Skip to main content
. 2023 Feb 9;14:1136672. doi: 10.3389/fgene.2023.1136672

TABLE 3.

Performance comparison of different classifiers.

Datasets Classifier AUC AUPR Recall Precision F1-score
NPInter2.0 (5:5) SVM 0.902 0.840 0.979 0.847 0.908
XGBoost 0.640 0.637 0.285 0.980 0.442
GBDT 0.556 0.553 0.117 0.957 0.209
Random forest 0.937 0.906 0.946 0.930 0.938
KNN 0.935 0.898 0.963 0.913 0.937
LR 0.950 0.899 0.919 0.886 0.902
NPInter2.0 (4:6) SVM 0.879 0.814 0.958 0.827 0.887
XGBoost 0.655 0.652 0.316 0.981 0.479
GBDT 0.581 0.577 0.174 0.941 0.294
Random forest 0.928 0.894 0.935 0.922 0.928
KNN 0.931 0.862 0.955 0.911 0.932
LR 0.944 0.893 0.920 0.901 0.899
NPInter3.0_H (5:5) SVM 0.816 0.763 0.792 0.831 0.811
XGBoost 0.640 0.637 0.285 0.980 0.442
GBDT 0.642 0.617 0.246 0.976 0.394
Random forest 0.830 0.808 0.710 0.934 0.807
KNN 0.803 0.772 0.698 0.889 0.782
LR 0.913 0.909 0.587 0.911 0.714
NPInter3.0_H (4:6) SVM 0.829 0.807 0.709 0.933 0.805
XGBoost 0.655 0.654 0.314 0.990 0.442
GBDT 0.619 0.604 0.240 0.996 0.386
Random forest 0.872 0.855 0.781 0.954 0.859
KNN 0.855 0.825 0.793 0.916 0.843
LR 0.923 0.935 0.682 0.927 0.786
NPInter3.0_M (5:5) SVM 0.825 0.741 0.997 0.741 0.850
XGBoost 0.652 0.652 0.305 0.995 0.468
GBDT 0.617 0.605 0.226 0.996 0.352
Random forest 0.904 0.887 0.872 0.932 0.901
KNN 0.915 0.876 0.924 0.907 0.915
LR 0.866 0.791 0.945 0.747 0.835
NPInter3.0_M (4:6) SVM 0.733 0.653 0.976 0.656 0.785
XGBoost 0.644 0.639 0.300 0.962 0.458
GBDT 0.603 0.582 0.218 0.994 0.327
Random forest 0.870 0.837 0.820 0.911 0.863
KNN 0.883 0.835 0.895 0.875 0.884
LR 0.803 0.679 0.741 0.709 0.725
RPI2241 (5:5) SVM 0.630 0.576 0.908 0.584 0.711
XGBoost 0.606 0.601 0.212 0.991 0.350
GBDT 0.616 0.589 0.195 0.982 0.356
Random forest 0.937 0.893 0.985 0.898 0.940
KNN 0.725 0.668 0.679 0.748 0.711
LR 0.757 0.657 0.634 0.695 0.663
RPI2241 (4:6) SVM 0.641 0.582 0.912 0.615 0.735
XGBoost 0.625 0.613 0.241 0.971 0.416
GBDT 0.626 0.612 0.253 0.964 0.375
Random forest 0.914 0.905 0.981 0.892 0.958
KNN 0.752 0.647 0.684 0.751 0.815
LR 0.775 0.689 0.684 0.705 0.694

Bold values are the best performance of each task.