of key 

challenges. Development of an applicable large and diverse dataset (of both positive and 

negative controls) is of paramount importance in both establishing powerful new approaches 

to CNS tracer design and cross validating these approaches with in vivo data to establish 

their utility. Effectively meeting these challenges, particularly in assembling viable databases 

to drive this important work, is best achieved through a concerted and coordinated effort 

between radiopharmaceutical scientists worldwide across both industry and academia. Such 

collaborative efforts will allow experts in the field to address the immediate resource 

demands and logistical challenges of assembling such a database, as well as future hurdles. 

Looking forward to applications in human health and translational medicine, the biases, 

trustability, and ethics of applying machine learning, as well as the logistics of implementing 

good machine learning practices (cGMLP) in compliance with the regulatory environment, 

must be considered.67 Importantly, the potential benefit of these applications sufficiently 

warrants addressing these complex issues: Used in conjunction with in silico approaches for 

other aspects of radiopharmaceutical science (e.g., radiosynthesis and image analysis), in 
silico tools for design and structural optimization of CNS PET tracers hold the potential to 

rapidly revolutionize design of novel radiopharmaceuticals, which will in turn undoubtedly 

have a positive impact on clinical nuclear medicine.
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Figure 1: 
The need for in vivo preclinical imaging studies, low throughput (screening 1–5 molecules 

at a time), and the iterative nature of tracer design pose hurdles to the clinical translation 

process. Graphic created in part with Biorender.com.
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Figure 2: 
The BBB is comprised of the endothelial cells making up the brain microvasculature which 

are interconnected via tight junctions, decorated with many influx and efflux transporters, 

and surrounded by a combination of basal laminae, pericytes, and extended astrocyte foot 

processes. This complex system presents multiple challenges in CNS tracer design. Graphic 

created with Biorender.com.
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Figure 3: 
Current in silico approaches in CNS tracer design categorize molecules as either successful 

or unsuccessful, leading to either termination of development or radiosynthesis and in vivo 
evaluation. Reinforcement learning approaches will allow for iterative in silico optimization 

of compounds categorized as unsuccessful, generating novel candidates with high likelihood 

of success.
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