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Intelligentmetasurface system for automatic
tracking of moving targets and wireless
communications based on computer vision

Weihan Li 1, Qian Ma1, Che Liu1, Yunfeng Zhang1, Xianning Wu2, Jiawei Wang1,
Shizhao Gao1, Tianshuo Qiu2, Tonghao Liu2, Qiang Xiao1, Jiaxuan Wei1,
Ting Ting Gu 3, Zhize Zhou3, Fashuai Li 3, Qiang Cheng 1, Lianlin Li 4,
Wenxuan Tang 1 & Tie Jun Cui 1

The fifth-generation (5G) wireless communication has an urgent need for
target tracking. Digital programmable metasurface (DPM) may offer an intel-
ligent and efficient solution owing to its powerful and flexible controls of
electromagnetic waves and advantages of lower cost, less complexity and
smaller size than the traditional antenna array. Here, we report an intelligent
metasurface system to perform target tracking and wireless communications,
in which computer vision integrated with a convolutional neural network
(CNN) is used to automatically detect the locations of moving targets, and the
dual-polarized DPM integrated with a pre-trained artificial neural network
(ANN) serves to realize the smart beam tracking andwireless communications.
Three groups of experiments are conducted for demonstrating the intelligent
system: detection and identification of moving targets, detection of radio-
frequency signals, and real-time wireless communications. The proposed
method sets the stage for an integrated implementation of target identifica-
tion, radio environment tracking, and wireless communications. This strategy
opens up an avenue for intelligent wireless networks and self-adaptive
systems.

In the fifth generation (5G) wireless communication era with a large
number of devices in use, the demands for the Internet of Things (IoT)
and intelligence for user-based positioning and tracking services
become more urgent. Target tracking is generally based on advanced
sensors, such as radar, which can detect and track targets by analyzing
and processing the radar echoes of targets. However, the electro-
magnetic (EM) environment is complicated and changeable, and the
detecting systems based on radars tend to be inefficient due to their
complexity, high cost, and large volume. Therefore, more flexible
hardware architecture, higher speed of information processing, and

more advanced theory of information and communication are
urgently needed for satisfying the substantial demands of user posi-
tioning, tracking, and extensive applications in 5G communications.

Metamaterials have attracted great interest in the past decades
owing to their remarkable EM properties1–6. They are mainly intro-
duced by their subwavelength unit cells and functional arrangements
tomanipulate the EMbehaviors, yieldingmany interesting phenomena
and devices such as negative refraction4 and absorber5. Metasurfaces
are two-dimensional (2D) versions of metamaterials, which are of
particular interest because of their planar profile, easy integration, and
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low loss. A series of intriguing findings of the metasurfaces have been
reported recently, such as holography7,8, ultrasensitive spectroscopy9,
nonlinear photonics10, and quantum photonics11, together with the
exciting applications in photonic devices12, terahertz devices and
systems13–16, and microwave engineerings like glide-symmetric
devices17, Huygens surfaces18,19, field modulations20,21, and
nonreciprocal22 and reconfigurable23 components.

Digital coding and programmable metasurfaces consist of
unique coding elements with discretized reflection phases (e.g.,
0° and 180°) represented by digital bits (e.g., ‘0’ and ‘1’), which can
be used to manipulate the EM waves in a digitally discrete
manner6. Digital elements can be tuned when active devices such
as positive–intrinsic–negative (PIN) diodes and varactors are
integrated, and in this way, programmable metasurfaces that
possess a variety of functions under dynamical controls through
different bias sequences have been developed24. In particular,
polarization modulations25–27, amplitude modulations28,29, and
transmission–reflection controls30–34 of the programmable meta-
surfaces providemore degrees of freedom tomodulate the carrier
waves and lead to many intriguing findings and engineering
applications, such as microwave imagers35,36, space–time
modulations37–39, and wireless communications40–43.

In practice, however, the majority of the programmable meta-
surfaces are controlled by human beings. Although several self-
adaptive metasurfaces without human interventions have been
developed to realize invisibility cloaks44 and adaptively dynamic
reactions45, most of the related work is concentrated on the verifica-
tion of pre-designed functions and performance. To realize an intelli-
gent tracking system, on one hand, optimization schemes46,47 and
artificial intelligence (AI) like deep learning48 (DL) techniques are
adopted to compute the coding matrices of metasurface for compli-
cated scattering problems44,49–51 and real-time responses; and on the
other hand, advanced intelligent wireless communication systems are
also strongly demanded to capture user locations in complex EM
environment, and to establish real-time channels between users.
However, it is expensive and complicated to realize real-time and self-
adaptive EM responses in a complex environment. Fortunately, with
the fast development of computer vision technology, intuitive, reli-
able, informative, and cost-effective target detection and tracking
become possible in many application scenarios including ship
detection52 and traffic surveillance system53. The major tasks of com-
puter vision include classification, location, detection, and segmenta-
tion. Among them, the task of visual object detection54 is to determine
whether an image contains anobject of interest or not. It is used to find
out the objects of a specific category in a given image, and mark the
positions of objects in each frame. After that, the process of object
tracking54,55 is adopted to continuously estimate the state of the object
in subsequent video sequences based on the given position and size of
the object in the initial frame. Moreover, AI-enabled computer vision
technology56–60 is evolving rapidly, which can solve more complicated
problems and serve as an aid to intelligent communications.

In this article, we use the advantages of computer vision and
flexible controls of the digital programmable metasurface (DPM) to
achieve intelligent EM tracking and communications simultaneously. It
is an innovative combination of the AI-based intelligent control of EM
behaviors and computer-vision-based accurate classification, detec-
tion, and tracking. The technology enables real-time and accurate EM
responses tomeet the challenges in 5G and 6G communications. Here,
we propose the concept of an intelligent tracking system using com-
puter vision and fulfill the design with a dual-polarized DPM. Each
element of the metasurface includes two loaded PIN diodes for dual
polarizations. With the aid of a field programmable gate array (FPGA)
that processes the coding sequences in real-time, the reflection
property of each element can be independently controlled and the
corresponding EM responses are thus dynamically produced.

Embedded with a pre-trained artificial neural network (ANN), DPM can
respond to information at a high speed, where the information can be
collected, fed back, and processed in real-time. The information
includes the trained voltage sequences, surrounding background, and
themoving objects to be tracked, without any human intervention. All
bias voltages are automatically calculated by real-time information
perception and then instantly supplied to DPM. The object tracking
algorithm based on YOLOv4-tiny and the pre-trained ANN is used to
imitate the real-time system in intelligent tracking. Experiments were
carried out to evaluate the performance of the design, demonstrating
that the DPM-based intelligent system exhibits self-adaptability to
track moving targets and transmit information to them in real-time.
The proposed concept will provide solutions for intelligent meta-
systems andmanipulations of EMwaves in an unsupervised approach.

Results
Architecture of the intelligent scheme
The schematic of the proposed intelligent system is presented in Fig. 1,
which is composed of a dual-polarizedDPMand anRGB-D camera. The
moving target is represented by a model car running along a certain
path in time from t1 to t2. The images of the car are taken by an Intel
RealSense Depth Camera D435i (RS-Camera) located on the metasur-
face at the rate of 40 FPS (frames per second), and each image is
selectedby the convolutionalneural network (CNN)basedonYOLOv4-
tiny. The original image is firstly scaled to [608, 608, 3] when reason-
ing, and then input to the CSPDarknet53-tiny network for the feature
extraction. After passing through five groups of convolution and
pooling layers, the feature maps with three different dimensions are
obtained, which are fused by the network and YOLO layers. We opti-
mize the network to detect not only the target but also to collect its
position and its elevation and azimuth angles in the coordinates of the
RS-Camera (see Supplementary Note 1 for details).

The moving object is tracked dynamically and its position infor-
mation is refreshed in real-time by the RS-Camera, with each refresh
followed by a voltage control sequence that feeds the FPGA connected
to DPM. The DPM is carefully designed to transmit an adaptive
radiating beam toward the moving target based on its changing posi-
tions. The coordinate systems of the camera and the DPM (as they are
closely located) are unified to ensure the accuracy of the position. As it
is time-consuming to get all spatial angles through numerical simula-
tion of the coding metasurfaces, an ANN is designed based on the
theory of beam-steering coding metasurfaces. Through training the
neural network, we can promptly obtain the coding sequences of DPM
corresponding to all radiation angles that fulfill the moving space of
the target. The pre-trained neural network for far-field control and the
intelligent tracking algorithm based on YOLOv4-tiny have completed
themain part of thewhole control system. The coding sequence of the
DPM is obtained through the extraction of position information using
the neural network, and the refreshed coding sequence is sent to the
DPM in the form of voltage through the FPGA.

Design of DPM
In constructing the DPM, a 1-bit dual-linearly polarized element con-
taining two PIN diodes is proposed, as shown in Fig. 2a, in which the
geometric parameters are designed as follows: a = 25mm, b = 11.5mm,
c1 = 6mm, c2 = 2.8mm, and d = 1.5mm. Two PIN diodes are connected
to the central patch through two metal bars along the x- and y-axes to
tailor the phases in the orthogonally linear polarizations. Thedielectric
substrates of the element are made of commercially printed circuit
boards (PCBs), in which the upper substrate is F4B with a height
h1 = 3mm, dielectric constant εr = 3, and tangent loss tan δ =0.003,
and the lower substrate is F4Bwith a height h2 = 1mm. Ametallic sheet
is inserted between the two dielectric substrates. In the back layer, the
positive side of the PIN diode is conducted with the backside sector
structure for the radio-frequency (RF) signal isolation and DC voltage
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bias. The parameters of the sector are r = 5mm and β = 120°, as shown
in Fig. 2b.

The element simulations are performed using the commercial
software of CST Microwave Studio. We list the schematic diagram of
four working states in Fig. 2c, and the simulated magnitude and phase
responses of the reflected waves for different states in Fig. 2d and e,
respectively. When the diode along the x-axis is turned ON and the one
along the y-axis is OFF, it represents state “10”, and the other three
states by parity of reasoning. Given that the structure of the presented
element is symmetrical along the x- and y-axes, the phase modulations

for the x- and y-polarized incidences are the same. Consequently, we
give the results only under the x-polarization. From Fig. 2d, we observe
that the normalized reflected amplitude is almost over 0.8, which
guarantees good reflection efficiency at the central frequency of
5.8GHz (marked in gray). Figure 2e illustrates the phase responses of
the element. We remark that the results are for the x-polarized inci-
dence, inwhich thediode along the y-axis is kept invariant. FromFig. 2e,
it is observed that the OFF–ON states of the x-polarization, e.g., the
states of “01” and “11” in the top figure and the states of “00” and “10” in
the bottom one, have a phase difference of 180˚ around 5.8GHz.
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Fig. 1 | Schematic of the intelligent target tracking system. The RS-camera
automatically detects the position of a moving target in the environment. The
position information of the selected target is taken as the input of the pre-trained
artificial neural network (ANN), and the coding sequence of the metasurface is

output in a few milliseconds, which is sent to the dual-polarized programmable
metasurface through FPGA, thus realizing smart beam tracking and wireless
communications.
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Fig. 2 | The structure and performance of the designed DPM. a The element
structure integrated with two PIN diodes, and the geometric parameters are
designed as follows: a = 25mm, b = 11.5mm, c1 = 6mm, c2 = 2.8mm, h1 = 3 mm,
h2 = 1 mm and d = 1.5mm. b The bottom view of the coding element. c The

transmission schematic for the presented metasurface structure, including four
switching schemes with two diodes. d, e The reflected magnitude and phase
responses of the coding element when the PIN diodes are switched on and off.
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A total of 324 (18 × 18) elements constitute the apertureofDPM, as
shown in Fig. 3. A dual-polarized rectangular horn antenna is used to
illuminate theDPM. Basedon the superposition principle, the reflected
waves of DPM are the superposition of the reflected waves of all ele-
ments. By adequately configuring the digital coding scheme, DPM can
steer a single beam or two beams dynamically.

Beam steering by DPM
We consider the specific situation of target recognition and tracking
using DPM, and exam the working mechanism of beam steering (see
Supplementary Note 2 for details). The experiment for measuring the
far-field patterns of DPM is established in a microwave anechoic
chamber, as illustrated in Fig. 3a. DPM and the feeding horn are both
mounted on a turntable. The feeding horn antenna is used to emit the
EM wave with a frequency of 5.8 GHz via a signal generator (Keysight
E8267D), and a receiving antenna is used to record the scattered
powers via a spectrum analyzer (Keysight E4447A). The feeding horn
antenna, with a relatively flat wavefront, is placed 0.5m away from the
metasurface. The photographs of the fabricated sample and details of
the biasing line are shown in Fig. 3b and c. Considering the cost and
complexity of fabrication, the biasing lines of different polarizations
on the bottom layer are printed on two sides of the sample, thereby
leading to independent controls of bias voltages. With the aid of the
above theoretical analysis, we can achieve precise controls of the
scattering patterns at the front space of the metasurface.

As the basis to track moving targets with beams, we discuss the
design of the coding scheme for beam steering. Fig 3d plots the
measured beams on the E-plane from −40° to 40°with an increment of
10°. The fabricated DPM presents the great performance of dynamic
beam scanning controlled by the FPGA shown in Fig. 3c. With the
increment of the scanning angle, the gain decreases from 19.43 to
15.54 dB and the beam width becomes wider due to the fact that the
effective aperture of DPM becomes smaller when the scanning angle
increases. The digital coding schemes and simulation results are pre-
sented in Supplementary Note 3. We note that the element itself is
symmetrical and the performance of beam steering under the x-
polarization is good (see SupplementaryNote4 for details). Theperiod
of the element is relatively large at 5.8 GHz, and the manufacturing
technique has some limitations on the overall size of the metasurface.
Hence the metasurface has a relatively small number of 324 elements,
leading to the existence of sidelobes in the reflected beam. The

measured results of the dual-polarizations demonstrate that sufficient
sidelobe suppression is still held in the measurement, which is suffi-
cient for generating the directive beams. The good performance of
designable radiation patterns and spectral power distributions guar-
antees the feasibility of the proposed intelligent tracking system.

Platforms for target detection
TheRS-Camera is used to collect the target images in real-time at a rate
of 40 FPS. The sampled images are then processed by the YOLOv4-tiny
network to obtain the real-time positions and poses (i.e., the elevation
and azimuth angles relative to the sampling position) of the target.
High-precision detection at a certain detection speed is realized by
introducing the Mosaic data enhancement, spatial pyramid pool
structure (SPPNet), and CSPDarknet53-tiny network with stronger
feature extraction ability to the YOLOv4-tiny network, as shown
in Fig. 4.

During the inference of the YOLOv4-tiny network, the original
image size is firstly scaled to [608, 608, 3] and put into the
CSPDarknet53-tiny network for feature extraction. Then the features
are fed into two different CNN modules to obtain feature maps with
different scales. The feature map with dimensions [38, 38, 256] is
obtained after 10 layers of convolution and pooling, and the feature
map of [19, 19, 512] is obtained through 4 layers of convolution and
pooling. The detection results are obtained by performing 4-layer
convolution on the featuremaps of [19, 19, 512] tomake the number of
channels num-anchor×(5 + num-class). On the other hand, the 19 × 19
feature map is doubly up-sampled to a size of 38 × 38. The feature
maps of the same size are superimposed in the backbone network to
form a new feature map, which integrates the information of the
middle and deep layers for better representation ability and then
performs 2-layer convolution to change the number of channels. After
that, the detection results are obtained in a dimension of num_an-
chor×(5 + num_class), where num-class represents the number of
categories that can bedetected, num_anchor represents the number of
anchor boxes, and the five parameters represent the center coordi-
nates, width, height, and confidence of the detection box, respectively
(see Supplementary Note 5 for details). To be noted, the RS-Camera is
not in the center of the aperture of DPM, and therefore the position
information obtained by the RS-Camera has a small deviation in the
coordinate system of the DPM.We unified the two coordinate systems
in the control system so as to make the position information more
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Fig. 3 | Measurements of the manufactured DPM. a The far-field experimental
setup in an anechoic chamber. b Photographs of the fabricated prototype. c Zynq-
7000 SoC series FPGA for voltage control. d Themeasured far-field patterns when

beams on the E-plane vary from −40° to 40° at 5.8 GHz. These experiments verify
that the DPM can shape the far-field patterns in the spatial domain by configuring
the digital codes.
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accurate. Through debugging, the position information detected by
the RS-Camera and the beam direction of the DPM is precisely con-
sistent. To characterize the working performance of the networks, the
detailed structures of the YOLOv4-tiny network and pre-trained ANN
are presented in Supplementary Notes 6 and 7, respectively.

To use the pre-trained ANN to decide the corresponding coding
sequence, we consider the one-dimensional feature extraction formof
the network as a fully connected neural network, and the residual
network resnet34 extracts two-dimensional features. The input is the
2D vector obtained earlier, which is composed of the angles of theta
andphi, and theoutput is anN-dimensional signal sequencecomposed
of “0” and “1”, which is used to control the feeding of metasurface
elements. We consider fitting the N-dimensional sequence here as a
multi-label andmulti-classification problem. There are a total of N tags
corresponding to N feeds, and each tag has two states corresponding
to “0” and “1”, respectively. At this time, we take binary cross entropy
(BCE)-loss as the loss function. Because the final output has two dis-
crete values of “0” and “1”, we use the sigmoid function as the activa-
tion function of the last layer of the network. Its value ranges from “0”
to “1”, and hence can normalize the values calculated by the previous
network. After the network training is completed, we set 0.5 as the
threshold for judging whether the output is “0” or “1”. We denote that
the pre-trained ANN can quickly obtainmore datasets to copewith the
recognition with smaller resolutions. In this study, ANN is designed to
learn the coding matrix with low sidelobe characteristics obtained
from the particle swarm optimization (PSO) methods, and the output
has better beam accuracy with a much faster speed. Therefore, the
proposed ANN has stronger abilities than the back-propagation
method to solve complex scattering problems and faster speeds
than the nonlinear optimization method. For a realistic environment,
the presented ANN has the advantages of lightweight, easy deploy-
ment, and anti-interference (see Supplementary Note 8 for details).

Experimental setup and environment
For experimental verification, we fabricated a DPM sample with the
size of 470 × 500× 4mm3 (18 × 18 elements). The computer vision
detection based on YOLOv4-tiny and the pre-trained beam steering

ANN facilitate the connection between different parts of the system, so
as to complete the intelligent tracking. To validate the above concept
and method, a target recognition and tracking system is built for
experimental demonstration in an indoor scenario.

As shown in Fig. 5, the experiment system consists of the trans-
mitting part, the receiving part, and the moving target. During the
experimental test, the EM wave centered at 5.8GHz is emitted from a
feeding horn antenna and reflected by the DPM. The thereby gener-
ated radiating signal is then received by a patch antenna attached to
the moving target (an electronic model car). The receiving antenna
(see Supplementary Note 9 for details) is used as the representation of
the moving target. The RS-Camera is used to detect the implementa-
tion scene, so as to obtain the car’s location in terms of the elevation
and azimuth angles. The two angles are then used as the input of the
pre-trained ANN, and the coding sequence of DPM is achieved at the
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Intelligent tracking system

Fig. 5 | Experimental setup and environment. A TE-polarized beam from a
feeding horn antenna is incident on the metasurface. The position of the moving
car is processed in the control system, and all bias voltages are instantly calculated
and supplied to the metasurface. The reflected waves of the metasurface are
detected in real-time by the receiving antenna.
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information is sent to the pre-trained neural network based on ResNet34 as input.
The coding matrix is computed and converted into a coding sequence, and then
sent to FPGA for controlling the scattering patterns with complex requirements.
More details are provided in Supplementary Notes 6, 7, and 8.
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output. The coding sequence is powered to the metasurface by FPGA
in the form of voltage. A directive beam towards the moving target is
generated by the metasurface under the control of the real-time
varying coding sequence to keep tracking the target at a sampling
speed of 0.2 s (see Supplementary Note 10 for details). The speed limit
lies in the sampling speed of the RS-Camera. We set the speed of 35
frame rates per second to collect the data, but the RS-camera samples
the targets every three frames and returns the sampled data only once
to the designed ANN. Then the position information and the output
voltage sequence are updated and sent to FPGA. In our designed
network, the precisions of both elevation and azimuth angles can be as
small as 1°. In the practical scenario of small-scale communications
with a few users, the increment of θ and φ is set to 3° for demonstra-
tion, and the detected angle was rounded to the nearest integer value.
In this way, one is able to realize the closed-loop operation of the
tracking system and bridge the gap between visual detection and
microwave communications.

In order to prove that the system is an adaptive working scene
without human intervention, several scenarios are designed in three
groups of testing experiments to verify the efficiency and feasibility of
the intelligent tracking scheme.

Moving target detection and identification
We rely on the prototype of a 1-bit dual-polarized DPM to carry out the
first group of experiment tests. We first demonstrate the capability of
the system to detect the moving model car and track it with directive
beams. Fig 5 shows the constituent part of the metasurface-based
transmitter that is mainly composed of a vector network analyzer
(VNA) and the 1-bit dual-polarizedDPM fed by a linearly polarized horn
antenna connected to VNA. A patch antenna is carefully designed at
5.77 GHz to serve as the receiving terminal, which is located at the
position of the moving target or fixed somewhere in the moving path.
We design two experiments to verify the tracking scheme through the
two-port VNA, whose input and output are connected to the receiving
antenna and feeding horn, respectively. In the first experiment, the
receiving antenna is fixed somewhere in the moving path of the car.
The reflected beam from DPM is always manipulated towards the car.
When the car starts to move, it is far away from the receiving antenna,
and the energy received by the antenna (in terms of S21 read in VNA) is
very low. As the carmoves closer to the receiving antenna, the received
energy becomes higher. When the car is the closest to the receiving
antenna, the received energy is the highest. After that point, the
received energy gradually decreases as the car moves away from the
receiving antenna. Please refer to Supplementary Movie 1 for details.

In realistic environments, some complicated scenarios may hap-
pen, such as multi-object tracking (MOT), temporarily blocked target
tracking, and in limited ambient light. Below we will present the
solution of the tracking algorithm in these scenarios. In fact, multiple
similar targets and target occlusion are two key problems in thefield of
target tracking. To solve the problem of similar target interference in
the visual field, multiple targets are firstly numbered and the corre-
sponding number of them in the video stream is guaranteed to remain
unchanged. And the deep SORTalgorithm introduces the Kalmanfilter
to solve the problem of transient target occlusion and the problem of
missing individual frame detection. The performance of the object
detection algorithm based on the RS-Camera in the above scenarios is
presented in Supplementary Note 11 and SupplementaryMovies 2 and
3. When multiple targets with different characteristics exist, the
YOLOv4-tiny target detection algorithm can classify the targets in
the field of vision at the same time, and decide the categories that the
targets belong to. By judging the category, the position information of
specified target is extracted, and the beam is controlled to point to the
specifically tracked target (see Supplementary Note 12 and Supple-
mentary Movie 4 for details). The appropriate upgrades to the

hardware in the system are good for more complex scenarios, such as
the infrared thermal imagerswhich alsohave important applications in
industry and temperature monitoring. Therefore, a night version
infrared-cut camera (NV-Camera) serves as an aid to solve the detec-
tion task under the condition of limited ambient light or completely
dark. Experimental results under different light intensities demon-
strate that when the light intensity is low, the system can switch from
the RS-Camera to NV-Camera to complete the target detection task
(see Supplementary Note 13 and Supplementary Movie 5 for details).
Based on these experiments, we conclude that the proposed system
has the ability to track moving targets, and the target detection algo-
rithm can adapt to realistic environments to complete the
detection tasks.

RF signal detection
Next, we build an RF signal detecting system in the experimental
scenario to conduct the real-time tracking scheme for obtaining more
intuitive detection, as illustrated in Fig. 6. The transmitter primarily
consists of a microwave signal generator (Keysight E8267D), and the
DPM fed with the linearly polarized horn antenna. Again, the RS-
Camera is placed on the top of DPM. A portable RF signal detector,
which consists of a receiving patch antenna, a battery, a detector
AD8317, and a microcontroller unit (MCU), is attached to the moving
car. Detector AD8317 is adopted to accurately measure the RF signal
power in 1MHz–10GHz, as illustrated in Supplementary Note 14. It is
suppliedwith 3 V voltage and used to convert theRF input signal to the
corresponding dB scale with accurate logarithmic consistency. The
battery supplies powers to MCU (Arduino), and the DC port on the
MCU supplies power to the detector AD8317. The input of the detector
AD8317 is connected to the receiving antenna, and the output is con-
nected toMCU formonitoring and processing in real-time. In this way,
the portable detector without an additional voltage source is realized.

To demonstrate the validity of the intelligentmetasurface system,
we have designed two experimental demonstrations in an anechoic
chamber and outdoor scenarios. Firstly, the detector is placed in the
middle of the moving path of the car inside an anechoic chamber,
together with the receiving antenna. We observe that the received
signal increases as the car comes closer and then decreases when the
car goes away, as shown in Fig. 6b. Secondly, the portable RF signal
detector is attached to the car to observe the change of RF signals
during the movement. We have collected the data sets for the
detector-loaded car so that the RS-camera can correctly capture the
moving target in the identification process. We monitor the recogni-
tion in this experiment, as seen in SupplementaryMovie 6. Four curves
in Fig. 6b, respectively, plot the voltage values obtained by the
detector and the corresponding dB calibration values.We observe that
when the detector is fixed in the middle of the moving path, the
received energy has the highest value when the car is closest to the
detector. In contrast, when the detector and the car move together,
the received energy is relatively stable with a high value.

Then, we carry out experiments in an outdoor environment to
conduct the real-time tracking scheme in dual polarizations. The
testing sites are chosen at the campus of Southeast University.
Figure 6c shows the outdoor environment and experimental setup,
including the transmitting horn, RF signal detector, DPM locations,
signal generator, FPGA module, and control system (see Supplemen-
tary Note 15 for details). This field trial is conducted outside the side
entrance of our laboratory. The portable RF signal detector is attached
to the car to observe the change of RF signals during the movement.
Four curves in Fig. 6d plot the voltage values obtained by the detector
and the corresponding dB calibration values under dual polarizations,
respectively. When the detector and the car move together, the
received energy is relatively stable with a high value. This number is
well aligned with the power gain observed in the indoor test.
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With respect to communications in a more practical environment, the
interferenceat 5.8GHz in realistic environments couldbe high, and the
designed DPM can solve the potential interference by its own char-
acteristics and attached sensing devices. More discussions are illu-
strated in Supplementary Note 17. Through these experiments, we
prove that the scheme is real-time and can be quantitatively verified by
the RF signals.

Real-time wireless transmissions
Aside from intelligent tracking, we further demonstrate that the
scheme has the power to realize high-speed transmissions of infor-
mation with the moving target. Here, we present two experiments of
real-time video transmissions for instance, as demonstrated in Fig. 7a
andb. The video is takenby the camera to capture the change in screen
and is sent to the video module which serves as a wireless image
transmissionmodule in the frequency range from 5.65 to 5.95GHz.We
remark that the working frequency bands of the video module, DPM,
and the 5GHz-Wi-Fi all include 5.8 GHz. In the first experiment, the
receiver is still placed in the middle of the path, and the video is
transmitted only when the car moves close to the receiver (see Sup-
plementary Movie 7 for details).

As shown in Fig. 7c, during the experiment, we select five different
positions of the car on the moving path for demonstration. The bit
error rate of video information transmission can be seen intuitively.
When the car is far away from the receiver, the error rate is high and the
receiver cannot receive the video information. When the car moves
near the receiver, the video can be transmitted clearly. In the second
experiment, the receiver is attached to the car, and the video is always
transmitted smoothly while the car is moving (see Supplementary
Movie 8 for details). As shown in Fig. 7d, we intercepted five different

positions in the experimental process when the receiver and the
moving car are bound together, and the captured video kept trans-
mitting at a lowbit error rate. To sumup, in these two experiments, the
effect of wireless transmission is demonstrated by intercepting five
states of the transmitted images, as shown in Fig. 7c and d. When the
receiver is fixed in the middle of the moving path, effective wireless
transmissions can be realized only when the car is close to the receiver
and the beam is manipulated towards them. In contrast, when the
receiver is attached to the car, themovement of the car does not affect
the transmission of video because the beam is dynamically tracking
them. Here, the vector signal transceiver (VST, PXIe-5841, National
Instruments Corp.) is used for the bit error rate (BER)measurement, in
which we set the modulation mode as QPSK and the transmission rate
as 170Mbps. When the channel is in the acceptance region, the BER is
stable at 10−5 (see Supplementary Note 16). Moreover, in a more
practical environment, there will be interference problems such as
other communication devices in adjacent frequency bands. The pro-
grammable ability and dual-polarization performance of DPM itself,
help to eliminate the interference together with wireless sensing and
other potential ways (see Supplementary Note 17 for details). We
estimate the energy consumption of the proposed design in Supple-
mentary Note 18, including object detection, communication, and
power supplies. The performance of the design under different input
powers is also discussed and tested, as presented in Supplementary
Note 18.

Discussion
For the intelligent system and wireless communications, we proposed
a scheme of target recognition and tracking systems based on DPM
and computer vision. In the intelligent system, the RS-Camera
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Fig. 6 | Experiments of radio-frequency (RF) signal detections. a A TE-polarized
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combinedwith YOLOv4-tiny is used to detect the position information
of the moving target, and process the detected information using a
pre-trained ANN to obtain the required coding sequence for the vol-
tage control of DPM. Then intelligently adaptive beams are generated
by DPM to track the moving target in real-time. This system runs
effectively in a closed loop without human intervention. Experimental
verifications have been carried out in different scenarios, proving that
the proposed scheme has the capabilities of intelligent tracking and
information transmissions. This may find promising applications in
other intelligent and self-adaptive systems, including intelligent and
multi-physical sensing, and the internet of things (IoT) technologies.
The proposed concept of intelligent tracking metasurface will also
open up an avenue for challenges in the 5G and 6G wireless commu-
nications, enriching the functions of metasystems.

Methods
Details on the digital programmable metasurface
The 1-bit dual-polarized DPM used in this work operates around the
central frequency of 5.8 GHz and contains 18 × 18 programmable ele-
ments. It is designed in the commercial software CST Microwave Stu-
dio and fabricated with printed circuit board technology. Metallic
structures on the top and feeding circuits on thebottomare printedon
the commercial dielectric substrate F4B with dielectric constant εr = 3
and tangent loss tan δ = 0.003. The photographs of fabricated proto-
types are shown in Fig. 3. Two PIN diodes (SMP1320 from SKYWORKS)
are embedded into each element to control the reflection phase.

Measurement setups
The experimental setup for measuring the far-field patterns were
established in a microwave anechoic chamber, as illustrated in Fig. 3.
The DPM and the feeding antenna were both mounted on a turntable.
A feeding horn antenna was used to emit the monochromatic carrier
wave with frequency f = 5.8 GHz via a signal generator (Keysight

E8267D), and a receiving antenna was used to record the scattered
powers via a spectrum analyzer (Keysight E4447A).

In the experimental process of moving target detection and
identification, a transmitting horn antenna, a receiving patch antenna,
aDPM, and a vector network analyzer (VNA,AgilentN5230C) are set up
in the anechoic chamber, as shown in Fig. 5. The moving target is
represented by one or two model cars, which are captured by the RS-
Camera. VNA is used to acquire the response data by measuring the
transmission coefficients (S21). To suppress the noise level in mea-
surement, the intermediate bandwidth in VNA is set to 40MHz.

During the experiment of RF signal detection, the detector based
on AD8317 and MCU is used to measure the receiving level. The
transmitter consists of a microwave signal generator (Keysight
E8267D) and the DPM is fed with a horn antenna. During the test,
voltage values are obtained by the detector, and the output voltage
value is connected to the MCU to obtain the corresponding dB scale
for real-time monitoring and processing.

In the experimental process of real-timewireless transmission, the
image transmission module collected a picture of a video played
through the notebook and sent it to the horn antenna after modula-
tion. The video information is transmitted to the DPM through the
horn antenna, and then to the receivingmodule. The receivingmodule
is a receiving antenna, a decoder, and a screen connected to the
decoder. When the information can be accurately transmitted,
the screen will restore the image collected by the image transmission
module. The experiment scenarios are shown in Fig. 7, in which the
video transmissionmodule and the feeding horn are located under the
supporting platform and the horn is about 0.8m away from the DPM.

Data availability
The authors declare that all relevant data are available in the paper and
its Supplementary Information Files, or from the corresponding
author on request.

a

Exp.1
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RS-Camerab

Exp.2

c

d

Exp.1 The receiver is in the middle of the path.

Exp.2 The receiver follows the moving target.

Fig. 7 | Experiments ofwireless communications. a,b Experiment scenarioswhen
the receiver is in the middle of the path (a) and when the receiver follows the
moving target (b). c, d Experimental results of received video frames at five

different positions of the car on the moving path in (c) Experiment Scenario 1 and
(d) Experiment Scenario 2.
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Code availability
The custom computer codes utilized during the current study are
available from the corresponding authors on request.
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