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Abstract

Background: Use of targeted exome-arrays with common, rare variants and functionally 

enriched variation has led to discovery of new genes contributing to population variation in risk 

factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the 

plasma product D-dimer are important components of the fibrinolytic system. There have been few 

large-scale genome-wide or exome-wide studies of PAI-1, tPA and D-dimer.

Objectives: We sought to discover new genetic loci contributing to variation in these traits using 

an exome-array approach.

Methods: Cohort level analyses and fixed effects meta-analyses of PAI-1 (n = 15,603), tPA (n = 

6,876) and D-dimer (n = 19,306) from 12 cohorts of European ancestry with diverse study design 

were conducted, and included both single variant analyses and gene-based burden testing.

Results: Five variants located in NME7, FGL1 and the fibrinogen locus, all associated with 

D-dimer levels, achieved genome-wide significance (P < 5 × 10−8). Replication was sought for 

these 5 variants, as well as 45 well- imputed variants with P < 1 × 10−4 in the discovery using 

an independent cohort. Replication was observed for 3 out of the 5 significant associations, 

including a novel and uncommon (0.013 allele frequency) coding variant p.Trp256Leu in FGL1 
(Fibrinogen Like 1) with increased plasma D-dimer levels. Additionally, a candidate gene 

approach revealed a suggestive association for a coding variant (rs143202684-C) in SERPINB2, 

and suggestive associations with consistent effect in the replication analysis include an intronic 

variant (rs11057830-A) in SCARB1 associated with increased D-dimer levels.

Conclusion: This work provides new evidence for a role of FGL1 in hemostasis.
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Introduction

The use of targeted gene arrays with rare variants and functionally-enhanced variation 

has led to the discovery of new genetic loci contributing to population variation in risk 

factors including lipids, blood pressure, hematology traits including platelet, red cell and 

white cell measurements, clotting factors, and platelet aggregation.1-6 Fibrin D-dimer, 

tissue plasminogen activator (tPA) and plasminogen activator-inhibitor 1 (PAI-1) are 

important biomarkers and regulators of hemostasis. Plasma PAI-1 degrades tPA, as well 

as urinary plasminogen activator, and inhibits the conversion of plasminogen to plasmin, 

thus inhibiting downstream fibrinolysis. Levels and activity of PAI-1 are causally linked 

to risk of coronary artery disease (CAD), as demonstrated by Mendelian Randomization 

analysis.7 Due to its ability to potently activate fibrinolysis, tPA is an effective treatment 

when administered soon after stroke events.8 As the major byproduct of fibrinolysis, plasma 
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D-dimer level reflects fibrin formation and reactive fibrinolysis. Higher D-dimer is a risk 

factor for venous thromboembolism (VTE), stroke and coronary artery disease.9

Given their importance as biomarkers and regulators of clot formation and degradation, 

deciphering the genetic architecture of these traits may have clinical relevance and may 

help improve our understanding of fibrinolytic and clotting mechanisms. However, there 

are few large-scale, population-based genome-wide or exome-wide studies of plasma levels 

of PAI-1, tPA and D-dimer. These previous works identified 1p21.3 (upstream of F3), 

1q24.2 (encompassing F5 and NME7) and 4q32.1 (fibrinogen locus, between FGG and 

FGA) associated with D-dimer levels,12 7q22.1 (SERPINE1 promoter and near MUC3A) 

and 11p15.3 (within ARNTL) associated with PAI-1 levels,10 and 6q24.3 (within STXBP5), 

8p11.21 (POLB-PLAT locus) and 12q24.33 (within STX2) associated with tPA levels.11 

Here, we leveraged an exome-wide variant array designed to capture an enriched portion of 

functional and rare variation to find new genetic determinants of PAI-1, tPA, and D-dimer.

Methods

This project derives from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Hemostasis Working group and involves participants from twelve 

cohorts of European ancestry (ARIC, CHS, FHS, GABC, GeneSTAR, HABC, Inter99, 

LURIC, MARTHA, MESA, PROCARDIS and SCARF).13 Plasma levels (ng/mL or IU/mL) 

of D-dimer were measured in 7 studies (N = 19,306), tPA in 7 studies (N = 6,876) and 

PAI-1 in 11 studies (N = 15,603). Participants using anticoagulant therapy at the time of 

phlebotomy were excluded. A description of each cohort is given in Supplementary Table 

1 and Supplementary Methods. All studies were approved by their respective institutional 

review board and participants provided informed consent.

Genotypes were assayed using the Illumina HumanExome Beadchip v1.0 or v1.2 (Illumina, 

Inc., San Diego, CA) in accordance with the manufacturer’s instructions. Single nucleotide 

polymorphism (SNP) calling and quality control procedures were conducted by each study 

following a common protocol, which has been described previously.1,14

Each study performed statistical analyses independently following a common protocol. 

Phenotype measurements were log transformed and analyses were adjusted for age, sex, 

principal components (PCs) derived from genotypes and study-design variables. PCs were 

selected for adjustment if they were significantly associated with the trait analyzed in an 

age and sex adjusted model. Sex-stratified analyses were also performed for all cohorts 

except Inter99, and adjusted for age, PCs and study-specific variables. Both single SNP and 

multiple SNP (gene level) association analyses were conducted with the seqMeta R library 

(https://github.com/DavisBrian/seqMeta). The results of individual studies were combined 

using an inverse variance weighted fixed-effect meta-analysis with seqMeta. Conditional 

analyses were conducted with GCTA-cojo,15 and linkage disequilibrium estimation was 

performed with PLINK16 in the FHS cohort.

For the single SNP analysis, only variants with a minimal allele count greater than 5 

across cohorts were interrogated. A total of 101,541 SNPs were considered for association 
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with D-dimer levels, 95,138 SNPs with PAI-1 levels and 68,725 SNPs with tPA levels. 

We used both an agnostic and candidate-gene approach involving genes related to the 

coagulation pathway referenced by the KEGG pathway hsa04610 (Supplemental Table 2). 

For the agnostic approach, the threshold for significance was set using the Bonferroni 

method at P < 1.88 × 10−7 (0.05 / 265,404). A replication step to validate the results was 

performed in the Caerphilly Prospective Study (CaPS),17 composed of European males, with 

genotypes imputed using the HRC 1.1 dataset.18 Both significant and suggestive (P < 1 × 

10−4) associations from the discovery meta-analysis were tested in CaPS with a one-sided 

hypothesis, with a threshold for significance at nominal p-value (0.05).

However, single variants tests lack power to identify associations of rare variants, which 

constitute a large part of the Exome chip. To assess the effect of these rare variants, we 

performed gene-based tests, which allow for each gene to test the joint effect of rare variants 

contained in each gene. Two distinct methods were applied: Sequence Kernel Association 

Test (SKAT)19 and the classical burden test.20 For both tests, the joint effect of variants 

with minimal allele frequency (MAF) < 0.05 were considered. Only genes with > 1 SNP 

were tested. For each trait, about 15,000 genes were considered for these analyses, and the 

threshold for significance was set at P < 1.09 × 10−6 (0.05 / 45,833).

Results from all single-variant and gene-based analyses are publicly available on the GRASP 

portal (https://grasp.nhlbi.nih.gov/FullResults.aspx).

Results

Single variant analyses

Manhattan and QQ plots representing the results of the discovery meta-analysis of 

single-SNP associations are provided for D-dimer (Supplementary Figure 1-2), PAI-1 

(Supplementary Figure 3-4), and tPA (Supplementary Figure 5-6). No single variant 

exceeded the threshold of genome-wide significance for tPA or PAI-1 plasma levels. The 

single-SNP analysis of D-dimer revealed 5 genome-wide significant associations at 3 

distinct regions: FGL1, NME7 and the fibrinogen coding loci (encompassing FGG, FGA 
and FGB) (Table 1). At the FGL1 locus, two missense variants rs2653414-A (p.Trp256Leu, 

Minor Allele Frequency (MAF) = 0.013, β = 0.21, P = 3.93 × 10−11) and rs3739406-T 

(p.Ile72Val, MAF = 0.32, β = 0.05, P = 3.71 × 10−9) were associated with higher D-dimer 

levels. The 2 FGL1 variants were in partial linkage disequilibrium (r2 = 0.02; D’ = 1.0), 

but after conditioning the analysis on rs2653414, the association of rs3739406 with D-dimer 

levels remained high (p = 9.40 × 10−7), implying independent associations. The phenotypic 

variance explained by rs2653414 and rs3739406 is 0.23% and 0.18%, respectively. The 

associations observed at NME7 (rs16861990-C, MAF = 0.070, β = 0.12, P = 1.17 × 10−11) 

and upstream of FGA (rs13109457-A, MAF = 0.25, β = 0.05, P = 1.24 × 10−7) were 

previously described in a GWAS of plasma D-dimer levels,12 while the FGG missense 

variant (rs148685782-C, p.Ala108Gly, MAF = 0.004, β = −0.38, P = 6.75 × 10−11) was 

previously associated with fibrinogen level.21

We then sought to replicate the significant associations from the discovery meta-analysis 

in CaPS. The results from the replication analysis are presented in Table 1. We observed 
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a replication for 3 out of the 5 significant associations with D-dimer levels, one at each 

locus: rs16861990 (β = 0.13, P = 0.001) in NME7, rs2653414 (β = 0.23, P = 0.04) in 

FGL1 and rs13109457 (β = 0.07, P = 0.001) at the fibrinogen locus, upstream of FGA. 

Additionally, we investigated all suggestive associations (P < 1 × 10−4) with D-dimer, tPA or 

PAI-1 levels from the discovery analysis in CaPS. Of the 79 variants suggestively associated 

in the discovery, 45 were available in CaPS. We observed directionally consistent results 

for 3 associations, one with tPA levels and a missense variant in MTFR1L (rs201393961, 

p.Thr83Met), and 2 with D-dimer levels: an intronic SCARB1 variant (rs11057830), and 

rs7681423 upstream of FGG (Table 1). These variants all had high imputation quality (RSQ 

> 0.9), except for the MTFR1L variant which had moderate quality (RSQ = 0.68).

All significant and suggestive associations from the discovery analysis as well as the results 

of the replication analysis are provided in Supplementary Table 3. As D-dimer levels can 

be related to thrombotic events, we also inspected the association of the novel replicated 

variant (FGL1 rs2653414) and other novel variants of interest (FGL1 rs3739406, SCARB1 
rs11057830) with VTE risk in the INVENT GWAS dataset,22 but none of these variants 

were found associated (Supplementary Table 4).

Single variant analyses restricted to candidate genes

We also applied a candidate gene approach to retrieve associations implicating genes 

involved in the coagulation pathway (as listed in the Supplementary Table 2) that did 

not meet the exome-wide single SNP significance threshold. This approach revealed 2 

missense variants suggestively associated with D-dimer: rs201909029-C (p.Lys178Asn, 

MAF = 0.007, β = −0.72, P = 1.25 × 10−6) located in FGB at the fibrinogen locus, not 

previously associated with D-dimer or fibrinogen, and rs143202684-C (p.Gly218Ala, MAF 

= 0.001, β = −0.41, P = 8.10 × 10−5) located in SERPINB2, which encodes the PAI-2 

protein. The poor imputation quality of these two rare variants (RSQ < 0.1) prevented our 

effort to investigate these suggestive associations further in CaPS.

Gene-based burden analyses

The gene-based analysis revealed 2 genes significantly associated with plasma D-dimer: 

FGL1 and FGG. The results of these 2 associations were similar for both SKAT and T5 

methods, and were mainly driven by the variants associated with D-dimer in the single-SNP 

analysis (the detail of single variant associations involved in both FGL1 and FGG gene-

based tests is given in Supplementary Table 5). For each method and for each trait analyzed, 

the results of the 3 most significant gene-based associations are presented in Table 2, while 

the results of all associations with P < 0.0001 are provided in Supplementary Table 6.

Sex-stratified analyses

As previous studies have reported that genetic associations with hemostatic factors can differ 

between males and females, we conducted sex-stratified analyses of the 3 traits.23 The single 

variant analyses yielded 2 significant associations: one between D-dimer levels in women 

and the FGG variant rs148685782, previously identified in the main analysis, and one 

between tPA levels in women and a rare missense variant in KIAA1432 (rs143886234-G, 

p.Pro443Arg, MAF = 0.001, MAC=6, β = 1.53, P = 3.14 × 10−8). However, with only 6 
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minor alleles total were detected in 3 out of the 6 studies with sex-stratified D-dimer results, 

so this signal could be a false positive, and we were unable to replicate this signal, as CaPS 

is only composed of men. We also retrieved the sex specific effects for all associations 

identified in the main analyses. The associations at NME7/F5 region, FGG, FGL1, FGA, 

SCARB1 and SERPINB2 all reached at least nominal significance in both sexes, and no 

significant difference in effect was observed between sex. The association at FGB did not 

reach nominal significance in men, most likely because of its rare frequency. The detail of 

these associations is available in Supplementary Table 7.

Gene-based sex-specific analyses also revealed a novel gene, ENOX2, associated with 

D-dimer levels in men, according to the results of the SKAT analysis (Supplementary Table 

8). However, after further inspection of the ENOX2 variants with D-dimer levels in men, 

only 2 variants with MAF < 0.05 were considered for this test (Supplementary Table 9), and 

the gene-based association was driven by only one of them: rs200194256 (MAF = 0.0001, 

MAC = 2, p = 1.19 × 10−7).

FGL1 investigation

As FGL1 possesses a fibrinogen C-terminus domain, we investigated its similarity with the 

fibrinogen subunits proteins. We observed that the FGL1 C-terminus domain is homologous 

to the fibrinogen gamma subunit (46% according to Clustal2.1), and the variant whose 

D-dimer association was replicated in CaPS (rs2653414) is located in a codon encoding a 

tryptophan amino acid conserved in the fibrinogen subunit (Supplementary Figure 7). The 

rs2653414 variant has not been previously associated with any phenotype or transcript levels 

(see annotations in Supplementary Table 3). However, it was recently found associated with 

decreased levels of the FGL1 protein in serum24 (β = −1.62, P = 4.22 × 10−47).

Discussion

In order to discover new functional and rare genetic determinants of plasma tPA, PAI-1 and 

D-dimer levels, we performed both single- and multi-variant meta-analyses using exome-

wide marker genotype data from 12 cohorts. For D-dimer, we identified 3 associations 

previously observed in genome-wide studies of D-dimer levels or fibrinogen,12,21 and 2 

novel associations of variants in FGL1, of which one was replicated in CaPS. The analyses 

of tPA and PAI-1 levels did not reveal any exome-chip wide significant associations, and 

overall the sex-stratified analyses did not yield strong evidence supporting different genetic 

effects in men and women at most of the loci we observed.

FGL1, which encodes the fibrinogen-like 1 protein, is expressed mainly in the liver and can 

be found circulating in plasma. It has been linked to various biological processes including 

mitogenic activity in hepatocytes promoting liver growth,25 acute phase reactant upregulated 

by IL6 during inflammation,26 and more recently immunity.27 A role in coagulation has 

previously been hypothesized because of its similarity with FGG and FGB C-terminal 

domains,28 but was mainly rejected because of its lack of sites necessary for fibrin clot 

formation. However, subsequent studies reported FGL1 to bind fibrin clots in plasma,29,30 

although it is not known how this occurs. The replicated FGL1 variant (rs2653414) 

associated with higher levels of D-dimer has been recently found associated with lower 
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serum levels of the FGL1 protein in an exome-chip analysis of protein levels,24 but there is 

no evidence that transcript levels of FGL1 levels are affected according to eQTL resources 

such as GTeX (see Supplemental Table 3). This discrepancy could be first explained by 

an impact of the variant on the protein structure, which could either affect the stability 

of the protein and reduce its levels, or it could alter the epitope of the protein and affect 

its detection by the proteomic assay. Additionally, since most eQTL resources are based 

on GWAS arrays they may lack appropriate coverage for this variant. This conclusion 

seems consistent with the fact that prior large GWAS studies of D-dimer did not discover 

an association with FGL1. Furthermore, an association of an FGL1 variant with D-dimer 

levels was previously observed in an exome study of a Finnish population,31 where an 

uncommon insertion causing a frameshift in FGL1 (rs201941547, p.Asn182fs, MAF = 

0.037, β = 0.21, P = 6.12 × 10−6) was associated with higher D-dimer, but the authors 

were unable to replicate their results due to a lack of D-dimer phenotype in their replication 

sample. This frameshift variant most likely implicates a loss of function of FGL1, and the 

similar increase of D-dimer levels observed in our analysis for a missense variant strongly 

tied to lower circulating FGL1 levels suggests that impaired FGL1 levels or function may 

generally result in higher D-dimer. Therefore, while the specific role of this protein in the 

coagulation process is unclear, the associations of FGL1 missense variants identified in our 

study together with the results from the Finnish study31 provide strong evidence for the 

implication of this gene in the modulation of D-dimer levels.

Additionally, we observed two suggestive associations with D-dimer which could be of 

interest if further validated. First, a rare SERPINB2 missense variant (p.Gly218Ala) was 

associated with lower D-dimer. However, similar to FGL1, the role of PAI-2 in the 

coagulation process is not clearly established. Early investigations showed that PAI-2 could 

act as an inhibitor of urokinase plasminogen activator (uPA) in vitro and it was found 

associated to fibrin clots.32 More recently a study reported that deep venous thrombosis 

models of mice lacking Serpinb2 had increased uPA activity and enhanced venous 

thrombosis resolution.33 Second, an intronic SCARB1 variant was associated with higher 

D-dimer, which was replicated in CaPS. This gene encodes a scavenger receptor protein 

of class B, which mediates cholesterol transfer in and out of lipoproteins. This variant was 

previously associated with risk of coronary artery disease,34 a condition often having a 

component of altered fibrinolytic function. Interestingly, Scarb1−/− mice had increased risk 

of venous thrombosis.35 Furthermore, expressing endothelial Scarb1 protected mice against 

atherosclerosis, and in an ApoE4−/− background decreased aortic lesion size ~24% at 8 

months, suggesting roles in lipid metabolism and other biological functions at the level of 

vessel walls where fibrinolysis also occurs.36

Previous genetic analyses of D-dimer, PAI-1 and tPA were conducted on a genome-wide 

scale using imputed datasets. The use of exome chip data in the present study permitted 

us to confirm some of these previous findings, and more importantly, it allowed us to 

focus on new associations involving less common variants that are often absent or poorly 

imputed in GWAS datasets. However, this also impaired our ability to replicate several 

associations in CaPS, such as the rare SERPINB2 variant, and it will be of future interest 

to replicate these associations in new exome chip or sequencing studies. Furthermore, 

we observed inter-cohort variability in measurements, due in part to the specificity of 
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each population studied, and also as a result of the different assays used to measure 

plasma levels of D-dimer, PAI-1 and tPA by each study. This could reduce our power 

to detect genetic associations. However, to reduce this variability, measurements were log-

transformed, and we systematically verified that the direction of effect for all significant and 

suggestive associations were concordant across cohorts, which substantiate the validity of 

these associations. Finally, our study and findings are also limited at this time to European 

ancestry populations, so it remains to be seen if these loci are observed in other populations.

In conclusion, we were able to replicate a significant association implicating the locus FGL1 
in the modulation of D-dimer levels, and we discovered two suggestive associations of 

interest at the SERPINB2 and SCARB1 loci. Most notably, these results provide additional 

evidence for a role of SERPINB2 and FGL1 in the coagulation system, two genes previously 

suspected to play a role in hemostasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Essentials

• D-dimer, PAI-1 and tPA levels are important biomarkers and regulators of 

hemostasis

• We performed an Exome-Wide association study of these 3 traits in up to 

19,300 individuals

• A novel FGL1 variant was associated with D-dimer and replicated in an 

independent cohort

• Our study provides new evidence for a role of FGL1 in hemostasis
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Table 1:

Results of the Discovery and replication analyses

Discovery (meta-analysis) Replication (CaPS)

Chr:Position dbSNPID Gene
EA/
NEA MAF N β SE P

a
MAF β SE P

b
RSQ

D-dimer (N=1,112)

1:169135127 rs16861990 NME7 
(intronic) C/A 0.070 15733 0.119 0.018 1.17E-11 0.061 0.135 0.044 0.0010 0.98

8:17726069 rs2653414 FGL1 
(p.Trp256Leu) A/C 0.013 19306 0.213 0.032 3.93E-11 0.006 0.233 0.133 0.0404 0.97

4:155533035 rs148685782 FGG 
(p.Ala108Gly) C/G 0.004 19306 −0.384 0.059 6.75E-11 0.001 −0.112 0.386 0.3854 0.48

8:17739538 rs3739406 FGL1 
(p.Ile72Val) T/C 0.325 19306 0.047 0.008 3.71E-09 0.291 0.003 0.023 0.4467 1.00

4:155514879 rs13109457 3kb 5' of FGA 
(intergenic) A/G 0.249 18607 0.047 0.009 1.24E-07 0.246 0.072 0.024 0.0012 1.00

4:155542248 rs7681423
8.3kb 5' of 

FGG 
(intergenic)

T/C 0.238 18607 0.045 0.009 5.58E-07 0.228 0.072 0.024 0.0013 0.99 *

12:125307053 rs11057830 SCARB1 
(intronic) A/G 0.158 15733 0.058 0.012 3.62E-06 0.146 0.071 0.030 0.0087 0.98 *

tPA (N=1,111)

1:26153114 rs201393961 MTFR1L 
(p.Thr83Met) T/C 0.001 3346 0.676 0.162 3.11E-05 0.001 0.536 0.260 0.0196 0.68 *

EA=Effect Allele; NEA=Non Effect Allele; MAF=Minor Allele Frequency; SE=Standard Error; RSQ=Imputation Quality

a
In the discovery meta-analysis, the threshold for significant associations was set using the Bonferroni method to 1.88 × 10−7

b
In the replication analysis, associations below the nominal p-value were deemed significant under a one-sided hypothesis.

*
Suggestive associations from the discovery with same effect direction in CaPS and p < 0.05

J Thromb Haemost. Author manuscript; available in PMC 2023 February 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thibord et al. Page 15

Table 2:

Most significant results from the gene-based analyses for plasma PAI-1, tPA and D-dimer levels

T5 (MAF < 0.05) SKAT (MAF < 0.05)

Gene P β SE Cmaf Nsnp Gene P Cmaf Nsnp

PAI-1 (N=15,063)

STAT3 9.65E-05 −1.63 0.42 0.0001 3 STAT3 5.82E-06 0.0001 3

AKAP11 1.07E-04 −0.08 0.02 0.0451 44 USP38 9.89E-06 0.0010 8

KIF1B 3.40E-04 −0.06 0.02 0.0763 24 GPN3 2.99E-05 0.0021 3

tPA (N=6,876)

SH2D6 3.15E-06 −0.73 0.16 0.0009 4 STX2 2.96E-05 0.0271 7

CRCP 2.49E-05 −0.49 0.12 0.0011 3 SH2D6 3.17E-05 0.0009 4

SGCG 2.91E-05 −0.39 0.09 0.0025 7 ZBTB41 4.01E-05 0.0062 9

D-dimer (N=19,306)

FGG 3.75E-08 −0.19 0.03 0.0120 9 FGG 4.47E-09 0.0120 9

FGL1 2.60E-07 0.05 0.01 0.0910 17 FGL1 2.86E-08 0.0910 17

EIF2AK3 2.02E-06 −0.22 0.05 0.0069 9 EIF2AK3 5.98E-06 0.0069 9

SE=Standard Error; Nsnp=Number of SNPs used in the gene-based test; Cmaf=Cumulative MAF
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