TABLE 3.
Datasets | Classifier | AUC | AUPR | Recall | Precision | F1-score |
---|---|---|---|---|---|---|
NPInter2.0 (5:5) | SVM | 0.902 | 0.840 | 0.979 | 0.847 | 0.908 |
XGBoost | 0.640 | 0.637 | 0.285 | 0.980 | 0.442 | |
GBDT | 0.556 | 0.553 | 0.117 | 0.957 | 0.209 | |
Random forest | 0.937 | 0.906 | 0.946 | 0.930 | 0.938 | |
KNN | 0.935 | 0.898 | 0.963 | 0.913 | 0.937 | |
LR | 0.950 | 0.899 | 0.919 | 0.886 | 0.902 | |
NPInter2.0 (4:6) | SVM | 0.879 | 0.814 | 0.958 | 0.827 | 0.887 |
XGBoost | 0.655 | 0.652 | 0.316 | 0.981 | 0.479 | |
GBDT | 0.581 | 0.577 | 0.174 | 0.941 | 0.294 | |
Random forest | 0.928 | 0.894 | 0.935 | 0.922 | 0.928 | |
KNN | 0.931 | 0.862 | 0.955 | 0.911 | 0.932 | |
LR | 0.944 | 0.893 | 0.920 | 0.901 | 0.899 | |
NPInter3.0_H (5:5) | SVM | 0.816 | 0.763 | 0.792 | 0.831 | 0.811 |
XGBoost | 0.640 | 0.637 | 0.285 | 0.980 | 0.442 | |
GBDT | 0.642 | 0.617 | 0.246 | 0.976 | 0.394 | |
Random forest | 0.830 | 0.808 | 0.710 | 0.934 | 0.807 | |
KNN | 0.803 | 0.772 | 0.698 | 0.889 | 0.782 | |
LR | 0.913 | 0.909 | 0.587 | 0.911 | 0.714 | |
NPInter3.0_H (4:6) | SVM | 0.829 | 0.807 | 0.709 | 0.933 | 0.805 |
XGBoost | 0.655 | 0.654 | 0.314 | 0.990 | 0.442 | |
GBDT | 0.619 | 0.604 | 0.240 | 0.996 | 0.386 | |
Random forest | 0.872 | 0.855 | 0.781 | 0.954 | 0.859 | |
KNN | 0.855 | 0.825 | 0.793 | 0.916 | 0.843 | |
LR | 0.923 | 0.935 | 0.682 | 0.927 | 0.786 | |
NPInter3.0_M (5:5) | SVM | 0.825 | 0.741 | 0.997 | 0.741 | 0.850 |
XGBoost | 0.652 | 0.652 | 0.305 | 0.995 | 0.468 | |
GBDT | 0.617 | 0.605 | 0.226 | 0.996 | 0.352 | |
Random forest | 0.904 | 0.887 | 0.872 | 0.932 | 0.901 | |
KNN | 0.915 | 0.876 | 0.924 | 0.907 | 0.915 | |
LR | 0.866 | 0.791 | 0.945 | 0.747 | 0.835 | |
NPInter3.0_M (4:6) | SVM | 0.733 | 0.653 | 0.976 | 0.656 | 0.785 |
XGBoost | 0.644 | 0.639 | 0.300 | 0.962 | 0.458 | |
GBDT | 0.603 | 0.582 | 0.218 | 0.994 | 0.327 | |
Random forest | 0.870 | 0.837 | 0.820 | 0.911 | 0.863 | |
KNN | 0.883 | 0.835 | 0.895 | 0.875 | 0.884 | |
LR | 0.803 | 0.679 | 0.741 | 0.709 | 0.725 | |
RPI2241 (5:5) | SVM | 0.630 | 0.576 | 0.908 | 0.584 | 0.711 |
XGBoost | 0.606 | 0.601 | 0.212 | 0.991 | 0.350 | |
GBDT | 0.616 | 0.589 | 0.195 | 0.982 | 0.356 | |
Random forest | 0.937 | 0.893 | 0.985 | 0.898 | 0.940 | |
KNN | 0.725 | 0.668 | 0.679 | 0.748 | 0.711 | |
LR | 0.757 | 0.657 | 0.634 | 0.695 | 0.663 | |
RPI2241 (4:6) | SVM | 0.641 | 0.582 | 0.912 | 0.615 | 0.735 |
XGBoost | 0.625 | 0.613 | 0.241 | 0.971 | 0.416 | |
GBDT | 0.626 | 0.612 | 0.253 | 0.964 | 0.375 | |
Random forest | 0.914 | 0.905 | 0.981 | 0.892 | 0.958 | |
KNN | 0.752 | 0.647 | 0.684 | 0.751 | 0.815 | |
LR | 0.775 | 0.689 | 0.684 | 0.705 | 0.694 |
Bold values are the best performance of each task.