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Abstract

Motivation: As more data of experimentally determined protein structures are becoming available, data-driven
models to describe protein sequence–structure relationships become more feasible. Within this space, the amino
acid sequence design of protein–protein interactions is still a rather challenging subproblem with very low success
rates—yet, it is central to most biological processes.

Results: We developed an attention-based deep learning model inspired by algorithms used for image-caption
assignments to design peptides or protein fragment sequences. Our trained model can be applied for the redesign
of natural protein interfaces or the designed protein interaction fragments. Here, we validate the potential by
recapitulating naturally occurring protein–protein interactions including antibody–antigen complexes. The designed
interfaces accurately capture essential native interactions and have comparable native-like binding affinities in silico.
Furthermore, our model does not need a precise backbone location, making it an attractive tool for working with de
novo design of protein–protein interactions.

Availability and implementation: The source code of the method is available at https://github.com/strauchlab/
iNNterfaceDesign

Contact: estrauch@uga.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to computationally engineer protein sequences has a wide
range of applications ranging from therapeutics (Fosgerau and
Hoffmann, 2015; Khera and Maity, 2019), to vaccines (Li and Li,
2020; Liu et al., 2020; Malonis et al., 2020; Zhou et al., 2020), sensors
(Karimzadeh et al., 2018; Merkx et al., 2019) or protein-based materi-
als (Capezza et al., 2019; de la Rica and Matsui, 2010). While there
has been progress toward designing protein folds, much improvement
is needed for the redesign or de novo design of protein–protein interfa-
ces (PPIFs). The success rates for the de novo generation of protein–
protein interactions achieved by existing methods are very low, with
only a few examples demonstrating that it is possible (Cao et al., 2022;
Fleishman et al., 2011; Strauch et al., 2014). Even the most recent ex-
perimental work yielded very low success rates of designs that bind to
a target protein yet still require substantial computational and labora-
tory resources (Cao et al., 2022), underlining that it is still highly chal-
lenging. Recent works using neural networks substantially improved
accuracy in structure prediction (Baek et al., 2021; Jumper et al., 2021;
Senior et al., 2020) and protein sequence design (Anand et al., 2020;
Chen et al., 2020; Gao et al., 2020; O’Connell et al., 2018). The latter
methods outperform traditional methods for sequence design based on

energy function integrated into procedures for sampling, filtering and
optimization (Adolf-Bryfogle et al., 2018; Desjarlais and Handel,
1995; Raha et al., 2000). The average sequence recovery, which is the
ratio of recovered residues to all residues in the structure, achieved by
the current top-performing protein-design programs [such as
dTERMen (Zhou et al., 2020)] is around 30%, while the SPROF
model (Chen et al., 2020) achieved 39.8% on independent test sets.
Based on these inspiring results, we developed a deep learning-based
approach for the sequence design of PPIFs. The architecture of our
neural network-based approach is inspired by a model for the gener-
ation of image captions with visual attention (Xu et al., 2015). For our
model, protein structures are treated as a 3D object to be captured and
translated into ‘words’. Features from the protein complex are
extracted using machine learning vision techniques and transformed
into amino acid sequences instead of words. We developed two deep
learning models, PepSeP1 and PepSeP6; the former has a single se-
quence output, and the latter produces six amino acid sequence outputs
per complex. These models outperformed Rosetta’s FastDesign mover
(Khatib et al., 2011; Tyka et al., 2011) on an independent test set.

Furthermore, we successfully recovered PPIFs fragments containing
interaction hot-spot residues. ‘Hot-spots’ are a characteristic feature of
protein interactions as interface residues do not contribute equally to
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the binding energy, but rather have a few residues that contribute the
majority of the binding energy. Therefore, it is crucial to be able to re-
capitulate these contacts. As only a few residues have highly energetic-
ally favorable interactions (Cukuroglu et al., 2014; Wells and
Clackson, 1995), it is crucial to monitor their recovery. Our model is
intended to be applied on de novo interface fragments, or ‘motifs’,
which can then be grafted into scaffolding proteins. However, it can be
used on any peptide fragment for redesign. Larger fragments can be
designed by making subsequent designs of connected backbone frag-
ments. Our method differs from existing deep learning models (Wu
et al., 2020; Zhang et al., 2021), which are intended to help docking
by defining the interaction pairs of residues on two counterparts rather
than creating the counterparts themselves.

2 Materials and methods

2.1 Test sets
The method is trained and tested on peptide–binding site complexes
extracted from native PPIFs (Fig. 1). The peptide of the complex is a
6-residue fragment of a protein–ligand, and the binding site is a
patch of a ligand binder consisting of 24–48 residues which are in
immediate proximity to the backbone atoms in the 6-residue frag-
ment. Peptides were perturbed up to 1.07 Å root-mean-square devi-
ation (RMSD) of their native conformation to simulate a more
applicable scenario in which peptides deviate from their native
positions.

Complexes were selected according to the following criteria:

1. Two residues of a peptide ligand contribute to the binding with

increment DDGi > 0.5 Rosetta energy unit (REU) and three non-

terminal residues located within 6 Å from a binding site.

Measured as the distance between the closest side chain heavy

atoms in the native interface.

2. Resolution thresholds for structures with homo-oligomeric

PPIFs, hetero-oligomeric PPIFs and antibody–antigen complexes

are 2.0 Å, 2.5 Å and 3.5 Å, respectively.

3. Non-standard residues and non-nutritional compounds should

not be within 5 Å of the fragments of interest.

4. The complexes should have negative binding free energies.

5. Non-polar residues should be present in the hot-spots of a

peptide ligand.

The current dataset does not include complexes connected
through covalent bonds or containing non-canonical amino acids.
All complexes for this study originate from multichain structures
obtained from the Protein Data Bank (Berman, 2000).

The complexes were extracted from 9002 co-crystal structures. For
our benchmark set, we separated 70 structures containing influenza’s
hemagglutinin (HA), MERS-CoV, SARS-CoV and SARS-CoV-2 pro-
teins co-crystalized with antibodies (Supplementary Table S2), resulting

in 915 complexes. All other complexes with these listed antigens were
deleted from the main set. The remaining complexes were further cura-
ted to avoid duplicates before splitting randomly into training (8485
files), validation (270 files) and test sets (177 files), resulting in the total
number of extracted complexes: 93 458 in the main, 2924 in the valid-
ation and 1245 in the test set. We note that all datasets contain antibod-
ies or antibody fragments but not any of the extracted listed antigens
from our benchmark set (Table 1, Supplementary Tables S4 and S5).

Our method was evaluated using test and benchmark sets,
referred to as ‘set T’ and ‘set B’, respectively. Set T is divided into
two subsets: T-ho and T-he, based on whether they are correspond-
ingly derived from homo- or hetero-oligomeric PPIFs. Additionally,
a subset T-ho-asymm containing complexes from subset T-ho is
introduced; complexes in this subset are not extracted from symmet-
ric patches of homo-oligomeric PPIFs. Set B was used for the evalu-
ation of sequence recovery of interfaces of antibody-antigen protein
complexes. This set is divided into subsets as well (Table 1). The
quantity of complexes in the benchmark subsets depending on the
types of antigens is summarized in Supplementary Table S6. Other
details related to the construction of the datasets can be found in the
Methods section of Supplementary Information S1.1–S1.5.

Besides simply testing the methods on all-glycine peptide ligands
extracted from native interactions, we also tested them on artificial-
ly highly perturbed (HP) peptide variations of all-glycine peptide
ligands as part of our case studies. Backbones were generated by the
iNNterfaceDesign method (Syrlybaeva and Strauch, 2022b,
Supplementary Fig. S3). Due to substantial deviations from the
native backbones, these cases provide challenging targets for amino
acid sequence (AAS) design and recovery of hot-spot interactions.

2.2 Input data for deep learning models
Input data for the neural network is based on topological features of
the complex and amino-acid sequence of the binding sites (Table 2).
We use two types of distance maps as the main geometrical descrip-
tors of the structures, describing either distance between residues
within a single interface counterpart (distance maps 1, intramolecu-
lar) or across the whole interface (distance maps 2, intermolecular).
The distance maps are based on N or O backbone atoms. We
augment information regarding the system’s geometry by providing
secondary structure types of residues of the binding sites through
input 3.

Other input data are amino acid types of residues in the binding
sites, and input 5 defines the homo- or hetero-oligomeric nature of
PPIFs. The ablation study of the impact of different types of inputs
on the method’s performance is presented in Supplementary
Information S1.9.

2.3 Architecture of developed neural networks
2.3.1 Pepsep1 model

The model has an encoder–decoder architecture successfully utilized
for sequence prediction models (Chen et al., 2020). The model’s

Fig. 1. Generation of datasets of peptide–binding site complexes and overview of structures utilized in the study. (a) Crystal structure of the protein–protein complex with a

selected interacting 6-residue fragment of protein–ligand. (b) Peptide–binding site complex of datasets. (c) Types of peptide ligands and their generation: native peptide ligand,

the 6-residue fragment depicted in subfigure a (c1), was mutated into an all-glycine peptide ligand and perturbed (c2, Supplementary Information S1.3). Perturbed backbones

were either reverted to their native amino acid sequence (c3, annotated as native* within the main text to highlight the backbone perturbation) or designed with PepSeP1 (c4).

HP (highly perturbed) backbones (c5) are generated using the iNNterfaceDesign method (Syrlybaeva and Strauch, 2022)
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architecture is similar to a model from the TensorFlow tutorial
(https://www.tensorflow.org/tutorials/text/image_captioning), espe-
cially the decoder part (Xu et al., 2015). The encoder of PepSeP1
utilizes two types of convolutional blocks consisting of 8 and 4 con-
volutional layers, respectively (Fig. 2, more details in Supplementary
Fig. S4). Both convolutional blocks extract feature vectors. They are
concatenated to form the tensor F, in which the second dimension
equals the number of amino acids to predict. The tensor then
becomes an input for the decoder. The decoder is an attention-based
recurrent neural network for which we used the Bahdanau-style
(additive) attention with long-short-term memory (LSTM) units. We
applied a bidirectional attention approach to provide more context
for each prediction. This approach implies that feature vectors are
processed by LSTM layers twice, in direct and reverse directions

(Fig. 2). The attention mechanism produces context vectors by proc-
essing concatenated hidden states of the LSTM layers.

2.3.2 Pepsep6 model

The encoder of the PepSeP1 model was extracted and incorporated
into the PepSeP6 model without changes (Supplementary Fig. S5).
The weights of the encoder were set as untrainable during training.

Five outputs are generated by passing feature vectors produced by
the encoder into the decoder of PepSeP6 five times; each of the five
iterations is accompanied by a final hidden state from the previous

prediction of the sequence. The sixth sequence is the output of the
PepSeP1 model. The neural network was built in TensorFlow using

Keras application programming interface (more details under
Supplementary Information S1.6).

2.4 Training of PepSeP1 and PepSeP6 models
Training of the PepSeP1 model was conducted 20 times in three

stages: 5 epochs with a learning rate of 0.001, 5 epochs with a learn-
ing rate of 0.0001 and 2 epochs with a learning rate of 0.00002.

Categorical cross-entropy loss was applied based on comparing full
target and predicted sequences. The trained model with the highest
sum of rates of recovery of native sequences measured on hetero-

oligomeric PPIFs was selected (subsets T-he, B-ab/ag and B-ag/ab).
PepSeP6 model was trained ten times using the pretrained

PepSeP1 using the following three stages: 4 epochs with a learning
rate of 0.001, 4 epochs with a learning rate of 0.0001 and 2 epochs

with a learning rate of 0.00002. The Adam optimizer was used to
minimize the mean squared error during optimization. A custom
loss function was implemented for the training of PepSeP6; the

details can be found in Supplementary Information S1.7 and S1.8.

2.5 Assessment of experimental and predicted peptide

ligands
2.5.1 Refinement and calculation of binding energies of complexes

of test sets

The target binding sites were relaxed without peptide ligands.
Perturbed peptides were then added back either with their native or
redesigned AAS (c3 and c4 in Fig. 1). Optimization of side chain

conformations of all residues of the complex was done applying the
FastRelax mover three times over 300 steps. The structure with the
lowest score out of the three results was selected for the subsequent

refinement of poses. This operation applied the FastRelax mover
three times over 300 steps while applying harmonic constraints

(standard deviation SD¼1.0 Å with width parameter of 1.5 Å) for
peptide ligands based on perturbed native-like backbones (c2). Less
restrictive constraints (SD¼3.0 Å with a width parameter of 2.0 Å)

were used for HP peptides (c5) predictions. Binding free energies of
the complexes were estimated using InterfaceAnalyzerMover

(Stranges and Kuhlman, 2013) with repacking chains after separ-
ation. The Rosetta scoring function ref15 was used for all
calculations.

2.5.2 Redesign of complexes

Peptide ligands designed by the PepSeP1 method underwent an add-
itional design step after refinement using the FastDesign protocol to

compare results with the original performance of PepSeP1. We set
constraints on residue types according to position-specific scoring
matrices based on outputs of PepSeP1 (Supplementary Information

S1.7). We performed three different protocols of the redesign. We
controlled how much possible amino acid types were allowed at

each position. Variations are denoted as RD3, RD5 and RD20,
reflecting whether the most probable three or five amino acid types
were selected, or all amino acids were allowed. We also performed a

redesign using the FastDesign protocol on all-glycine peptide back-
bones. Two relaxation scripts were utilized during the redesigns:

default (MonomerRelax2019) and InterfaceDesign2019.

Table 1. Subsets of the benchmark set

Subset Source of a

backbone

fragment (peptide)

to be designed

Source of a

binding site to

which the peptide

is attached

Number of

complexes

B-ab/ag Antibody Antigen 150

B-ag/ab Antigen Antibody 144

B-ab/ab Antibody Antibody 485

B-ag/ag Antigen Antigen 136

Table 2. Input data of the models

Input no. Source, descriptor (size) Description of input

1 Complex, intermolecular

distance maps 2

(48� 6� 2a)

Distances (Å) between N

backbone atoms of

24–48 binding site resi-

dues and 6 peptide

ligand residues.

Distances between O

backbone atoms of

24–48 binding site

residues and 6 peptide

ligand residues.

These two distance maps

are concatenated

together in the depth

dimension

2 Binding site, amino acid

types (1D array, 48a)

Amino acid types of

residues of a binding

site.

3 Binding site, secondary

structure types (1D

array, 48a)

Secondary structure types

of residues of a binding

site.

4 Peptide, intramolecular

distance maps 1

(6� 6� 2)

Distances between N

backbone atoms of

peptide ligand residues.

Distances between O

backbone atoms of

peptide ligand residues.

These two distance maps

are concatenated

together in the depth

dimension

5 Complex, label of PPI:

homo- or

hetero-oligomeric (1)

Zero or one labeling

homo- or

hetero-oligomeric type

of PPIFs.

aZero padding is used if the number of binding site residues is less than 48.
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3 Results

3.1 Performance of PepSeP1 model
To evaluate the performance of PepSeP1, we utilized sequence re-
covery. The overall sequence recovery accuracy (Rall) on all peptide
ligand residues of set T is 40.83%. However, the results depend sub-
stantially on the types of PPIFs: native sequence recovery rates for
homo- and hetero-oligomeric PPIFs are 46.73% and 27.71%, re-
spectively (Table 3). In our dataset, heteromeric protein interfaces
are in general weaker transient interactions. Furthermore, the resi-
due composition of transient interactions is more diverse, including
higher rates of polar and charged groups alongside hydrophobic
amino acids (Acuner Ozbabacan et al., 2011). These factors likely
drove the lower peptide recovery rates of 27.71% for hetero-
oligomeric PPIFs (Table 3). The performance of non-symmetric
homo-oligomeric complexes from subset T-ho-asymm was at
31.26%, close to the performance on subset T-he.

We next applied PepSeP1 to assess transient PPIFs of antigen–
antibody interfaces using subsets B-ab/ag and B-ag/ab, containing
complexes extracted from antibody–antigen complexes (Table 1).
Achieved recovery success rates are 26.00% and 16.78%, respect-
ively. Detailed data regarding the accuracy of the method depending
on the types of antigens can be found in Supplementary Table S8.
The best results for PepSeP1 are observed in the case of MERS-CoV:
30% and 25.44% on subsets B-ab/ag and B-ag/ab, correspondingly.
Detailed descriptions of the performance of the model on different
regions of antibodies from subset B-ab/ag [framework region, com-
plementarity determining regions (CDR): H1, H2, H3, L1, L3] are
summarized in Supplementary Table S9. The highest rates of se-
quence recovery are observed on CDR-H2 loops (40.91%); the aver-
age rate across all samples of CDR loops was 25.6%. These results
are lower in recovery than methods that utilizing contextual infor-
mation of antibodies or structural libraries, with recovery rates
greater than 70%, such as RosettaAntibodyDesign (RAbD) (Adolf-
Bryfogle et al., 2018) using CDR loop libraries for sampling or
RosettaSurf (Scheck et al., 2021). Another example of a method
designing CDR loops using contextual information, namely, the
structure of the framework region, is the deep learning model
RefineGNN (Jin et al., 2021), trained and tested on CDR-H3 loops;
the method achieved an accuracy of 35.57%. That result is lower
than the performance of PepSeP1 on CDR-H2 loops but higher than
our results on CDR-H3; the performance of RAbD is 28.53% on
that test (Jin et al., 2021). It should be noted that the performance of
PepSeP1 was measured on challenging cases by testing its perform-
ance on the c2 peptide fragments with an average perturbation of
1.07 Å RMSD from their native positions.

As expected, the secondary structure of the peptide fragment
impacts the recovery rates (Supplementary Table S10): the highest
rate of 41.82% was observed for b-sheet structures; the accuracy of
predictions for alpha-helices and loops are lower (40.16 and
38.55%, respectively). High rates of Rall are observed on subsets B-
ab/ab and B-ag/ag. However, B-ag/ag consists of many complexes
originating from symmetric homo-oligomeric PPIFs, and 36.13% of
complexes from subset B-ab/ab are encountered in the training set
(Supplementary Table S5).

The model’s performance on recovery of hot-spot residues of the
peptides was also considered. Energetic contributions of individual
residues to the binding DDGi were obtained by alanine scanning
(Kortemme et al., 2004). Contacts were treated as hot-spots if they
had a binding energy contribution of at least 3 REU. Success rate
Rhot�spot was calculated with respect to hot-spot residues of native
peptide ligands. Rhot�spot exceeds Rall by 6% approximately and
equals to 45.95% on set T. Rates Rhot�spot measured on subsets T-
ho-asymm and T-he are similar and approximately equal to 35%.
Recovery of hot-spot residues on subset B-ab/ag is 32.97% which is
close to the results of other subsets. We received the lowest results
on the subset B-ag/ab: low recovery rates were obtained on influen-
za’s hemagglutinin (24.14%, Supplementary Table S8) (which con-
stitutes 82% of complexes of this subset), and the hot-spots on
surfaces of SARS-CoV-1 and SARS-CoV-2 (0%).

Assessing binding free energies DGnative�

B and DGdesigned
B across

test subsets, we see that the binding sites have a higher affinity for
peptide ligands with native sequences, but the difference is small or
equal to 0.5 REU on set T only (Supplementary Table S11). We esti-
mated complexes with native* peptides (c3) instead of native ones
(c1) during calculations of energetic metrics, for comparison with
the designed complexes, in order to eliminate the systematic super-
iority of native peptides due to more favorable backbone conforma-
tions as these did not undergo perturbation. A comparison of native
and designed by the PepSeP1 method complexes in more detail is
discussed in Supplementary Information Sections S2.1 and S2.2. The
accuracy of the predictions depends on the relative solvent accessible
surface area (SASA) of a given residue and the DiG P-value of the na-
tive PPIFs (Supplementary Fig. S10). We observed some reduction of
Rall with increasing of both SASA, as seen before (Chen et al.,
2020), and DiG P-value. The decrease is more prominent for homo-
oligomeric PPIFs.

3.2 Performance of PepSeP6 model
As there can be different solutions to binding to the same interface
(Brian and David, 2000; DeLano et al., 2000), we also integrated a
variation of our software that produces six sequences, called

Fig. 2. Peptide ligand sequence recovery by PepSeP1 attention neural network
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PepSeP6. The output sequences differ within three positions on aver-
age. However, we also observed completely identical sequences, or
simply 1 solution only (Supplementary Fig. S12). Such convergence
is observed when all six outputs are generated with high rates of
sequence recovery (80–100%).

Rall of the model across all six outputs is 38.67% (Table 3),
which is lower than Rall of PepSeP1. However, Rall calculated only
across the outputs most matching the native sequences out of six is
equal to 47.48% (Supplementary Table S13). The difference in bind-
ing energies of complexes with all six sequences is only within 1
REU in average (Supplementary Fig. S14), the values are very close
to native ones. Thus, PepSeP6 sequences provide comparable bind-
ing energies and could present alternative binding solutions as seen
in nature. More discussion of the performance of PepSeP6 model is
presented in Supplementary Information S2.3.

3.3 Performance of Rosetta’s FastDesign protocol and

redesigns according to RD3, RD5 and RD20 schemes
The Rosetta FastDesign protocol is currently a commonly used
protocol for redesigning AAS, demonstrating many experimentally
validated designed protein interfaces (Cao et al., 2020; Huang et al.,
2016; Jacobs et al., 2016; Linsky et al., 2020; Silva et al., 2019).
Here, we compared the performance PepSeP1 model with
FastDesign itself and with the results of combining these two meth-
ods in three versions, RD3, RD5 and RD20, described in Section 2.
FastDesign results obtained using the default relax script
(MonomerRelax2019) are shown here (Table 3). Overall, the rede-
signs of PepSeP1 sequences did not result in higher recovery rates of
native residues according to RallRall values of RD3, RD5 and RD20
approaches. PepSeP1 substantially outperformed FastDesign in se-
quence recovery when both are applied to the same all-glycine pepti-
des. However, FastDesign provides higher rates of Rhot�spot in the
case of T-he and B-ag/ab subsets. Rates of recovery obtained using
InterfaceDesign2019 relax script are reported in Supplementary
Table S15.

The average binding affinities of designs obtained by FastDesign
are noticeably lower than the affinities calculated for PepSeP designs
(Table 3, Supplementary Fig. S14). Analysis of amino acid distribu-
tion (Supplementary Fig. S15) reveals that FastDesign incorporates
too many proline residues on perturbed c2 backbones. Also, the
designs excessively include glutamate residues.

3.4 Case study: antibody–antigen interactions
The antibody CR3022 binds to the receptor binding domain (RBD)
of the Severe Acute Respiratory coronavirus 2 (SARS-CoV-2)
(Fig. 3a). To evaluate sequence recovery, we extracted each loop
of the heavy chain that forms contacts with the RBD in the form of

6-residues fragments. Heavy_V_Gene of antibody is IGHV5-51
(Human) (Schneider et al., 2022), sequence identity of H1-H3 loops
to germline are 77%, 80% and �1, respectively, according to
PyIgClassify (Adolf-Bryfogle et al., 2015). After the perturbation of
these contacts and changing them to poly-glycine residues, we rede-
signed each fragment using PepSeP1 and FastDesign. Rall is equal to
50% in the case of the first two designs by means of PepSeP1; resi-
dues at the fourth position in both native and designed amino acid
sequences of the first fragment have a functional similarity. Most
contacts do not contribute to much of the binding energy in CDR-
H3 and accordingly, we only see Rall of about 16% in the cases of
both PepSeP1 and FastDesign designs. FastDesign outperformed
PepSeP1 in two cases regarding DGB values.

The 5J8 antibody is a broadly neutralizing antibody that binds
to residues within the receptor binding site of influenzas hemagglu-
tinin (HA). Its main contact CDR-loop exceeds six residues, so we
performed the PepSeP1 design by aligning two structures predicted
for 6-residue fragments (Fig. 3b). This illustrates how re-design can
be used for fragments longer than sixmers. The antibody has two
residues strongly contributing to the binding with the HA1 subunit
over positions 97–100E of chain H: Tyr100 DDGi(DDGi ¼ 3.7
REU) and Asp100B DDGi(DDGi ¼ 8.2 REU). The CDR-loop
belongs to cluster H3-17-* according to PyIgClassify, the sequence
identity of CDR to germline is �1.

One of the most important contacts of the antibody loop with
the receptor binding site is the aspartate at position 100B, mimick-
ing the carboxy group of HA’s receptor sialic acid (Schmidt et al.,
2015), which PepSeP1 captured. We further saw the insertion of a
tryptophan at position 100, which establishes a large contact area
with the aliphatic part of Lys133 of the HA molecule by PepSeP1.
This is another crucial contact, as aromatic or hydrophobic contacts
have been described as another canonical interaction with the recep-
tor binding site (Ekiert et al., 2012). Additionally, we saw the recov-
ery of Ser98. FastDesign recovered the identical residues and
Pro100A. However, Tyr or another aromatic or hydrophobic resi-
due at position 100 was not predicted.

To illustrate performance on highly perturbed (HP) peptide frag-
ments (c5), we applied PepSeP6 to design the main contact CDR-
loop of the broadly neutralizing stem antibody FI6. We generated 9-
residue HP peptide ligands (c5) with an RMSD of about 4.0 Å rela-
tive to the CDR-loop of its original location. The FI6 antibody frag-
ment has four hot-spots residues: Arg99 (DDGi ¼ 3.2 REU),
Leu100A (DDGi ¼ 4.1 REU), Tyr100C (DDGi ¼ 3.9 REU) and
Phe100D (DDGi ¼ 4.4 REU). The CDR-loop belongs to cluster H3-
22-* according to PyIgClassify, the sequence identity of CDR to
germline is �1. All designed peptide sequences have lower computed
binding energies than the native complex. A design depicted for HP1
has recovered residues at positions 100C–100D. Residues Leu100A

Table 3. Performance of different methods applied to all-glycine (c2) backbones on recovery of native residues of peptide ligands and

corresponding average binding energies DGdesigned
B . Cells are colored proportionally to their values in different shades of gray to highlight

the highest and lowest values of obtained results.
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and Ser100 are recovered partially by Ile100 and hydroxylic Tyr99.
Designs of HP2 have low binding energies and recovered interac-
tions as well. For example, design four has recovered positions of
Phe100D and Trp100F; it has Arg close to Arg99. Most designs
have the crucial aromatic contact mimicking Phe100D in the native
AAS, making important hydrophobic contacts with residues in the
receptor pocket of HA (Fig. 3d) (Davide et al., 2011).

The results show that PepSeP1 and PepSeP6 can reproduce relevant
contacts. The resulting peptide ligands show high-binding affinity and
often outperform designs of FastDesign, especially in the case of rede-
signing highly perturbed native backbones. We can thereby illustrate its
usefulness for homology models and potentially de novo designed
backbones as they likely are not at the exact position they should be—
as either method has a high margin of error. Thus, a more knowledge-
based design process can guide the backbone refinement. The PepSeP6
method provides more diverse designs, and iterations through which
sequences with higher recovery rates can be revealed. As there are mul-
tiple solutions to binding at a specific epitope, it will also be useful for
any affinity optimization processes.

4 Conclusions

The neural network designed for the recovery of peptide ligand
sequences at a known protein binding site is performed in this study.
To our knowledge, this is the first neural network model for the pre-
diction of amino acid sequences for peptides involved in interchain
interactions. The model was developed in two versions: PepSeP1
and PepSeP6 with correspondingly single and multiple (six) outputs.
The native sequence recovery rate of PepSeP1 is 40.83% on the in-
dependent test set; the average accuracy of PepSeP6 designs is
38.67%, with recovery rates of 48.63% across the output sequences
resembling the native structures the most. The models are character-
ized by training on non-perfect backbones of structures which make
them more applicable either to work with homology models which
are likely not at atomic accuracy or for the engineering of novel
interaction in which the motifs are derived de novo motifs.
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