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Abstract
Mitochondria are organelles that serve as a central hub for physiological processes in eukaryotes, including production 
of ATP, regulation of calcium dependent signaling, generation of ROS, and regulation of apoptosis. Cancer cells undergo 
metabolic reprogramming in an effort to support their increasing requirements for cell survival, growth, and proliferation, 
and mitochondria have primary roles in these processes. Because of their central function in survival of cancer cells and drug 
resistance, mitochondria are an important target in cancer therapy and many drugs targeting mitochondria that target the TCA 
cycle, apoptosis, metabolic pathway, and generation of ROS have been developed. Continued use of mitochondrial-targeting 
drugs can lead to resistance due to development of new somatic mutations. Use of drugs is limited due to these mutations, 
which have been detected in mitochondrial proteins. In this review, we will focus on genetic mutations in mitochondrial 
target proteins and their function in induction of drug-resistance.
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Introduction

Mitochondria consist of double membranes, the outer mito-
chondrial membrane (OMM) and the inner mitochondrial 
membrane (IMM), with intermembrane space in between. 
Invagination of IMM into the mitochondrial matrix results 
in formation of cristae, a structure that is essential for the 
function of mitochondria. Mitochondria serve as a central 
hub for physiological processes in eukaryotes, including 
production of adenosine triphosphate (ATP), regulation of 
calcium dependent signaling, generation of reactive oxygen 
species (ROS), and regulation of apoptosis (Han et al. 2019).

Mitochondria are dysfunctional in various cancers due 
to somatic mutations of mitochondrial DNA (mtDNA) and 
defects of mitochondrial enzyme leading to tumorigenesis 
and tumor progression due to abnormalities of the metabolic 

pathway or resistance to apoptosis (Hsu et al. 2016). Gen-
eration of ROS, oxidative stress, and other mutations in 
mtDNA responsible for continued induction of tumorigen-
esis are exacerbated by mutations of mtDNA (Hahn and 
Zuryn 2019). Hypoxia-inducible factor 1α (HIF1α), whose 
overexpression occurs in many cancers as an adaptive regu-
lator of hypoxia for tumorigenesis, is stabilized by defects in 
metabolic enzymes such as succinate dehydrogenase (SDH) 
and fumarate hydratase (FH) (Talks et al. 2000; Sharp and 
Bernaudin 2004; Pollard et al. 2005; Yee Koh et al. 2008). 
Furthermore, mitochondria have a capacity for rapid sens-
ing and adaptation to stress stimuli, thus management of 
drug-induced stress can lead to resistance to chemotherapy 
(Mizutani et al. 2009; Eisner et al. 2018).

Cancer cells undergo metabolic reprogramming in an 
effort to support their increasing requirements for cell sur-
vival, growth, and proliferation, and mitochondria have pri-
mary functions in these processes. Because of their central 
function in survival of cancer cells and drug resistance, 
mitochondria are an important target in cancer therapy 
(Ghosh et al. 2020; Vasan et al. 2020). Many drugs target 
mitochondria. However, development of new somatic muta-
tions, leading to resistance, can occur with continued use 
of mitochondrial-targeting drugs (Aminuddin et al. 2020). 
These mutations, which have been detected in mitochondrial 
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proteins, limit the use of drugs (Tanaka et al. 2021; Xu and 
Ye 2022).

In this review, we will focus on genetic mutations in mito-
chondrial target proteins and their function in induction of 
drug-resistance.

Mitochondrial targets for cancer therapy

Development of cancer therapies targeting dysfunctional 
mitochondria in cancer has been reported (Horton et al. 
2008; Kuznetsov et al. 2011; Thomas et al. 2017; Kim et al. 
2020). Binding of chemotherapeutic drugs such as doxoru-
bicin, trastuzumab, and sunitinib to mtDNA leads to induc-
tion of apoptosis through generation of ROS and loss of 
mitochondrial function (Gorini et al. 2018). However, these 
chemotherapeutic drugs exhibit a high level of toxicity and 
serious adverse effects on heart function have been reported 
(Khakoo et al. 2008; Chatterjee et al. 2010; Huszno et al. 
2013).

Alternatively, compared to the conventional chemother-
apy, utilization of drugs targeting mitochondrial proteins 
(Table 1) that induce growth of cancer cells can minimize 
side effects through selective removal of cancer cells (Dong 

et al. 2008; McGee et al. 2011; Zamberlan et al. 2022). 
Oligomerization of pro-apoptotic proteins, BAX/BAK is 
inhibited by members of the anti-apoptotic B cell CLL/
lymphoma 2 (BCL-2) family of proteins located in the 
inner mitochondrial membrane, which block the release 
of mitochondrial cytochrome c, consequently resulting in 
inhibition of apoptosis. Overexpression of these proteins, 
which are associated with chemotherapy resistance, occurs 
in many cancer cells (Kang and Reynolds 2009). Use of 
anti-apoptotic BCL-2 family protein inhibitors such as vene-
toclax, navitoclax, Obatoclax, TW-37, BM-1197, S63845, 
and AZD-5991 for induction of apoptosis in cancer cells has 
been reported (Neuzil et al. 2013; Ashkenazi et al. 2017; 
Kotschy et al. 2016; Tron et al. 2018; Cournoyer et al. 2019; 
Ahn et al. 2019; Sun et al. 2019). Glycolytic proteins can be 
targeted using 3-bromopyruvate (3BP), Mito-CP, Mito-Q, 
and 2-Deoxyglucose (2-DG) to inhibit energy metabolism 
for induction of apoptosis in cancer cells (Cheng et al. 2012). 
Mutated isocitrate dehydrogenases (mIDH) is inhibited by 
AGI-5198, AGI-6780, AG-120, and AG-221, which are 
detected in a variety of cancers and are regarded as prime 
targets for chemotherapy through regulation of the tricar-
boxylic acid (TCA) cycle (Zong et al. 2016; Golub et al. 

Table 1   Drugs of targeting mitochondrial proteins

Mitochondria protein-target drug Target protein Cell death mechanism Reference

AZD-5991 BCL-2 family Apoptosis induction Tron et al. (2018)
BM-1197 Sun et al. (2019)
Obatoclax (GX15-070) Cournoyer et al. 

(2019)
S63945 Kotschy et al. (2016)
TW-37 Ahn et al. (2019)
Navitoclax (ABT-263) Ashkenazi et al. 

(2017)
Venetoclax (ABT-199)
2-deoxyglucose (2-DG) Hexokinase II Inhibition of cell metabolism Zhao et al. (2019)
3-bromopyruvate (3BP) Lis et al. (2016)
Benitrobenrazide Zheng et al. (2021)
FV-429 Zhou et al. (2016)
AG-120 Isocitrate dehydrogenase 

I, II
Inhibition of cell metabolism Golub et al. (2019)

AG-221
AGI-5198
AGI-7680
Enasidenib (AG-221)
Ivosidenib (AG-120)
Metformin Complex I ROS accumulation Fontaine et al. 2018
Rotenone Li et al. (2003)
Alpha-tocopheryl succinate (α-TOS) Complex II ROS accumulation Dong et al. (2008)
Atpenin A5 Kluckova et al. (2013)
MitoVES Yan et al. (2015)
Thenoyltrifluoroacetone Zhang and Fariss 

(2002)
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2019). Induction of ROS and destruction of cancer cells are 
induced by alpha-tocopheryl succinate (α-TOS), metformin, 
rotenone, and Mitochondrially targeted vitamin E succinate 
(MitoVES) through inhibition of the function of proteins of 
the electron transport chain (ETC) in oxidative phosphoryla-
tion (OXPHOS) activity and generation of ATP (Zhang and 
Fariss 2002; Li et al. 2003; Dong et al. 2008; Kalyanaraman 
et al. 2018; Fontaine 2018).

Despite their strong efficacy against cancer with low 
side effects, modulation of the efficacy of these drugs can 
occur in various ways in cancer cells, leading to treatment 
resistance. Resistance to mitochondrial protein-targeted anti-
cancer therapies can be caused by various genetic factors 
in various carcinomas (Xu et al. 2018; Çoku et al. 2022). 
In addition, induction of apoptosis can be avoided due to 
involvement of the mitochondrial regulatory protein that 
induces apoptosis in interactions with various proteins rather 
than a single protein (Lopez and Tait 2015).

Cases of resistance to mitochondrial‑targeted 
anti‑cancer drugs due to genetic factors

Drugs targeting anti‑apoptotic proteins to induce intrinsic 
apoptosis

The intrinsic apoptotic pathway is controlled by the BCL-2 
family, a family of proteins sharing BCL-2 homology (BH) 
domains, through control of mitochondrial outer membrane 
permeabilization (MOMP). Among the members of the 
BCL-2 family, anti-apoptotic proteins such as BCL-2, BCL-
XL, and MCL-1 induce inhibition of apoptosis leading to 
tumor promotion (Youle and Strasser 2008). These proteins 
of the BCL-2 family are important in several carcinomas as 
targets for cancer therapy, including prostate cancer, breast 
cancer, and blood cancer (Emi et al. 2005; Yoshino et al. 
2006; Soderquist et al. 2016).

Of the BH1 through BH4 domains, BH3 is a key domain 
for induction of anti-apoptosis in proteins of the anti-apop-
totic BCL-2 family (Kelekar and Thompson 1998). Direct 
activation of BAX/BAK resulting in induction of apoptosis 
occurs by way of BH3-only proteins, such as the BCL-2 
interacting apoptosis mediator (BIM) (O'Connor et al. 1998), 
and the activities of BAX/BAK are inhibited by BIM bind-
ing to the BH3 domain of the BCL-2 family proteins, which 
results in anti-apoptosis (Ewings et al. 2007). In the effort 
to maintain the activity of BIM, many studies on cancer 
therapies using “BH3 mimics” that bind to this domain of 
BCL-2 family proteins have been reported (Souers et al. 
2013; Wang et al. 2016; Konopleva et al. 2016; Campos 
and Pinto 2019; Fleischmann et al. 2022; Calis et al. 2022). 
Venetoclax (ABT-199), a representative BH3 mimic, is used 
for chemotherapy of hematologic malignancies including 
acute myeloid leukemia (AML) that shows high expression 

of BCL-2 (Souers et al. 2013; Konopleva et al. 2016; Cam-
pos et al. 2018; Fleischmann et al. 2022).

Genetic mutations responsible for resistance to vene-
toclax were recently detected in patients with progressive 
Chronic Lymphocytic Leukemia (CLL) with G101V, F104C, 
F104L, and D103Y mutations in the BCL-2 gene. These 
mutations, which reduced the binding affinity of veneto-
clax to the BCL-2 protein due to the presence of a bulkier 
sidechain within the interior of globular BCL-2 protein, 
were responsible for resistance to venetoclax (Birkinshaw 
et al. 2019; Tausch et al. 2019). BCL-2 and BCL-XL were 
inhibited by the use of navitoclax (ABT-263) in hepatocel-
lular carcinoma (HCC) cells, however, MCL-1 mRNA and 
protein were stabilized, resulting in a limited effect (Wang 
et al. 2014). Because venetoclax and navitoclax are selective 
drugs against BCL-2, activation of other members of the 
BCL-2 family such as MCL-1 has been reported as the pri-
mary cause of resistance (Van Delft et al. 2006; Souers et al. 
2013). In an effort to address this limitation, a combination 
of S63845 (MCL-1 inhibitor) and venetoclax were applied, 
resulting in induction of apoptosis in venetoclax-resistant 
AML cells (Hormi et al. 2020).

In the case of MCL-1 with L267V mutation detected in 
myeloma patients, the mutation does not interfere with bind-
ing of MCL-1 inhibitors such as S63845 and AZD-5991 
to MCL-1, rather it prevents displacement of pro-apoptotic 
proteins by the drug, resulting in disruption of the process 
of apoptosis (Chen et al. 2018).

In addition, a decrease in BAX, a pro-apoptotic protein, 
also led to induction of resistance to venetoclax. Interaction 
of BAX with Voltage Dependent Anion Channel (VDAC) 
occurs upon induction of apoptosis, leading to an increase of 
MOMP, resulting in loss of membrane potential and release 
of cytochrome c (Adachi et al. 2004). Significantly reduced 
efficacy of venetoclax was reported in BAX-deficient CLL 
patients with C-terminal BAX mutations who received long-
term treatment with venetoclax (Blombery et al. 2020), 
resulting in elimination of external mitochondrial membrane 
localization of BAX and induction of resistance to veneto-
clax (Blombery et al. 2022).

Drugs targeting glycolysis for inhibition of mitochondrial 
metabolic pathways

Most cancer cells undergo metabolic reprogramming in an 
effort to adapt to unfavorable conditions such as hypoxia 
and a low supply of nutrients up to 60% of ATP is derived 
from the “Warburg effect” and the remaining ATP from 
OXPHOS. The Warburg effect, a high level of glycolysis 
over OXPHOS even in the presence of oxygen in cancer 
cells, enables acquisition of oxygen-independent metabolism 
in cells (Alfarouk et al. 2014; Lis et al. 2016).
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Intracellular fixation of glucose catalyzed by hexokinase 
(HK) is the first step of glycolysis. ATP-dependent phospho-
rylation of glucose is catalyzed by HK for generation of glu-
cose-6-phosphate (G6P) which is also utilized in OXPHOS 
and the pentose-phosphate pathway (Rosano et al. 1999).

The mitochondrial bound form of hexokinase 2 (HK2) 
most likely has an anti-apoptotic function. which might be 
responsible for its overexpression in most cancers. HK2 is 
bound to the outer membrane protein VDAC in mitochon-
dria and probably gives HK2 an advantage regarding access 
to ATP generated during OXPHOS (Nakashima et al. 1986; 
Arora and Pedersen 1988). HK2 improves the rate of glycol-
ysis and is required for initiation and maintenance of tumors. 
Therefore, development of anti-cancer drugs that target HK2 
for inhibition of glycolysis and induction of apoptosis has 
been reported (Zhou et al. 2016; Zheng et al. 2021).

2-DG, a glucose analogue, competes with glucose and 
binds to HK2, leading to inhibition of glycolysis (Zhao et al. 
2019). No cases of resistance to 2-DG, an HK2 inhibitor, 
in cancer have been reported. However, one case of 2-DG 
resistance with a novel mutation in the yeast gene Hkk2 
has been reported (Zhao et al. 2019). No interaction was 
observed between the Hkk2 G238V mutation and either 
glucose or 2-DG, however, its potential to affect binding 
and catalysis of hexose through an allosteric mechanism was 
demonstrated (Hellemann et al. 2022), suggesting a clinical 
relevance to 2-DG resistance.

Drugs targeting the TCA cycle to inhibit mitochondrial 
production of ATP

The TCA cycle, also known as the citric acid cycle or the 
Krebs cycle, is a mediator that assists in production of ATP 
through supply of electrons to the ETC. The TCA cycle, 
which occurs in mitochondria, is composed of eight chemi-
cal reactions for production of electron reservoirs in the form 
of NADH and FADH2 from acetyl-CoA derived from carbo-
hydrates, proteins, and fats. In turn, NADH and FADH2 are 
utilized in the OXPHOS pathway for production of chemical 
energy in the form of ATP. Both storage of electrons and 
generation of amino acid precursors occur during this cycle.

Although utilization of aerobic glycolysis is known to 
be a hallmark of cancer cell metabolism, cancer cells also 
rely on the TCA cycle for production of energy and macro-
molecular synthesis (Anderson et al. 2018; Eniafe and Jiang 
2021). Catalysis of isocitrate to α-ketoglutarate (α-KG) and 
reduction of NAD(P) + to NAD(P)H are induced by Isoci-
trate dehydrogenases 1 and 2 (IDH1 and IDH2), metabolic 
enzymes in the TCA cycle (Reitman and Yan 2010). In par-
ticular, IDH2, located in mitochondria, is involved in regula-
tion of oxidative respiration, and thus plays an important role 
in tumorigenesis (Nekrutenko et al. 1998; Kalyanaraman 
et al. 2018; Qiao et al. 2021). Mutation of IDH1 and IDH2 

has been reported in several carcinomas including AML, and 
solid tumors, including glioma, chondrosarcoma, and chol-
angiocarcinoma (Wouters 2021). The conversion of α-KG to 
2-hydroxyglutarate (2-HG), an oncometabolite, is catalyzed 
by mutant IDH1 and IDH2 (mIDH1 and mIDH2), which 
also mediate most of the carcinogenic potential (Dong and 
Neuzil 2019). Accumulation of 2-HG is a factor in tumor 
formation and growth of malignant tumors (Dang et al. 
2009). Therefore, high efficacy of anticancer drugs, includ-
ing AGI-5198, AGI-6780, AG-120, and AG-221 in targeting 
mIDH1 and mIDH2 has been reported in a wide range of 
cancer types (Wouters et al. 2021).

Enasidenib (AG-221), a selective inhibitor of mIDH2, 
displays a potent inhibition of 2-HG production in the 
context of the IDH2 R140Q/WT heterodimer or the IDH2 
R140Q homodimer. Suppressed production of 2-HG and 
induction of cellular differentiation caused by AG 221 
in primary human mIDH2–positive AML cells has been 
demonstrated (Yen et al. 2017). A recent study reported 
on the secondary mutations in IDH2, Q316E and I319M, 
detected in two AML patients who developed resistance to 
Enasidenib and tumor relapsed. The Q316E mutation caused 
a reduction of hydrogen bonding with Enasidenib, and the 
I319M mutation conveyed steric hindrance to the bulky side 
chain (Zhuang et al. 2022). Resistance to Ivosidenib (AG-
120), an inhibitor of mIDH1, was also reported in the AML 
patients with the secondary mutation, S280F of IDH1. IDH1 
S280F mutation was expected to result in a steric hindrance 
caused by substituted phenylalanine near the binding site of 
Ivosidenib and mIDH1 (Oltvai et al. 2021).

Drugs targeting the mitochondrial ETC protein to apoptosis 
via generation of ROS

ROS, a byproduct of normal metabolism of oxygen in cells, 
are highly reactive oxygen-containing molecules that react 
readily with other molecules in cells. Production of ROS 
occurs through recurring biochemical reactions during 
OXPHOS in the ETC with passage of electrons through a 
series of proteins in order to finally reach oxygen in mito-
chondria. Increased levels of ROS detected in cancer cells 
has long been regarded as tumorigenic through promotion 
of genomic instability. A moderately increased level of ROS 
in cancer cells can promote tumorigenesis and progression 
through activation of signaling pathways responsible for 
regulation of cellular proliferation, metabolic alterations, 
and angiogenesis as well as induction of DNA mutation 
(Sullivan and Chandel 2014; Perillo et al. 2020).

However, a continuous increase in the level of ROS leads 
to inactivation of BCL-2 and BCL-XL via activation of 
c-Jun N-terminal Kinase (JNK) and induction of apoptosis 
by release of cytochrome c by BAX/BAK (Redza-Dutor-
doir and Averill-Bates 2016). Therefore, wide use of cancer 
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treatment that induces excessive production of ROS has been 
reported (Perillo et al. 2020). NADH generated through the 
TCA cycle in the mitochondrial matrix is oxidized by respir-
atory complex I (Complex I), which also causes reduction of 
ubiquinone to ubiquinol using two electrons (Sharma et al. 
2009). Catalysis of the oxidation of succinate to fumarate 
and transfer of electrons to ubiquinone are induced by SDH 
(Complex II) (Bandara et al. 2021). They donate electrons 
to ETC and ultimately play an important role in generation 
of ATP (Nolfi-Donegan et al. 2020). Production of ATP is 
hindered by inhibition of Complex I and Complex II, which 
also causes excessive production of ROS (Chen et al. 2007), 
which is a target of cancer treatment (Yoshida et al. 2021; 
Kluckova et al. 2013).

Complex I is composed of 45 subunits; seven of these, 
ND1-6 and ND4L, are encoded by mitochondrial DNA 
(Sharma et al. 2009). Binding of rotenone, an inhibitor of 
Complex I, to the ND4 site, results in induction of apoptosis, 
inhibiting proliferation of cells in various carcinomas includ-
ing lung cancer, colon cancer, and breast cancer (Heinz et al. 
2017; Kampjut and Sazanov 2020). The G11778A mutation 
in ND4 has been reported to induce resistance to rotenone 

in patients with Leber's hereditary optic neuropathy (Degli 
Esposti et al. 1994; Musiani et al. 2022). Although no clini-
cal cases in cancer patients have been reported, it is expected 
that cancer patients with the G11778A mutation of ND4 
will have an equal likelihood of developing resistance to 
rotenone. In addition, resistance to rotenone was reported 
in hypoxia-tolerant human glioma cells (M010b) harboring 
the T14634C mutation of ND6 that showed no change in 
expression of ND6 (DeHaan et al. 2004).

Ubiquinone obtains electrons through binding to the 
ubiquinone binding site (Qp) of complex II. Upon gaining 
electrons, ubiquinone is reduced to ubiquonol in order to 
supply electrons to complexes III and IV (Cecchini 2003; 
Sun et al. 2005). Interaction of Atpenin and MitoVES with 
Qp in complex II, which inhibited the reduction of ubiqui-
none and the oxidation of succinate, has been reported 
(Miyadera et al. 2003; Yan et al. 2015). According to the 
result, ROS was produced by Complex II, leading to satu-
ration of the succinate concentration (Siebels and Dröse 
2013). However, interaction of Complex II with inhibitors 
such as thenoyltrifluoroacetone (TTFA), Atpenin A5, and 
MitoVES was inhibited by mutations at the Qp-binding site 

Fig. 1   Cancer drugs that inhibit protein function involved in mitochondrial metabolism and anti-apoptosis
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of Complex II, leading to development of drug resistance 
(Kluckova et al. 2015).

Conclusion

Mitochondrial dysfunction is a major cause of tumorigen-
esis and tumor progression in many cells. Many anticancer 
drugs that target dysfunctional mitochondrial metabolism 
and apoptosis pathways have been developed (Fig. 1). How-
ever, intrinsic genetic mutations and mutations in the target 
protein that are induced by continuous administration of 
anti-cancer drugs can cause induction of resistance. Admin-
istration of multi-drug therapy is recommended as a method 
for overcoming resistance to anti-cancer drugs. Resistance 
was overcome with use of a combination of mitochondrial-
targeting drugs (Cheng et al. 2019). However, there are both 
advantages and disadvantages associated with overcoming 
drug-resistance. The primary risk is side effects. A better 
effect was not achieved by combination of valproic acid with 
all-trans retinoic acid, and valproic acid-related hematologic 
toxicity and higher mortality were observed with co-admin-
istration of idarubicin in patients with AML (Tassara et al. 
2014). In addition, patients may show separate side effects 
for each drug at the same time, and determining which drug 
caused the side effect can be difficult (Mokhtari et al. 2017). 
Thus, the significance of targeted therapy to minimize tox-
icity may be undermined by the side effects of multi-drug 
therapy. In addition, increased drug costs due to increased 
usage of drugs and improper multi-drug use can impose a 
cost burden.

Positive combination therapy can have a synergistic 
effect on efficacy (Duarte and Vale 2022), however, use of 
sequential monotherapy may enable greater dose intensity 
as well use of a treatment approach that enables attainment 
of the maximum time and benefit from each agent (Dear 
et al. 2013).

Therefore, selection of an optimal mitochondria-target in 
order to minimize drug toxicity, identification of patients 
who show resistance to the drug to be administered, and 
design of an alternative strategy for treatment in patients 
who show resistance are important. Combination drug ther-
apy or another single drug capable of evading resistance 
might be an alternative strategy. Finally, as various anti-can-
cer drug therapies have been developed, cases of resistance 
to the drug have also been reported; thus, conduct of many 
clinical studies is still required in various cases in order to 
achieve a successful treatment outcome for cancer patients.
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