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Abstract

Characterization of the “exposome”, the set of all environmental factors that one is exposed to 

from conception onwards, has been advocated to better understand the role of environmental 

factors on chronic diseases.

Here, we aimed to describe the early-life exposome. Specifically, we focused on the correlations 

between multiple environmental exposures, their patterns and their variability across European 

regions and across time (pregnancy and childhood periods). We relied on the Human Early-Life 

Exposome (HELIX) project, in which 87 environmental exposures during pregnancy and 122 

during the childhood period (grouped in 19 exposure groups) were assessed in 1301 pregnant 

mothers and their children at 6–11 years in 6 European birth cohorts.

Some correlations between exposures in the same exposure group reached high values above 0.8. 

The median correlation within exposure groups was greater than 0.3 for many exposure groups, 

reaching 0.69 for water disinfection by products in pregnancy and 0.67 for the meteorological 

group in childhood. Median correlations between different exposure groups rarely reached 0.3. 

Some correlations were driven by cohort-level associations (e.g. air pollution and chemicals).Ten 

principal components explained 45% and 39% of the total variance in the pregnancy and 

childhood exposome, respectively, while 65 and 90 components were required to explain 95% 

of the exposome variability. Correlations between maternal (pregnancy) and childhood exposures 

were high (> 0.6) for most exposures modeled at the residential address (e.g. air pollution), but 

were much lower and even close to zero for some chemical exposures.

In conclusion, the early life exposome was high dimensional, meaning that it cannot easily 

be measured by or reduced to fewer components. Correlations between exposures from 

different exposure groups were much lower than within exposure groups, which have important 

implications for co-exposure confounding in multiple exposure studies. Also, we observed the 

early life exposome to be variable over time and to vary by cohort, so measurements at one time 

point or one place will not capture its complexities.

Graphical Abstract
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1. INTRODUCTION

A complex interplay between genetic and environmental factors is assumed to contribute 

to the development of chronic diseases in humans (Willett, 2002). The World Health 

Organization (WHO) has attributed nearly half of global mortality to a handful of 

environmental exposures, illustrating the relevance of environmental factors for health (Lim 

et al., 2012). To date, most research on environmental determinants of disease has focused 

on single exposures, with the exceptions of a few studies considering simultaneously more 

than a couple of families of exposures, focusing on health outcomes such as birth weight 

(Dadvand et al., 2014; Hystad et al., 2014; Lenters et al., 2015) or type II diabetes mellitus 

(Patel et al., 2010). A more comprehensive approach, studying all environmental exposures 

that can influence health from conception onward, defined as the “exposome”, has been 

advocated to better understand the role of environmental factors on multi-factorial and 

chronic pathologies (Wild, 2005). Early life is a key starting point for the development of 

a lifetime exposome, particularly due to heightened vulnerability and potentially lifelong 

impact of exposure during this period (Vrijheid et al., 2014). In utero and childhood 

exposures, including environmental contaminant exposures (Vrijheid et al., 2016), but also 

factors in the urban and built environment (Gascon et al., 2016), can permanently change the 

body’s structure, physiology, and metabolism, predisposing individuals to the development 

of chronic pathologies later in life, a hypothesis based on the Developmental Origins of 

Health and Disease (DOHaD) paradigm (Heindel et al., 2015).

The exposome potentially consists of hundreds of exposures, many of which may be inter-

related. An important challenge in studies associating the exposome with health is the 

simultaneous consideration of these many correlated exposures (Slama and Vrijheid, 2015). 

Understanding what a typical exposome looks like, including the structure of correlations 

between and within groups of exposure, is important for multiple steps in exposome 

research, including the planning of which exposures to measure and the development of 

statistical analysis protocols. Moreover, transparent knowledge of the correlation structure 

of an exposome data set is required for interpretation of associations (Patel et al., 2015; 

Robinson and Vrijheid, 2015). Additionally, the description of multiple exposure patterns 

can aid the identification of population groups at highest environmental health risk.

A few studies have recently described correlation structures of a large set of exposures, 

including the NHANES dataset (Patel and Ioannidis, 2014; Patel and Manrai, 2015), the 

Spanish INMA birth cohort (Robinson et al., 2015), and the LIFE study (Chung et al., 

2018). However, the available information is still scarce. Wider studies, including a broader 

range of measured exposures, multiple lifetime periods of exposure assessment, and larger 

populations covering multiple regions are needed to more fully understand the complexity of 

the human exposome.
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Here, we aim to describe the early-life exposome using data from the Human Early-Life 

Exposome (HELIX) project, in which more than 200 environmental exposures of concern 

for child health were assessed in 1301 pregnant women and their children at 6–11 years 

in 6 European birth cohorts. Specifically, we focus on the description and analyses of 

correlations between multiple environmental exposures, their patterns and their variability 

across European regions and across time (pregnancy and childhood periods).

2. MATERIAL AND METHOS

2.1. The study population

This study is part of the HELIX project, which aims to characterize the exposome during 

early-life and evaluate its relationship to molecular signatures and child health outcomes 

(Vrijheid et al., 2014). HELIX is based on six European birth cohort studies: BiB (Born 

in Bradford), United Kingdom (Wright et al., 2013) ; EDEN (Étude des Déterminants pré 

et postnatals du développement et de la santé de l’Enfant), France (Heude et al., 2016); 

INMA (INfancia y Medio Ambiente), Spain (Guxens et al., 2012); KANC (Kaunus Cohort), 

Lithuania (Grazuleviciene et al., 2009); MoBa (Norwegian Mother and Child Cohort Study), 

Norway (Magnus et al., 2016); and Rhea, Greece (Chatzi et al., 2017). In this paper we used 

data from the HELIX subcohort of 1301 mother-child pairs (MoBa (272), KANC (204), 

BIB (205), EDEN (198), INMA (223) and RHEA (199)) with information on environmental 

exposures during pregnancy and between 6 and 11 years of age (median 8.1 years; hereafter 

referred to as “childhood period”).

Follow-up visits of the children in the subcohort took place in 2014 and 2015 in the 6 study 

centers, and questionnaire information and biological samples for biomarker determination 

were collected. More details about the subcohort, including recruitment and data collection 

methods, are available in Maitre et al. (2018). Approval was obtained from the national 

ethics committees for every cohort. All participating women provided informed, written 

consent.

2.2. Exposome variables

In the current analysis we included 87environmental exposure variables for the pregnancy 

period and 122 for the childhood period (Table 1). Exposure assessment methods are 

described in detail for each exposure group in Annex 1. More exposure variables were 

available in the project (see Annex 1), but were not included in the current analysis for 

the following reasons: they had less than 30 subjects in one exposure category without 

possibility to recode; they had a correlation of 0.9 or higher with another similar variable 

that was likely measuring the same thing (Annex 1, pg 3) (e.g., buffers for spatial variables, 

home and school estimates for meteorological variables, erythemal UV, Vitamin-D and 

DNA damaging UV variables, facility richness and density and dichotomous and location-

specific ETS in childhood); or they were calculated for several exposure windows and only 

the longest exposure window was included (e.g. pregnancy average instead of trimester 

averages). Exposure levels and distributions for these variables are shown in Annex 2.

Tamayo-Uria et al. Page 4

Environ Int. Author manuscript; available in PMC 2023 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In brief, exposure to outdoor factors (atmospheric pollutants, ultra violet radiation – UV-, 

surrounding natural spaces, meteorology, built environment, traffic, and road traffic noise) 

was estimated using geospatial models, monitoring stations, satellite data and land use 

databases, and was assigned to study participants according to their geocoded home and 

school addresses using GIS platforms (Annex 1 and Robinson et al., (2018)). Chemical 

exposures were measured in serum, plasma, blood or urine samples using maternal 

samples collected during pregnancy or at birth stored by the cohorts and samples newly 

collected from the children during childhood (Haug et al., (2018) and Annex 1). Chemical 

biomarkers measured included organochlorine compounds (OCs), polybrominated diphenyl 

eters (PBDEs), per- and polyfluoroalkyl substances (PFAS), metals and elements, phthalate 

metabolites, phenols, organophosphate (OP) pesticide metabolites and cotinine. OCs and 

PBDEs were adjusted for serum lipid concentrations, and phthalate metabolites, phenols, 

OP pesticide metabolites and cotinine were adjusted for urinary creatinine. Details on 

the laboratories, limits of quantification, limits of detection and quality control can be 

found in Haug et al. (2018). Table A1.5 in the Annex shows the percent of quantifiable 

samples, which were higher than 90% for 77% of the childhood exposures and for 82% 

of the pregnancy exposures. Information on active and passive tobacco smoking was 

collected through questionnaires. For the pregnancy period, we also assigned exposure to 

water disinfection by-products (DBPs) based on measurements and models for the water 

supply of the participant’s residency (Jeong et al., 2012). For the childhood period, we 

estimated exposure to indoor air pollutants (NO2, benzene, and TEX-toluene, ethylbenzene, 

xylene) by combining measurements in the homes of a subgroup of 150 children during 

the two time periods with questionnaire data (Annex 1). During childhood, questionnaire 

information was collected on socio and economic capital of the family based on the Family 

Affluence Score (FAS) and on social participation, social contact and house crowding data 

(Annex 1). Finally, information on other lifestyle factors, including maternal and child diet, 

breastfeeding, maternal and child physical activity, alcohol consumption, pets, and child 

sleep duration, was collected through questionnaires (Annex 1).

2.3. Statistical analysis

Missing values of exposures and adjustment variables were imputed using the method 

of chained equations (White et al., 2011), using the mice package in R (van Buuren 

and Groothuis-Oudshoorn, 2011). Prior to imputation, skewed exposure variables were 

transformed to achieve normality or categorized if no transformation worked (Annex 2). 

Missing values, ranged from no missing values for some child phthalate metabolites to 65% 

for fast-food intake during pregnancy (Annex 2). The mean percentage of missing values per 

exposure was 12% (first quartile 0.9% and third quartile 16.8%). None of the participants 

had complete data on all exposures. Yet, for 98% of individuals less than 30% of exposure 

variables had missing values. Annex 3 includes a full description of the imputation process. 

As the analyses conducted in this paper do not provide standard errors, confidence intervals 

or p-values, a single imputed dataset was used, as single imputation can already correct for 

potential biases (Donders et al., 2006).

2.3.1. Correlations between exposures—Given the multicentre design of our study 

and the potential influence of cohort in the correlations between exposures, we calculated 
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correlations firstly using the entire imputed entire dataset combining the 6 cohorts 

(referred to as “overall” correlations) and secondly using exposure variables centered and 

standardized within each cohort (referred to as “within–cohort” correlations). The latter 

were computed by first centering each exposure by cohort, i.e. subtracting the cohort 

means and dividing by the cohort-specific standard deviations, and then computing the 

correlations. We calculated Pearson, polychoric or polyserial correlations, as appropriate, 

between all pairs of exposures using the polycor and rexposome R Packages (Hernandez-

Ferrer and Gonzalez, 2018). Very similar correlation coefficients were obtained if Spearman 

correlations were computed instead of Pearson correlations (data not shown). Correlation 

matrices were calculated separately for the pregnancy and childhood exposures. In order 

to characterize the heterogeneity of correlations between exposures in the same exposure 

group by cohort, we i) calculated correlation coefficients separately for each cohort; ii) 

conducted a meta-analysis of the cohort-specific correlations using the metacor command 

of the meta R package; and iii) reported the I2 index of heterogeneity. Overall and within-

cohort correlation matrices were displayed and compared using heat maps. In order to 

visualize the complex relations between exposures, we conducted a network analysis based 

on the within-cohort correlation matrix, separately for the pregnancy and childhood periods. 

Additionally, we calculated Pearson’s correlations between exposures of the mother during 

pregnancy and the same exposures measured in the child at 6–11 years when available.

2.3.2. Dimensionality of exposome—We performed two different analyses using 

Principal Component Analysis (PCA) to achieve two different goals. In the first analysis, the 

aim was to compare the levels of exposures in the different cohorts.

Given the large number of exposures included in the analysis, we first reduced the 

dimensionality by conducting a separate PCA within each of the 19 pre-defined exposure 

groups, and retained only the first principal component for all of them. This way, we created 

a composite index variable (principal component scores) for each exposure group, and then 

averaged the scores by cohort to compare the levels. We followed this strategy instead 

of conducting a PCA with all exposures from all exposure groups together in order to 

have a better interpretability of the resulting principal components, and to ensure a better 

comparability of the resulting components in the pregnancy and childhood datasets.

In the second analysis, the aim was to quantify the underlying dimensionality of the data. 

In this case, we did include all the exposures from the different exposure families in the 

same analysis (separately for pregnancy and postnatal period), but we only focused on the 

number of components needed to explain 70% or 95% of the variation. The second analysis 

was conducted separately on the overall data and on the centered within-cohort data. In both 

analyses, we conducted PCA with varimax rotation.

All statistical analyses were conducted in the R software environment (R3.3.0; http://www.r-

project.org). The network analysis was conducted using the Gephi software (Bastian et al., 

2009).
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3. RESULTS

Table 2 shows the number of participants by cohort, as well as the age and sex distribution. 

Mothers had an average age of 31 years at child birth, with some variations by cohort. There 

were also variations by cohort in the age of the children, with EDEN having the oldest 

children (average age 11) and KANC the youngest (average age 6).

3.1. Exposure levels

Distributions of all exposure variables are detailed in Annex 2 by individual cohorts (Figure 

A2.1 for pregnancy and Figure A2.2 for childhood). Further details on chemical exposure 

biomarkers are found in Haug et al. (2018).In order to summarize these data, we computed 

a single principal component separately for each exposure group. Details on these principal 

component analyses are available in Annex 4, Tables A4.1 and A4.2. Figure 1 plots the 

principal component scores by cohort to characterize the cohorts’ profiles. The highest 

values for outdoor exposures (i.e. high pollution, traffic and low greenness) were found in 

the INMA cohort. In terms of chemicals, the highest exposure to OCs and phthalates were 

found in the EDEN cohort during pregnancy and in KANC and RHEA, respectively, during 

childhood; PBDEs were highest in RHEA during pregnancy, while fewer differences by 

cohort were observed during childhood; phenols were highest in MOBA during pregnancy 

and in BIB during childhood; and metals were highest in MOBA during pregnancy and in 

EDEN during childhood. Smoking was highest in RHEA, and water DBPs were highest in 

INMA. In terms of lifestyle, characterized mainly by consumption of fruit, MOBA showed 

the highest levels.

3.2. Within- and between-exposure group correlations

Table 3 shows the correlations within exposure groups for the pregnancy and childhood 

periods. Both overall and within-cohort correlations are shown. Overall correlations tend to 

be higher than within-cohort correlations, except for the atmospheric pollutants group. This 

is because, in this case, cohort-level averages do not follow the same correlation pattern than 

within-cohort correlations. For example, despite the fact that PM10 and NO2 are positively 

correlated within each cohort, the RHEA cohort had the highest levels of PM10 but the 

lowest levels of NO2 (Robinson et al. 2018). The highest median overall correlations within 

exposure groups were observed among water DBPs (r=0.69) and among meteorological 

variables in childhood (r=0.67) and in pregnancy (r=0.54), followed by tobacco smoking 

exposure in pregnancy (r=0.54), PFASs in pregnancy (r=0.49) and in childhood (r=0.45), 

and air pollutants in childhood (r=0.44). All other exposure groups showed median overall 

correlations below 0.42, with metals, lifestyle and surrounding natural spaces showing 

the lowest within-group correlations (below 0.12). In general, correlations within exposure 

groups were quite heterogeneous by cohort, as shown by the high I2 (Table 3), except for the 

metals, lifestyle and socio-economic capital groups.

During pregnancy, the median absolute correlations between exposure groups were much 

lower (0.08) than within exposure groups (0.20). Figure 2 shows the median within-group 

(diagonal) and between-group (off-diagonal) absolute correlations for the pregnancy period. 

For overall correlations (Figure 1a), the highest absolute median correlations between 
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exposure groups were observed between noise and meteorological variables (r=0.45), 

between water DPBs and meteorological variables (0.39), between water DBPs and 

atmospheric pollutants (r=0.32), and noise and traffic (r=0.29). The rest of the median 

absolute correlations between groups of chemical exposures were all equal to or below 

0.24. The maximum correlation of lifestyle variables was with atmospheric pollutants 

(r=0.19). Similar patterns were observed for the within-cohort correlations (Figure 1b, but 

the correlations between groups were considerably reduced (r=0.03 (0.01–0.03)).This was 

especially the case for water DBPs, and for the correlations between outdoor exposures 

and chemicals, which were very close to 0. All correlations between noise and the other 

exposure groups were strongly reduced, except for the correlation between atmospheric 

pollutants and noise (r=0.13).

The pattern of correlations between exposures measured during childhood was generally 

similar to the patterns observed during pregnancy (Annex 4, Figure A4.1). One notable 

difference was that correlations within meteorological variables were much stronger in the 

childhood period, where the last month averages were used, compared to the pregnancy 

period, where we used 9-month averages. Other interesting correlations were found between 

PFAS and OCs (within: 0.20, overall: 0.19) and between tobacco smoke and indoor air 

pollution (within: 0.18, overall: 0.24) where within-cohort correlations remained similar 

to overall correlations. Annex 4, Figure A4.3 shows histograms and cumulative density 

functions of all correlations.

Annex 4, Figures A4.4-A.4.7 display the correlations within and between exposure groups 

by sex. No notable differences in correlations were observed between the two sexes.

3.3. Network visualization

The exposome correlation structure, using individual exposures and within-cohort 

correlations, is visualized as a network in Figure 3. Exposures that are close together in 

the network are more correlated than more distant ones. The pregnancy network (Figure 3A) 

shows a cluster with the outdoor exposome variables, dominated by the built environment 

variables but also including air pollutants, traffic variables, natural spaces, meteorological 

variables, and water DBPs. A few lifestyle variables, such as meat consumption and physical 

activity, were close to the outdoor exposome cluster. On the top-left part of the network 

there is another cluster made of PFASs and OCs, with contributions from metals, PBDEs, 

tobacco smoke and diet variables. Phenols and phthalate metabolites form separate clusters 

linked together by BPA and MEP. A few variables, like folic acid and certain metals, 

are not connected to other exposures. The childhood network (Figure 3B) appears more 

compact than the pregnancy network, with more links between exposure families. The 

outdoor exposome still appears as a cluster. It is connected to OCs via indoor air pollution 

and tobacco smoke. OCs continue to be close to PFASs. Breastfeeding and some lifestyle 

variables such as physical activity and organic food consumption appear close to OCs. Diet 

variables form their own cluster, with some connections to OCs and PFASs. On the left 

hand side there is a cluster of phenols, phthalate metabolites, meteorological variables and 

OP pesticides. Meteorological variables in childhood represent last month values, while in 

pregnancy they represent pregnancy averages. Thus, in the childhood period meteorological 
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variables represent recent exposure, and this may explain why they are closer to phenols 

than in the pregnancy period (phenols are present in cosmetics such as sunscreen, and their 

use may be influenced by recent meteorology). The main connections of the cluster formed 

by phenols, phthalate metabolites, meteorological variables and OP pesticides are phthalate 

metabolites and PBDEs with metals, and meteorology with indoor pollution.

3.4. Dimensionality of exposome

When conducting PCA analyses with all exposures together, 10 principal components 

explained 45% of the total variance in the pregnancy exposome, while 26 components 

explained 70% and 65 components explained 95%. These numbers of principal components 

represent 11%, 30% and 75% of the original dimensionality of the pregnancy exposome 

(87). In the childhood exposome, 10 components explained 39%, 42 explained 70% and 

90 components explained 95% of the total variance (Figure A4.2). These numbers of 

principal components represent 8%, 34% and 74% of the original dimensionality of the 

childhood exposome (87), so the reduction in dimensionality is of similar magnitude in 

the two periods. The percent of variance explained was slightly lower when using the 

cohort-centered data (Figure A4.2).

3.5. Correlations between pregnancy and childhood exposures

We calculated the correlation between the same exposure measured during pregnancy 

(mother) and childhood. Figure 4 shows that correlation coefficients are high (> 0.6) for 

many of the exposures estimated at the residential address, such as atmospheric pollutants, 

green space, noise, traffic, and certain built environment variables (connectivity, building 

density). Other built environment factors such as facility density had lower correlations 

(r<0.40). The correlation between pregnancy and childhood estimates was also lower 

for meteorological variables (r=0.40 for temperature and r=0.10 for humidity) because 

the pregnancy period includes nine months while childhood period includes 1-month 

information and is therefore more subject to seasonality. Within the exposures measured 

by biomarkers, DDE showed the highest correlation (r=0.62) between the pregnancy and 

childhood period. Among OCs, DDE had the highest correlations while HCB showed 

almost no correlation between pregnancy and childhood samples (r=0.02). Among PFASs, 

PFHXS and PFOS showed correlations above 0.4, while the correlation was lower (r<0.25) 

for other PFASs. Cs and Hg showed correlations greater than 0.4, but the other metals 

showed lower correlations (r<0.25), even negative in the case of Cd (r=−0.05). Phthalate 

metabolites showed low correlation between maternal and child sample (between −0.1 and 

0.1). The correlations were also small for phenols and OP pesticides (between 0 and 0.20). 

The temporal changes for chemicals in HELIX have been reported by Haug et al. (2018), 

with slight differences due to different imputation methods used. Diet variables showed 

low correlations (r<0.1) with the exception of fish and cereal intake with somewhat greater 

values (r=0.22 and 0.35 respectively).

Figure A.4.8 displays the correlations between pregnancy and childhood exposures by sex. 

No notable differences were observed between the two sexes.
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4. DISCUSSION

The HELIX project has measured exposure to many environmental factors of concern 

for child health, allowing a detailed analysis of the structure of the early life exposome, 

including its correlations, patterns and variability. Some very high correlations (>0.8) 

between particular pairs of exposures were observed and some exposure groups included 

exposures with high correlations between all exposures in the group (e.g. reaching median 

correlations 0.69). Overall, however, the median correlation between exposures within the 

same exposure group was only 0.2. Correlations were much lower between exposures from 

different exposure groups, with a median correlation of 0.08. Our results show that the early 

life exposome is high dimensional and cannot be summarized by a handful of principal 

components, and that it varies spatially and temporally.

4.1. Correlation between exposures

Our results show that correlations within the same exposure group can be high, but that 

correlations between exposures from different groups were low. High correlations between 

exposures from the same exposure group have been described previously (Lenters et al., 

2015; Patel and Ioannidis, 2014; Robinson et al., 2015). The correlations found in our study 

are very similar than those reported in the U.S. for similar exposure groups (e.g. OCs, 

phthalates, phenols, metals), even though we reported higher correlations for OP pesticides 

(Patel and Ioannidis, 2014). The finding of generally low correlations between exposures 

from different groups, especially after removing cohort effects, is important as it would 

support the notion that, if this finding is generalizable to all populations, epidemiological 

studies focusing on a single family of exposures may not be confounded by exposures from 

other groups. Thus, results from epidemiological studies that focus on a single exposure 

or on a subset of exposures from the same group are not expected to be greatly affected 

by not having included exposures from other groups. However, one should be careful; 

although many between-group correlations were low, they were not negligible. In addition, 

although the median correlations between exposure groups were low, for particular pairs of 

exposures, high correlations were observed (e.g. between meteorology and road traffic noise 

or meteorology and water DBPs).

Some of the high correlations may be due to exposures being measured using a common 

methodology (e.g. GIS variables) or a common biological medium (e.g. variables measured 

in urine) or because some variables were used to create others. We made efforts to use the 

same procedures in all the different cohorts to maximize comparability. Variables belonging 

to the outdoor exposome (i.e. atmospheric pollutants, traffic noise, natural environments or 

built environment) tended to be more correlated than others in our data. However, it should 

be taken into account that some of these exposures were modeled and estimated at a static 

point, i.e. at the residential and school addresses, and they were capturing annual means. 

If instead one considers personal measurements that account for time activity patterns 

or estimates exposure for shorter time periods, correlations can vary. For example, some 

of the correlations reported by a sub-study based on personal measurements within the 

HELIX project found higher correlations between urban exposures than the ones reported 

here (Donaire-Gonzalez et al., unpublished results). The correlation between exposures has 
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important implications when one tries to identify a causal factor for disease among a set of 

correlated exposures (Agier et al., 2016; Barrera-Gómez et al., 2017). A high correlation can 

drastically reduce the sensitivity of the methods to identify the true exposure and increases 

the probability of obtaining false positives. Thus, according to our results, it will be more 

difficult to correctly identify the true exposure causing a health effect among the outdoor 

exposome variables, if such a true association exists.

It is important to note that despite some high correlations, redundancy in our exposome 

data was still low. To capture 95% of the total variance in the exposome set, 65 principal 

components were needed and 72 if the cohort effects were removed. Thus, the early-life 

exposome is complex and high-dimensional, and it is not easy to synthesize it in a few 

exposure scores. Measurement errors affecting all exposures can also contribute to the 

observed low correlations between exposures and therefore to the fact that exposures 

cannot be summarized using a handful of principal components. It is also noteworthy 

that, in general, the correlations between environmental pollutant exposures and other 

lifestyle variables were low after controlling for cohort. The fact that exposures show low 

correlations with lifestyle factors means a lower potential for confounding by lifestyle in 

studies on the effect of environmental exposures on health.

Overall, it is recommended that investigators conducting exposome research conduct a 

thorough exploration of the structure of the exposome before evaluating exposome-health 

associations. Then, even in a context of a high dimensional exposome, there are several 

statistical methods that can be useful to explore exposome-health relationships (Agier et al. 

2016; Stafoggia et al. 2017).

4.2. Cohort effects

When we summarized exposure groups by their first PCA score, we observed strong 

differences in some of the exposures by cohort. For example, BIB (UK) had the lowest 

values of OCs while EDEN (France) had the highest, INMA (Spain) had the highest values 

on atmospheric pollutants and water DBPs, RHEA (Greece) had the highest temperature and 

lowest water DBPs, MOBA (Norway) had the highest metal values and KANC (Lithuania) 

the lowest for the same variable. The geographical pattern of environmental exposures 

can be explained by multiple factors, such as different meteorology, city configuration, 

country-specific environmental policy or predominant diet. Multicenter studies have the 

advantage of capturing more varied exposure patterns and different ranges of exposure 

levels, but between-city differences can also drive many of the correlations between 

variables. In our data, we observed how, after removing the cohort effect, correlations 

between exposures from different exposure groups were reduced. Thus, adjustment for 

cohort is very important in studies linking the exposome with health outcomes, especially if 

the number of locations is small. Analyses that do not adjust for cohort may be driven by 

ecological associations obtained from a small number of locations, and although they can 

reflect true associations, they are more prone to be driven by confounding by other cohort or 

city level variables (Basagaña et al., 2018). In addition, the distribution of exposures across 

SES (socio-economic status) strata can be strongly city-dependent (Robinson et al., 2015; 

Temam et al., 2017).
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4.3. Mother-child correlations

One of the special characteristics of the exposome is that, unlike the genome, it changes 

over time. This makes the characterization of the exposome challenging. In our data, 

comparing two points that were 6 to 11 years apart, only one exposure (modeled PM10) had 

a correlation greater than 0.8, and a few others, also related to atmospheric pollutants or the 

built environment, had correlations greater than 0.6. Chemical exposure can have different 

half-life in the human body, which influence the temporal correlations. As expected, 

concentration of persistent chemicals (i.e., PBDEs, and PFASs) showed high temporal 

correlations whereas non-persistent chemicals (i.e. phthalate metabolites, phenols and OP 

pesticide metabolites), with a short biological half-life and large within-subject variability 

(Casas et al., 2018), showed low temporal correlations for phthalate metabolites, phenols 

and OPs were low. As a result, to reliably estimate associations of these non-persistent 

chemicals with disease we cannot rely on a measure taken at a single time period, as it may 

not represent exposure in other periods of life.

Part of the observed variability between periods in our study may be explained by how the 

exposures were measured. Variations in the outdoor exposome can for example be due to 

the fact that we used the nine months of pregnancy for the pregnancy period and monthly 

averages for the childhood period. Moving residences is also a factor introducing temporal 

variations in the outdoor exposome.

4.4. Missing data

Missing data is a common problem in most epidemiological studies. Often, studies rely on 

complete case analyses, i.e. they discard participants with missing exposure data even if 

this approach only provides valid results under the assumption that missing values occurred 

completely at random or else it may introduce selection bias (Donders et al., 2006). An 

exposome paradigm provides additional complications as the higher the number of variables 

that need to be examined jointly, the lower the number of complete cases (in our data, 

there were no complete cases). Thus, the use of techniques like multiple imputation, which 

provides valid results under less restrictive assumptions (Donders et al., 2006), is imperative, 

for example, to implement model selection techniques to build regression models.

Applying multiple imputation to large datasets involves extra difficulties (Stuart et al., 

2009). In general, it is recommended that imputation models should not include more than 

25 variables, as adding more predictors usually provides little gain and can bring problems 

of convergence (van Buuren and Groothuis-Oudshoorn, 2011). To this end, we built the 

imputation model for each variable by selecting a set of less than 25 predictors that avoided 

collinearity problems (Annex 3).

4.5. Limitations

Although we collected data on hundreds of variables there are many unmeasured exposures 

that also conform the early-life exposome. E.g. a 2006 review paper reported 100,000 

chemicals registered for commercial use, 200 of them being neurotoxic for humans 

(Grandjean and Landrigan, 2006). We only had data from a limited number of locations and 

therefore our results are not generalizable, but they provide a good picture of some of the 
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variations of the early-life exposome in Europe. Likewise, we only observed cross-sections 

of the exposome and only assessed differences across two time points separated by at least 6 

years, leaving the early childhood period unexplored. Our childhood period covered a wide 

age range, from 6 to 11, in which children go through considerable growth. Previous studies 

have shown that body burdens of exposure to persistent organic chemicals decrease with 

age mainly because of an increase in dilution of these chemicals in the total blood volume 

(Gascon et al., 2015). For non-persistent chemicals measured in urine, such changes are less 

relevant, but behavioral changes over age may of course lead to changes in exposure. In 

the present study it was difficult to conduct analyses by age because the age ranges of the 

children were strongly determined by cohort, which has a strong relationship with levels of 

chemicals.

5. CONCLUSIONS

This multicenter study with over 200 single environmental exposures measured showed the 

early life exposome to be high dimensional in terms of having little redundancy. Correlations 

between exposures from different exposure groups were much lower than within exposure 

groups. This suggests that, in many cases, studies that focus on a single exposure family 

should not suffer from strong unmeasured confounding by omitted exposures, although this 

can be different in other geographical settings or age groups. In addition, the early-life 

exposome varies strongly by region and by life periods, so measurements at one time point 

or one place will not capture its complexities.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• The early-life exposome is high dimension also not easily reducible to fewer 

components

• Correlations between exposures within different exposure groups can be high

• Correlations between exposures in different exposure groups are low

• The exposome varies strongly by location and by life period
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Figure 1. Profile of pregnancy* (A) and childhood** (B) exposures in the 6 cohorts according to 
the first component identified by PCA applied separately to each exposure group. Positive values 
indicate values above the overall mean, while negative values indicate values below the overall 
mean.
The loadings of each PCA analyses for all exposures are presented in Tables A.4.2 and A.4.3 

in Annex 4. The exposures with highest loadings in each component were the following:

*For the pregnancy period (exposure, loading): atmospheric pollutants (NO2, 0.95), 

surrounding natural space (green spaces, 0.99), meteorology (temperature, 0.94), built 

environment (facility richness, 0.94), traffic (inverse distance, 0.99), OCs (PCB180, 0.93), 

PBDEs (PBDE47, 0.99), PFASs (PFHXS, 0.92), metals (As, 0.8), phthalates (MEOHP, 

0.93), phenols (ETPA, 0.95), OP pesticides (DMP, 0.93), tobacco smoking (Cotinine, 0.96), 

water DBPs (brominated THMs, 0.94), lifestyle (fruit 0.69).
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**For the childhood period (exposure, loading): atmospheric pollutants (PM2.5 0.87), 

surrounding natural space (NDVI school, 0.92), meteorology (temperature 0.93), built 

environment (population density, 0.89), traffic (inverse distance, 0.95), road traffic noise 

(noise all day, 0.33), OCs (PCB180, 0.97), PBDEs (PBDE153, 0.98), PFASs (PFUNDA, 

0.92), metals (As, 0.96), phthalates (MEHHP, 0.97), phenols (PRPA, 0.91), OP pesticides 

(DMP, 0.96), tobacco smoking (ETS, 0.96), lifestyle (KIDMED score, 0.80), indoor air 

(indoor PM2.5, 0.96), socio-eco capital (social participation, 0.99).
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Figure 2: 
Median absolute correlations within exposure groups (diagonal) and between exposure 

groups (off-diagonal) in the pregnancy period. Panel (A) shows overall correlations and 

panel (B) shows within-cohort correlations.
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Figure 3. Network visualization of the exposome.
The size of the nodes is proportional to the number of correlations were greater than 0.5 

outside the exposure group and the length of the edges is proportional to the inverse of the 

correlation (the higher the correlation, the shorter the edge length) between exposures. The 
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colour of the nodes represents the pre-defined exposure groups. The minimum absolute 

correlation to create an edge was 0.10. Figure 3A shows the pregnancy exposome, 

and Figure 3B shows the childhood exposome. Networks were built using within-cohort 

correlations.
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Figure 4. 
Correlation of exposures levels between the pregnancy and childhood periods
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Table 2:

Population characteristics

N Pregnancy Childhood

Cohort Maternal age, years Age, years Sex

mean (25th; 75th percentile) mean (25th; 75th percentile) % female

BiB 205 28.6 (25.0; 33.0) 6.6 (6.5; 6.8) 44.9

EDEN 198 30.5 (27.5; 34.0) 10.9 (10.4; 11.2) 42.9

INMA 223 32.0 (29.5; 34.8) 8.8 (8.4; 9.2) 46.2

KANC 204 29.2 (25.7; 32.3) 6.4 (6.1; 6.8) 45.6

MoBa 272 32.7 (30.0; 35.0) 8.5 (8.2; 8.8) 47.8

RHEA 199 30.8 (27.3; 33.5) 6.5 (6.4; 6.6) 44.2

TOTAL 1301 30.8 (27.2; 34.0) 8.1 (6.5; 8.9) 45.4
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