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Abstract

Characterization of the “exposome”, the set of all environmental factors that one is exposed to
from conception onwards, has been advocated to better understand the role of environmental
factors on chronic diseases.

Here, we aimed to describe the early-life exposome. Specifically, we focused on the correlations
between multiple environmental exposures, their patterns and their variability across European
regions and across time (pregnancy and childhood periods). We relied on the Human Early-Life
Exposome (HELIX) project, in which 87 environmental exposures during pregnancy and 122
during the childhood period (grouped in 19 exposure groups) were assessed in 1301 pregnant
mothers and their children at 6-11 years in 6 European birth cohorts.

Some correlations between exposures in the same exposure group reached high values above 0.8.
The median correlation within exposure groups was greater than 0.3 for many exposure groups,
reaching 0.69 for water disinfection by products in pregnancy and 0.67 for the meteorological
group in childhood. Median correlations between different exposure groups rarely reached 0.3.
Some correlations were driven by cohort-level associations (e.g. air pollution and chemicals).Ten
principal components explained 45% and 39% of the total variance in the pregnancy and
childhood exposome, respectively, while 65 and 90 components were required to explain 95%

of the exposome variability. Correlations between maternal (pregnancy) and childhood exposures
were high (> 0.6) for most exposures modeled at the residential address (e.g. air pollution), but
were much lower and even close to zero for some chemical exposures.

In conclusion, the early life exposome was high dimensional, meaning that it cannot easily

be measured by or reduced to fewer components. Correlations between exposures from
different exposure groups were much lower than within exposure groups, which have important
implications for co-exposure confounding in multiple exposure studies. Also, we observed the
early life exposome to be variable over time and to vary by cohort, so measurements at one time
point or one place will not capture its complexities.

Graphical Abstract
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1. INTRODUCTION

A complex interplay between genetic and environmental factors is assumed to contribute

to the development of chronic diseases in humans (Willett, 2002). The World Health
Organization (WHO) has attributed nearly half of global mortality to a handful of
environmental exposures, illustrating the relevance of environmental factors for health (Lim
et al., 2012). To date, most research on environmental determinants of disease has focused
on single exposures, with the exceptions of a few studies considering simultaneously more
than a couple of families of exposures, focusing on health outcomes such as birth weight
(Dadvand et al., 2014; Hystad et al., 2014; Lenters et al., 2015) or type Il diabetes mellitus
(Patel et al., 2010). A more comprehensive approach, studying all environmental exposures
that can influence health from conception onward, defined as the “exposome”, has been
advocated to better understand the role of environmental factors on multi-factorial and
chronic pathologies (Wild, 2005). Early life is a key starting point for the development of

a lifetime exposome, particularly due to heightened vulnerability and potentially lifelong
impact of exposure during this period (Vrijheid et al., 2014). In utero and childhood
exposures, including environmental contaminant exposures (Vrijheid et al., 2016), but also
factors in the urban and built environment (Gascon et al., 2016), can permanently change the
body’s structure, physiology, and metabolism, predisposing individuals to the development
of chronic pathologies later in life, a hypothesis based on the Developmental Origins of
Health and Disease (DOHaD) paradigm (Heindel et al., 2015).

The exposome potentially consists of hundreds of exposures, many of which may be inter-
related. An important challenge in studies associating the exposome with health is the
simultaneous consideration of these many correlated exposures (Slama and Vrijheid, 2015).
Understanding what a typical exposome looks like, including the structure of correlations
between and within groups of exposure, is important for multiple steps in exposome
research, including the planning of which exposures to measure and the development of
statistical analysis protocols. Moreover, transparent knowledge of the correlation structure
of an exposome data set is required for interpretation of associations (Patel et al., 2015;
Robinson and Vrijheid, 2015). Additionally, the description of multiple exposure patterns
can aid the identification of population groups at highest environmental health risk.

A few studies have recently described correlation structures of a large set of exposures,
including the NHANES dataset (Patel and loannidis, 2014; Patel and Manrai, 2015), the
Spanish INMA birth cohort (Robinson et al., 2015), and the LIFE study (Chung et al.,

2018). However, the available information is still scarce. Wider studies, including a broader
range of measured exposures, multiple lifetime periods of exposure assessment, and larger
populations covering multiple regions are needed to more fully understand the complexity of
the human exposome.
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Here, we aim to describe the early-life exposome using data from the Human Early-Life
Exposome (HELIX) project, in which more than 200 environmental exposures of concern
for child health were assessed in 1301 pregnant women and their children at 6-11 years
in 6 European birth cohorts. Specifically, we focus on the description and analyses of
correlations between multiple environmental exposures, their patterns and their variability
across European regions and across time (pregnancy and childhood periods).

2. MATERIAL AND METHOS

2.1. The study population

This study is part of the HELIX project, which aims to characterize the exposome during
early-life and evaluate its relationship to molecular signatures and child health outcomes
(Vrijheid et al., 2014). HELIX is based on six European birth cohort studies: BiB (Born

in Bradford), United Kingdom (Wright et al., 2013) ; EDEN (Etude des Déterminants pré

et postnatals du développement et de la santé de I’Enfant), France (Heude et al., 2016);
INMA (INfancia y Medio Ambiente), Spain (Guxens et al., 2012); KANC (Kaunus Cohort),
Lithuania (Grazuleviciene et al., 2009); MoBa (Norwegian Mother and Child Cohort Study),
Norway (Magnus et al., 2016); and Rhea, Greece (Chatzi et al., 2017). In this paper we used
data from the HELIX subcohort of 1301 mother-child pairs (MoBa (272), KANC (204),
BIB (205), EDEN (198), INMA (223) and RHEA (199)) with information on environmental
exposures during pregnancy and between 6 and 11 years of age (median 8.1 years; hereafter
referred to as “childhood period”).

Follow-up visits of the children in the subcohort took place in 2014 and 2015 in the 6 study
centers, and questionnaire information and biological samples for biomarker determination
were collected. More details about the subcohort, including recruitment and data collection
methods, are available in Maitre et al. (2018). Approval was obtained from the national
ethics committees for every cohort. All participating women provided informed, written
consent.

2.2. Exposome variables

In the current analysis we included 87environmental exposure variables for the pregnancy
period and 122 for the childhood period (Table 1). Exposure assessment methods are
described in detail for each exposure group in Annex 1. More exposure variables were
available in the project (see Annex 1), but were not included in the current analysis for

the following reasons: they had less than 30 subjects in one exposure category without
possibility to recode; they had a correlation of 0.9 or higher with another similar variable
that was likely measuring the same thing (Annex 1, pg 3) (e.g., buffers for spatial variables,
home and school estimates for meteorological variables, erythemal UV, Vitamin-D and
DNA damaging UV variables, facility richness and density and dichotomous and location-
specific ETS in childhood); or they were calculated for several exposure windows and only
the longest exposure window was included (e.g. pregnancy average instead of trimester
averages). Exposure levels and distributions for these variables are shown in Annex 2.
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In brief, exposure to outdoor factors (atmospheric pollutants, ultra violet radiation — UV-,
surrounding natural spaces, meteorology, built environment, traffic, and road traffic noise)
was estimated using geospatial models, monitoring stations, satellite data and land use
databases, and was assigned to study participants according to their geocoded home and
school addresses using GIS platforms (Annex 1 and Robinson et al., (2018)). Chemical
exposures were measured in serum, plasma, blood or urine samples using maternal
samples collected during pregnancy or at birth stored by the cohorts and samples newly
collected from the children during childhood (Haug et al., (2018) and Annex 1). Chemical
biomarkers measured included organochlorine compounds (OCs), polybrominated diphenyl
eters (PBDEs), per- and polyfluoroalkyl substances (PFAS), metals and elements, phthalate
metabolites, phenols, organophosphate (OP) pesticide metabolites and cotinine. OCs and
PBDEs were adjusted for serum lipid concentrations, and phthalate metabolites, phenols,
OP pesticide metabolites and cotinine were adjusted for urinary creatinine. Details on

the laboratories, limits of quantification, limits of detection and quality control can be
found in Haug et al. (2018). Table AL1.5 in the Annex shows the percent of quantifiable
samples, which were higher than 90% for 77% of the childhood exposures and for 82%

of the pregnancy exposures. Information on active and passive tobacco smoking was
collected through questionnaires. For the pregnancy period, we also assigned exposure to
water disinfection by-products (DBPs) based on measurements and models for the water
supply of the participant’s residency (Jeong et al., 2012). For the childhood period, we
estimated exposure to indoor air pollutants (NO,, benzene, and TEX-toluene, ethylbenzene,
xylene) by combining measurements in the homes of a subgroup of 150 children during
the two time periods with questionnaire data (Annex 1). During childhood, questionnaire
information was collected on socio and economic capital of the family based on the Family
Affluence Score (FAS) and on social participation, social contact and house crowding data
(Annex 1). Finally, information on other lifestyle factors, including maternal and child diet,
breastfeeding, maternal and child physical activity, alcohol consumption, pets, and child
sleep duration, was collected through questionnaires (Annex 1).

2.3. Statistical analysis

Missing values of exposures and adjustment variables were imputed using the method

of chained equations (White et al., 2011), using the mice package in R (van Buuren

and Groothuis-Oudshoorn, 2011). Prior to imputation, skewed exposure variables were
transformed to achieve normality or categorized if no transformation worked (Annex 2).
Missing values, ranged from no missing values for some child phthalate metabolites to 65%
for fast-food intake during pregnancy (Annex 2). The mean percentage of missing values per
exposure was 12% (first quartile 0.9% and third quartile 16.8%). None of the participants
had complete data on all exposures. Yet, for 98% of individuals less than 30% of exposure
variables had missing values. Annex 3 includes a full description of the imputation process.
As the analyses conducted in this paper do not provide standard errors, confidence intervals
or p-values, a single imputed dataset was used, as single imputation can already correct for
potential biases (Donders et al., 2006).

2.3.1. Correlations between exposures—Given the multicentre design of our study
and the potential influence of cohort in the correlations between exposures, we calculated
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correlations firstly using the entire imputed entire dataset combining the 6 cohorts

(referred to as “overall” correlations) and secondly using exposure variables centered and
standardized within each cohort (referred to as “within—cohort” correlations). The latter
were computed by first centering each exposure by cohort, i.e. subtracting the cohort

means and dividing by the cohort-specific standard deviations, and then computing the
correlations. We calculated Pearson, polychoric or polyserial correlations, as appropriate,
between all pairs of exposures using the polycor and rexposome R Packages (Hernandez-
Ferrer and Gonzalez, 2018). Very similar correlation coefficients were obtained if Spearman
correlations were computed instead of Pearson correlations (data not shown). Correlation
matrices were calculated separately for the pregnancy and childhood exposures. In order

to characterize the heterogeneity of correlations between exposures in the same exposure
group by cohort, we i) calculated correlation coefficients separately for each cohort; ii)
conducted a meta-analysis of the cohort-specific correlations using the metacor command
of the meta R package; and iii) reported the 12 index of heterogeneity. Overall and within-
cohort correlation matrices were displayed and compared using heat maps. In order to
visualize the complex relations between exposures, we conducted a network analysis based
on the within-cohort correlation matrix, separately for the pregnancy and childhood periods.
Additionally, we calculated Pearson’s correlations between exposures of the mother during
pregnhancy and the same exposures measured in the child at 6-11 years when available.

2.3.2. Dimensionality of exposome—We performed two different analyses using
Principal Component Analysis (PCA) to achieve two different goals. In the first analysis, the
aim was to compare the levels of exposures in the different cohorts.

Given the large number of exposures included in the analysis, we first reduced the
dimensionality by conducting a separate PCA within each of the 19 pre-defined exposure
groups, and retained only the first principal component for all of them. This way, we created
a composite index variable (principal component scores) for each exposure group, and then
averaged the scores by cohort to compare the levels. We followed this strategy instead

of conducting a PCA with all exposures from all exposure groups together in order to

have a better interpretability of the resulting principal components, and to ensure a better
comparability of the resulting components in the pregnancy and childhood datasets.

In the second analysis, the aim was to quantify the underlying dimensionality of the data.

In this case, we did include all the exposures from the different exposure families in the
same analysis (separately for pregnancy and postnatal period), but we only focused on the
number of components needed to explain 70% or 95% of the variation. The second analysis
was conducted separately on the overall data and on the centered within-cohort data. In both
analyses, we conducted PCA with varimax rotation.

All statistical analyses were conducted in the R software environment (R3.3.0; http://www.r-
project.org). The network analysis was conducted using the Gephi software (Bastian et al.,
2009).
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3. RESULTS

Table 2 shows the number of participants by cohort, as well as the age and sex distribution.
Mothers had an average age of 31 years at child birth, with some variations by cohort. There
were also variations by cohort in the age of the children, with EDEN having the oldest
children (average age 11) and KANC the youngest (average age 6).

3.1. Exposure levels

Distributions of all exposure variables are detailed in Annex 2 by individual cohorts (Figure
A2.1 for pregnancy and Figure A2.2 for childhood). Further details on chemical exposure
biomarkers are found in Haug et al. (2018).In order to summarize these data, we computed
a single principal component separately for each exposure group. Details on these principal
component analyses are available in Annex 4, Tables A4.1 and A4.2. Figure 1 plots the
principal component scores by cohort to characterize the cohorts’ profiles. The highest
values for outdoor exposures (i.e. high pollution, traffic and low greenness) were found in
the INMA cohort. In terms of chemicals, the highest exposure to OCs and phthalates were
found in the EDEN cohort during pregnancy and in KANC and RHEA, respectively, during
childhood; PBDESs were highest in RHEA during pregnancy, while fewer differences by
cohort were observed during childhood; phenols were highest in MOBA during pregnancy
and in BIB during childhood; and metals were highest in MOBA during pregnancy and in
EDEN during childhood. Smoking was highest in RHEA, and water DBPs were highest in
INMA. In terms of lifestyle, characterized mainly by consumption of fruit, MOBA showed
the highest levels.

3.2. Within- and between-exposure group correlations

Table 3 shows the correlations within exposure groups for the pregnancy and childhood
periods. Both overall and within-cohort correlations are shown. Overall correlations tend to
be higher than within-cohort correlations, except for the atmospheric pollutants group. This
is because, in this case, cohort-level averages do not follow the same correlation pattern than
within-cohort correlations. For example, despite the fact that PMg and NO» are positively
correlated within each cohort, the RHEA cohort had the highest levels of PM1q but the
lowest levels of NO5 (Robinson et al. 2018). The highest median overall correlations within
exposure groups were observed among water DBPs (r=0.69) and among meteorological
variables in childhood (r=0.67) and in pregnancy (r=0.54), followed by tobacco smoking
exposure in pregnancy (r=0.54), PFASs in pregnancy (r=0.49) and in childhood (r=0.45),
and air pollutants in childhood (r=0.44). All other exposure groups showed median overall
correlations below 0.42, with metals, lifestyle and surrounding natural spaces showing

the lowest within-group correlations (below 0.12). In general, correlations within exposure
groups were quite heterogeneous by cohort, as shown by the high 12 (Table 3), except for the
metals, lifestyle and socio-economic capital groups.

During pregnancy, the median absolute correlations between exposure groups were much
lower (0.08) than within exposure groups (0.20). Figure 2 shows the median within-group
(diagonal) and between-group (off-diagonal) absolute correlations for the pregnancy period.
For overall correlations (Figure 1a), the highest absolute median correlations between
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exposure groups were observed between noise and meteorological variables (r=0.45),
between water DPBs and meteorological variables (0.39), between water DBPs and
atmospheric pollutants (r=0.32), and noise and traffic (r=0.29). The rest of the median
absolute correlations between groups of chemical exposures were all equal to or below
0.24. The maximum correlation of lifestyle variables was with atmospheric pollutants
(r=0.19). Similar patterns were observed for the within-cohort correlations (Figure 1b, but
the correlations between groups were considerably reduced (r=0.03 (0.01-0.03)).This was
especially the case for water DBPs, and for the correlations between outdoor exposures
and chemicals, which were very close to 0. All correlations between noise and the other
exposure groups were strongly reduced, except for the correlation between atmospheric
pollutants and noise (r=0.13).

The pattern of correlations between exposures measured during childhood was generally
similar to the patterns observed during pregnancy (Annex 4, Figure A4.1). One notable
difference was that correlations within meteorological variables were much stronger in the
childhood period, where the last month averages were used, compared to the pregnancy
period, where we used 9-month averages. Other interesting correlations were found between
PFAS and OCs (within: 0.20, overall: 0.19) and between tobacco smoke and indoor air
pollution (within: 0.18, overall: 0.24) where within-cohort correlations remained similar

to overall correlations. Annex 4, Figure A4.3 shows histograms and cumulative density
functions of all correlations.

Annex 4, Figures A4.4-A.4.7 display the correlations within and between exposure groups
by sex. No notable differences in correlations were observed between the two sexes.

3.3. Network visualization

The exposome correlation structure, using individual exposures and within-cohort
correlations, is visualized as a network in Figure 3. Exposures that are close together in

the network are more correlated than more distant ones. The pregnancy network (Figure 3A)
shows a cluster with the outdoor exposome variables, dominated by the built environment
variables but also including air pollutants, traffic variables, natural spaces, meteorological
variables, and water DBPs. A few lifestyle variables, such as meat consumption and physical
activity, were close to the outdoor exposome cluster. On the top-left part of the network
there is another cluster made of PFASs and OCs, with contributions from metals, PBDEs,
tobacco smoke and diet variables. Phenols and phthalate metabolites form separate clusters
linked together by BPA and MEP. A few variables, like folic acid and certain metals,

are not connected to other exposures. The childhood network (Figure 3B) appears more
compact than the pregnancy network, with more links between exposure families. The
outdoor exposome still appears as a cluster. It is connected to OCs via indoor air pollution
and tobacco smoke. OCs continue to be close to PFASs. Breastfeeding and some lifestyle
variables such as physical activity and organic food consumption appear close to OCs. Diet
variables form their own cluster, with some connections to OCs and PFASs. On the left
hand side there is a cluster of phenols, phthalate metabolites, meteorological variables and
OP pesticides. Meteorological variables in childhood represent last month values, while in
pregnancy they represent pregnancy averages. Thus, in the childhood period meteorological
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variables represent recent exposure, and this may explain why they are closer to phenols
than in the pregnancy period (phenols are present in cosmetics such as sunscreen, and their
use may be influenced by recent meteorology). The main connections of the cluster formed
by phenols, phthalate metabolites, meteorological variables and OP pesticides are phthalate
metabolites and PBDEs with metals, and meteorology with indoor pollution.

3.4. Dimensionality of exposome

When conducting PCA analyses with all exposures together, 10 principal components
explained 45% of the total variance in the pregnancy exposome, while 26 components
explained 70% and 65 components explained 95%. These numbers of principal components
represent 11%, 30% and 75% of the original dimensionality of the pregnancy exposome
(87). In the childhood exposome, 10 components explained 39%, 42 explained 70% and

90 components explained 95% of the total variance (Figure A4.2). These numbers of
principal components represent 8%, 34% and 74% of the original dimensionality of the
childhood exposome (87), so the reduction in dimensionality is of similar magnitude in

the two periods. The percent of variance explained was slightly lower when using the
cohort-centered data (Figure A4.2).

3.5. Correlations between pregnancy and childhood exposures

We calculated the correlation between the same exposure measured during pregnancy
(mother) and childhood. Figure 4 shows that correlation coefficients are high (> 0.6) for
many of the exposures estimated at the residential address, such as atmospheric pollutants,
green space, noise, traffic, and certain built environment variables (connectivity, building
density). Other built environment factors such as facility density had lower correlations
(r<0.40). The correlation between pregnancy and childhood estimates was also lower

for meteorological variables (r=0.40 for temperature and r=0.10 for humidity) because

the pregnancy period includes nine months while childhood period includes 1-month
information and is therefore more subject to seasonality. Within the exposures measured
by biomarkers, DDE showed the highest correlation (r=0.62) between the pregnancy and
childhood period. Among OCs, DDE had the highest correlations while HCB showed
almost no correlation between pregnancy and childhood samples (r=0.02). Among PFASs,
PFHXS and PFOS showed correlations above 0.4, while the correlation was lower (r<0.25)
for other PFASs. Cs and Hg showed correlations greater than 0.4, but the other metals
showed lower correlations (r<0.25), even negative in the case of Cd (r=—0.05). Phthalate
metabolites showed low correlation between maternal and child sample (between —0.1 and
0.1). The correlations were also small for phenols and OP pesticides (between 0 and 0.20).
The temporal changes for chemicals in HELIX have been reported by Haug et al. (2018),
with slight differences due to different imputation methods used. Diet variables showed
low correlations (r<0.1) with the exception of fish and cereal intake with somewhat greater
values (r=0.22 and 0.35 respectively).

Figure A.4.8 displays the correlations between pregnancy and childhood exposures by sex.
No notable differences were observed between the two sexes.
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4. DISCUSSION

The HELIX project has measured exposure to many environmental factors of concern

for child health, allowing a detailed analysis of the structure of the early life exposome,
including its correlations, patterns and variability. Some very high correlations (>0.8)
between particular pairs of exposures were observed and some exposure groups included
exposures with high correlations between all exposures in the group (e.g. reaching median
correlations 0.69). Overall, however, the median correlation between exposures within the
same exposure group was only 0.2. Correlations were much lower between exposures from
different exposure groups, with a median correlation of 0.08. Our results show that the early
life exposome is high dimensional and cannot be summarized by a handful of principal
components, and that it varies spatially and temporally.

4.1. Correlation between exposures

Our results show that correlations within the same exposure group can be high, but that
correlations between exposures from different groups were low. High correlations between
exposures from the same exposure group have been described previously (Lenters et al.,
2015; Patel and loannidis, 2014; Robinson et al., 2015). The correlations found in our study
are very similar than those reported in the U.S. for similar exposure groups (e.g. OCs,
phthalates, phenols, metals), even though we reported higher correlations for OP pesticides
(Patel and loannidis, 2014). The finding of generally low correlations between exposures
from different groups, especially after removing cohort effects, is important as it would
support the notion that, if this finding is generalizable to all populations, epidemiological
studies focusing on a single family of exposures may not be confounded by exposures from
other groups. Thus, results from epidemiological studies that focus on a single exposure

or on a subset of exposures from the same group are not expected to be greatly affected

by not having included exposures from other groups. However, one should be careful;
although many between-group correlations were low, they were not negligible. In addition,
although the median correlations between exposure groups were low, for particular pairs of
exposures, high correlations were observed (e.g. between meteorology and road traffic noise
or meteorology and water DBPS).

Some of the high correlations may be due to exposures being measured using a common
methodology (e.g. GIS variables) or a common biological medium (e.g. variables measured
in urine) or because some variables were used to create others. We made efforts to use the
same procedures in all the different cohorts to maximize comparability. Variables belonging
to the outdoor exposome (i.e. atmospheric pollutants, traffic noise, natural environments or
built environment) tended to be more correlated than others in our data. However, it should
be taken into account that some of these exposures were modeled and estimated at a static
point, i.e. at the residential and school addresses, and they were capturing annual means.

If instead one considers personal measurements that account for time activity patterns

or estimates exposure for shorter time periods, correlations can vary. For example, some

of the correlations reported by a sub-study based on personal measurements within the
HELIX project found higher correlations between urban exposures than the ones reported
here (Donaire-Gonzalez et al., unpublished results). The correlation between exposures has
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important implications when one tries to identify a causal factor for disease among a set of
correlated exposures (Agier et al., 2016; Barrera-Gémez et al., 2017). A high correlation can
drastically reduce the sensitivity of the methods to identify the true exposure and increases
the probability of obtaining false positives. Thus, according to our results, it will be more
difficult to correctly identify the true exposure causing a health effect among the outdoor
exposome variables, if such a true association exists.

It is important to note that despite some high correlations, redundancy in our exposome
data was still low. To capture 95% of the total variance in the exposome set, 65 principal
components were needed and 72 if the cohort effects were removed. Thus, the early-life
exposome is complex and high-dimensional, and it is not easy to synthesize it in a few
exposure scores. Measurement errors affecting all exposures can also contribute to the
observed low correlations between exposures and therefore to the fact that exposures
cannot be summarized using a handful of principal components. It is also noteworthy
that, in general, the correlations between environmental pollutant exposures and other
lifestyle variables were low after controlling for cohort. The fact that exposures show low
correlations with lifestyle factors means a lower potential for confounding by lifestyle in
studies on the effect of environmental exposures on health.

Overall, it is recommended that investigators conducting exposome research conduct a
thorough exploration of the structure of the exposome before evaluating exposome-health
associations. Then, even in a context of a high dimensional exposome, there are several
statistical methods that can be useful to explore exposome-health relationships (Agier et al.
2016; Stafoggia et al. 2017).

4.2. Cohort effects

When we summarized exposure groups by their first PCA score, we observed strong
differences in some of the exposures by cohort. For example, BIB (UK) had the lowest
values of OCs while EDEN (France) had the highest, INMA (Spain) had the highest values
on atmospheric pollutants and water DBPs, RHEA (Greece) had the highest temperature and
lowest water DBPs, MOBA (Norway) had the highest metal values and KANC (Lithuania)
the lowest for the same variable. The geographical pattern of environmental exposures

can be explained by multiple factors, such as different meteorology, city configuration,
country-specific environmental policy or predominant diet. Multicenter studies have the
advantage of capturing more varied exposure patterns and different ranges of exposure
levels, but between-city differences can also drive many of the correlations between
variables. In our data, we observed how, after removing the cohort effect, correlations
between exposures from different exposure groups were reduced. Thus, adjustment for
cohort is very important in studies linking the exposome with health outcomes, especially if
the number of locations is small. Analyses that do not adjust for cohort may be driven by
ecological associations obtained from a small number of locations, and although they can
reflect true associations, they are more prone to be driven by confounding by other cohort or
city level variables (Basagana et al., 2018). In addition, the distribution of exposures across
SES (socio-economic status) strata can be strongly city-dependent (Robinson et al., 2015;
Temam et al., 2017).
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4.3. Mother-child correlations

One of the special characteristics of the exposome is that, unlike the genome, it changes
over time. This makes the characterization of the exposome challenging. In our data,
comparing two points that were 6 to 11 years apart, only one exposure (modeled PM1g) had
a correlation greater than 0.8, and a few others, also related to atmospheric pollutants or the
built environment, had correlations greater than 0.6. Chemical exposure can have different
half-life in the human body, which influence the temporal correlations. As expected,
concentration of persistent chemicals (i.e., PBDEs, and PFASS) showed high temporal
correlations whereas non-persistent chemicals (i.e. phthalate metabolites, phenols and OP
pesticide metabolites), with a short biological half-life and large within-subject variability
(Casas et al., 2018), showed low temporal correlations for phthalate metabolites, phenols
and OPs were low. As a result, to reliably estimate associations of these non-persistent
chemicals with disease we cannot rely on a measure taken at a single time period, as it may
not represent exposure in other periods of life.

Part of the observed variability between periods in our study may be explained by how the
exposures were measured. Variations in the outdoor exposome can for example be due to
the fact that we used the nine months of pregnancy for the pregnancy period and monthly
averages for the childhood period. Moving residences is also a factor introducing temporal
variations in the outdoor exposome.

4.4, Missing data

Missing data is a common problem in most epidemiological studies. Often, studies rely on
complete case analyses, i.e. they discard participants with missing exposure data even if

this approach only provides valid results under the assumption that missing values occurred
completely at random or else it may introduce selection bias (Donders et al., 2006). An
exposome paradigm provides additional complications as the higher the number of variables
that need to be examined jointly, the lower the number of complete cases (in our data,

there were no complete cases). Thus, the use of techniques like multiple imputation, which
provides valid results under less restrictive assumptions (Donders et al., 2006), is imperative,
for example, to implement model selection techniques to build regression models.

Applying multiple imputation to large datasets involves extra difficulties (Stuart et al.,
2009). In general, it is recommended that imputation models should not include more than
25 variables, as adding more predictors usually provides little gain and can bring problems
of convergence (van Buuren and Groothuis-Oudshoorn, 2011). To this end, we built the
imputation model for each variable by selecting a set of less than 25 predictors that avoided
collinearity problems (Annex 3).

4.5. Limitations

Although we collected data on hundreds of variables there are many unmeasured exposures
that also conform the early-life exposome. E.g. a 2006 review paper reported 100,000
chemicals registered for commercial use, 200 of them being neurotoxic for humans
(Grandjean and Landrigan, 2006). We only had data from a limited number of locations and
therefore our results are not generalizable, but they provide a good picture of some of the
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variations of the early-life exposome in Europe. Likewise, we only observed cross-sections
of the exposome and only assessed differences across two time points separated by at least 6
years, leaving the early childhood period unexplored. Our childhood period covered a wide
age range, from 6 to 11, in which children go through considerable growth. Previous studies
have shown that body burdens of exposure to persistent organic chemicals decrease with
age mainly because of an increase in dilution of these chemicals in the total blood volume
(Gascon et al., 2015). For non-persistent chemicals measured in urine, such changes are less
relevant, but behavioral changes over age may of course lead to changes in exposure. In

the present study it was difficult to conduct analyses by age because the age ranges of the
children were strongly determined by cohort, which has a strong relationship with levels of
chemicals.

5. CONCLUSIONS

This multicenter study with over 200 single environmental exposures measured showed the
early life exposome to be high dimensional in terms of having little redundancy. Correlations
between exposures from different exposure groups were much lower than within exposure
groups. This suggests that, in many cases, studies that focus on a single exposure family
should not suffer from strong unmeasured confounding by omitted exposures, although this
can be different in other geographical settings or age groups. In addition, the early-life
exposome varies strongly by region and by life periods, so measurements at one time point
or one place will not capture its complexities.
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Highlights:
. The early-life exposome is high dimension also not easily reducible to fewer
components
. Correlations between exposures within different exposure groups can be high
. Correlations between exposures in different exposure groups are low
. The exposome varies strongly by location and by life period

Environ Int. Author manuscript; available in PMC 2023 February 22.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Tamayo-Uria et al.

A

Page 19

Atmospheric pollutants | | —a |
Surrounding natural space ] [ ] | |
Meteorology
Built Environment ] | |
Traffic
Road traffic noise
OoCs - Group
PBDE || ]
i I Atmospheric pollutants
Metals I I surrounding natural space
Phthalates
Meteorology
Phenols | | |
OP Pesticides - Built Environment
Tobacco smoking 1 -I | | Traffic
Water DBPs | | I
Lifestyle | ] | 1 1 Road traffic noise
OCs
B Psoes
Atmospheric pollutants — L || PFASS
Surrounding natural space ] [ ] ]
Meteorology Metals
Built Environment — [ I Phihaistes
Traffic
Road traffic noise . Phenols
OCs - Tobacco smoking
F;,BFE:: | = = B water pBPS
Metals - Lifestyle
Phthalates
Phenols | ] =
OP Pesticides
Tobacco smoking I -
Water DBPs = | ——
Lifestyle i  —— | -
Mean of principal component score
1 1 ]
| | |
| | S ]
| 1 |
| ] Group
I smospheric pollutants
| — .
| | |
| | |
| | |
] | |
. . |
| | |
1 | |
| — |
| | —
] ] |
| | |

Mean of principal component score

Figure 1. Profile of pregnancy* (A) and childhood** (B) exposures in the 6 cohorts according to
the first component identified by PCA applied separately to each exposure group. Positive values
indicate values above the overall mean, while negative values indicate values below the overall

mean.

The loadings of each PCA analyses for all exposures are presented in Tables A.4.2 and A.4.3
in Annex 4. The exposures with highest loadings in each component were the following:
*For the pregnancy period (exposure, loading): atmospheric pollutants (NO2, 0.95),
surrounding natural space (green spaces, 0.99), meteorology (temperature, 0.94), built
environment (facility richness, 0.94), traffic (inverse distance, 0.99), OCs (PCB180, 0.93),
PBDEs (PBDE47, 0.99), PFASs (PFHXS, 0.92), metals (As, 0.8), phthalates (MEOHP,

0.93), phenols (ETPA, 0.95), OP pesticides (DMP, 0.93), tobacco smoking (Cotinine, 0.96),
water DBPs (brominated THMs, 0.94), lifestyle (fruit 0.69).
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**For the childhood period (exposure, loading): atmospheric pollutants (PM2.5 0.87),
surrounding natural space (NDVI school, 0.92), meteorology (temperature 0.93), built
environment (population density, 0.89), traffic (inverse distance, 0.95), road traffic noise
(noise all day, 0.33), OCs (PCB180, 0.97), PBDEs (PBDE153, 0.98), PFASs (PFUNDA,
0.92), metals (As, 0.96), phthalates (MEHHP, 0.97), phenols (PRPA, 0.91), OP pesticides
(DMP, 0.96), tobacco smoking (ETS, 0.96), lifestyle (KIDMED score, 0.80), indoor air
(indoor PM2.5, 0.96), socio-eco capital (social participation, 0.99).
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Figure 2:
Median absolute correlations within exposure groups (diagonal) and between exposure

groups (off-diagonal) in the pregnancy period. Panel (A) shows overall correlations and
panel (B) shows within-cohort correlations.
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Figure 3. Network visualization of the exposome.
The size of the nodes is proportional to the number of correlations were greater than 0.5

outside the exposure group and the length of the edges is proportional to the inverse of the
correlation (the higher the correlation, the shorter the edge length) between exposures. The
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colour of the nodes represents the pre-defined exposure groups. The minimum absolute
correlation to create an edge was 0.10. Figure 3A shows the pregnancy exposome,

and Figure 3B shows the childhood exposome. Networks were built using within-cohort
correlations.
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Table 2:
Population characteristics
N Pregnancy Childhood
Cohort Maternal age, years Age, years Sex
mean  (25th; 75th percentile) mean  (25th; 75th percentile) % female
BiB 205 286 (25.0; 33.0) 6.6 (6.5; 6.8) 44.9
EDEN 198 305 (27.5; 34.0) 10.9 (10.4; 11.2) 42.9
INMA 223 320 (29.5; 34.8) 8.8 (8.4;9.2) 46.2
KANC 204 292  (25.7;32.3) 6.4 (6.1;6.8) 45.6
MoBa 272 327 (30.0; 35.0) 8.5 (8.2;8.8) 47.8
RHEA 199  30.8 (27.3; 33.5) 6.5 (6.4; 6.6) 44.2
TOTAL 1301 30.8 (27.2; 34.0) 8.1 (6.5; 8.9) 45.4
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