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Epigenetic markers in the embryonal germ ===

cell development and spermatogenesis

Amadeusz Odroniec, Marta Olszewska ® and Maciej Kurpisz

Abstract

Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the semi-
niferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal
and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and
chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events
are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal
development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summa-
rized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and
histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-
protamine transition during spermiogenesis.

Keywords Sperm epigenetics, DNA methylation, Histone methylation, Histone acetylation, Spermatogenesis,
Fertilization, Spermatozoa

Résumé

La spermatogenese est le processus de génération de cellules reproductrices males a partir de cellules souches sper-
matogoniales, dans I'épithélium séminifére du testicule. Au cours de la spermatogenése, des événements spermato-
géniques clés tels que l'auto-renouvellement des cellules souches et I'engagement dans la méiose, la recombinaison
méijotique, l'inactivation méiotique du chromosome sexuel, suivis d'un remodelage cellulaire et chromatique des
spermatides allongées se produisent, conduisant a la production de spermatozoides. Tous les événements mention-
nés sont au moins partiellement contrélés par les modifications épigénétiques de I'ADN et des histones. De plus,

au cours du développement embryonnaire, une reprogrammation épigénétique globale de I'ADN se produit dans
les cellules germinales primordiales. Dans cette revue, nous avons résumé les modifications épigénétiques les plus
importantes dans les étapes particuliéres du développement des cellules germinales, dans I'ADN et les protéines
histones, en partant des cellules germinales primordiales, au cours du développement embryonnaire, jusqua la transi-
tion histone-protamine pendant la spermiogeneése.

Mots-clés Epigénétique des Spermatozoides, Méthylation de 'ADN, Méthylation des Histones, Acétylation des
Histones, Spermatogenese, Fécondation, Spermatozoides
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Introduction

Epigenetics can be described as heritable alterations
that do not change the DNA sequence [1-5]. In com-
parison to genetic changes (which affect the structure
of proteins mediated by DNA mutations), epigenetic
changes affect the gene expression, and in conse-
quence protein product amount within the cell. They
are reversible and associated with the response to the
environment in which cells reside [1-5]. Three groups
of epigenetic changes are being manifested in mamma-
lian cells: covalent modifications of DNA bases, histone
posttranslational modifications and non-coding RNA
(ncRNA) (Fig. 1).

One of the first discovered and the best-known epi-
genetic marks to date is DNA methylation [5-7].
5-methyl-cytosine (5mC), together with the products
of its degradation: 5-hydroxymethyl-cytosine (5hmC),
5-formyl-cytosine (5fC) and 5-carboxy-cytosine (5caC), are
examples of covalent modifications of DNA bases [8]. DNA
methylation preferably occurs at CpG sites that are dinucle-
otides with cytosine followed by guanine. DNA methylation
can be present at CpG sites in the intergenic region, where
methylation prevents the formation of DNA mutation
by silencing of the retroviral elements, or in the promotor
region of the gene within the so-called CpG island (region
of DNA with higher CpG density), where methylation is
responsible for the control of gene expression. Additionally,
methylation in the CpG island plays an important role in
the paternal and maternal gene imprinting [7, 8].

Another form of DNA methylation demonstrated in the
mammalian genome is non-CpG methylation. Non-CpG
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methylation is almost absent in adult somatic cells (0,02%
of global 5mC), but the level of non-CpG methylation is
elevated in embryonal stem cells, induced pluripotent
stem cells, glial cells and neurons [9]. Unfortunately, the
mechanisms and functions of non-CpG methylation are
still not well-understood [9].

Histone posttranslational modifications are another
group of epigenetic modifications. Histone modifica-
tions are being formed via the addition of a functional
group to an amino acid, most commonly lysine, present
within the histone tail of core histones [6]. The main role
of histone modifications is the control of gene expression
by chromatin condensation and decondensation [10].
Histone modifications can also provide a binding site
for various proteins [11]. The already described histone
modifications demonstrated in mammalian organisms
are methylation, acetylation, phosphorylation, ubiquitina-
tion, SUMOylation, ADP ribosylation, short-chain lysine
acylation [6, 12, 13].

The last group of epigenetic modifications is non-cod-
ing RNA (ncRNA). ncRNA is not translated into a pro-
tein and fulfills the regulatory role [14]. ncRNA can be
divided into housekeeping RNAs and regulatory RNAs
[15]. Housekeeping RNAs can be further divided into the
following: ribosomal RNA (rRNA), transfer RNA (tRNA),
small nuclear RNA (snRNA), and small nucleolar RNA
(snoRNA). The housekeeping RNAs partake in the trans-
lation of mRNA into proteins and RNA processing [15].
Additionally, regulatory RNAs are involved in the regula-
tion of gene expression toward gene silencing [14]. Regu-
latory RNAs can be divided into: small interfering RNA
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Fig. 1 Three main groups of epigenetic modifications observed in mammalian cells. rRNA — ribosomal RNA, tRNA — transfer RNA, siRNA - silencer
RNA, miRNA — micro RNA, snRNA - small nuclear RNA, snoRNA - small nucleolar RNA, piRNA - piwi-interacting RNA, IncRNA - long non-coding

RNA, ADP - adenosine diphosphate, SUMO - small ubiquitin-like modifier
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(siRNAs), microRNA (miRNAs), Piwi-interacting RNA
(piRNAs), and long non-coding RNAs (IncRNAs) [14].

It is already known that roles of parental genomes are
distinct after fertilization. This sex-determined diversity
is being established during gametogenesis and comes
out of gametic imprinting, which is a distinct meth-
ylation patterning of parental alleles determining epi-
genetic mechanisms in the proper development of an
organism [4, 16—19]. The maternal genome is responsi-
ble for embryonic development, while the paternal one
is accountable for early placental progress [4, 16—19].
Additionally, disturbances in proper methylation and
demethylation rounds in gametogenic cells, followed by
disruption of methylation and/or acetylation of sperm
histones may lead to a lack of activation of genes cru-
cial for normal development, resulting in occurrence of
certain developmental disturbances [4, 18, 20, 21]. It is
also known, that implementation of immature sperma-
tozoa (with misaligned methylation patterns and inad-
equate chromatin integrity) for fertilization in assisted
reproductive technologies (ART) may increase the risk
of reproductive failure or offspring health status [2, 4,
22-31]. The unique epigenetic marks in sperm cells may
play a key role in poising of specific gene activation in
the early embryo [2, 4, 21, 25, 32]. Disturbed synchroni-
zation of the embryo genome expression may be caused
by hypomethylation which may switch the process of cel-
lular differentiation [4, 19, 33]. In this light, a cognition
of the mechanisms and sense of disturbances in gametic
epigenome seems to be significant, due to the relatively
high frequency of ART births today (approximately 1-3%
of all live births) [25, 34].

It is also documented that male infertility may be
linked with changed methylation pattern in human sper-
matozoa, both: at the level of sperm DNA (global or in
particular genes — imprinted or nonimprinted; reviewed
in [35, 36]), as well as in cases with disrupted methylation
in particular histones’ residues [37, 38]. Alterations in the
methylation pattern were also described for males with
decreased sperm chromatin integrity (disturbed prota-
mines P1/P2 ratio), regarding to sperm apoptosis, in male
ageing, in patients subjected to in vitro fertilization (IVF)
procedures, in carriers of chromosomal aberrations,
and in males with decreased semen quality [19, 23, 25,
39-44]. For example, in oligozoospermia where genetic
causes are responsible only for 2.5-10% of observed
infertility [45], the epigenetic evaluation revealed that in
some patients from this group aberrant methylation pat-
terns or imprinting errors may be causative for reduced
efficiency of fertilization and elevated abortion rates [25,
33, 36, 46, 47].

Spermatogenesis is a complex process of male
reproductive cells generation, that occurs within the
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seminiferous epithelium of male testis [48]. Spermato-
genesis can be divided into several stages: spermatogonial
stem cells (SSCs) self-renewal (via mitosis), differentia-
tion of SSCs into spermatocytes, reductional division of
spermatocytes into spermatids (via meiosis), and mor-
phological transformation of spermatids into sperm cells
(via spermiogenesis supported by spermiation) [48, 49].
The entire spermatogenetic process in mammals ranges
from 30 to 78 days [49, 50], approximately 40 days in
mice [49, 51] and 74 days in humans [52, 53]. The pro-
cess of spermatogenesis is followed by the maturation of
released sperm cells within the lumen of epididymis [54].
During epididymal maturation, spermatozoa acquire the
ability of zona pellucida recognition, the acrosome reac-
tion and progressive motility, which are necessary for
proper oocyte fertilization [54]. Each step of spermato-
genesis is characterized and determined by particular
epimarks, both: of germ cell DNA, as well as histone
residues. Taking into account the growing amount of
data concerning linkage between epigenetic disturbances
and reproductive problems, in this review we have been
focused on summarizing the role of main epimarks cru-
cial for the process of spermatogenesis, such as DNA
methylation, and the most important histone modifica-
tions. Additionally, in a Table 1 we have collected data
concerning mouse knockout models of epigenetic-related
enzymes with negative effect on spermatogenesis. Thus,
this review emphasizes also the epigenetic significance
for reproduction besides of the strictly genetic causes,
and the high number of developmental stages at which
epimarking may be disturbed leading to male fertility or
fertilization problems.

Major epigenetic modifications of DNA

Methylation (5mC)

DNA methylation is a result of a transfer of a methyl
group from S-adenosyl-L-methionine (SAM) to the fifth
carbon atom of the cytosine residue [101]. This reaction
is performed by a group of specialized enzymes called
DNA methyltransferases (DNMTs). In mammals, three
of them coordinate DNA methylation: DNMT1 (DNA
methyltransferase 1), DNMT3a (DNA methyltransferase
3 alpha), and DNMT3b (DNA methyltransferase 3 beta)
[102]. During spermatogenesis, two distinct types of
methylation occur: de novo methylation, and so-called
maintenance methylation [103]. The first of them is
performed by DNMT3a and DNMT3b and allows the
methylation of previously unmethylated DNA regions
[103]. The latter uses the DNMT1 enzyme to sustain
DNA methylation after meiotic division. DNMT1 has an
affinity to hemi-methylated DNA in the replication fork
[103]. DNMT3L (DNA methyltransferase 3 like) is the
next methyltransferase present in mammals, but it lacks
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a catalytic domain, and therefore has no catalytic activity
[101]. DNMTS3L recognizes the unmethylated region of
histone H3 and activates DNMT3a and DNMT3b meth-
yltransferases by acceleration of DNA and S-adenosyl-L-
methionine (SAM) binding to methyltransferases [104].
Passive or active demethylation is further responsible
for removal of DNA methylation. Passive demethylation
is coupled with cell division and lack of methylation
maintenance, while active demethylation is associated
with the oxidation of methyl groups to hydroxymethyl
group [105, 106].

The role of DNA methylation depends on its location
within the DNA structure. In the intergenic region, bulk
DNA methylation prevents the expression of potentially
harmful genetic elements like incorporated retrovi-
ral genetic material [8]. Methylation within CpG island
shores regulates tissue-specific gene expression, while
methylation in CpG islands contributes to genomic
imprinting by the stable silencing of one copy of the gene
[8]. The level of DNA methylation remains roughly con-
stant throughout the life of an individual [107]. The high-
est level of DNA methylation was detected in the brain
and thymus, while the lowest levels were recorded in
mature sperm cells and placenta [107], but the difference
is negligible [108].

Hydroxymethylation (5hmC)

DNA hydroxymethylation is a well-described intermedi-
ate product of active demethylation. Ten-Eleven Trans-
location (TET) family proteins can oxidize the 5mC to
5-hydroxymethylcytosine (5hmC) [106, 109-112]. The
same enzymes can further oxidize 5hmC to 5-formylcy-
tosine and 5-carboxylcytosine, from which the carboxyl
group is removed by thymine-DNA glycosylase (TDG)
coupled with base excision repair (BER) mechanism
to restore unmethylated cytosine [106, 109, 111, 112].
The level of DNA hydroxymethylation is tissue-specific
and has been mainly demonstrated within regulatory
elements of the gene [113, 114]. 5hmC level has been
observed as the highest in brain tissue [108]. Also, in pri-
mordial germ cells (PGCs) the 5hmc level is observed at
a high level [115]. In embryonal cells, 5hmC level origi-
nates out of genome-wide demethylation, which leads
to epigenetic reset and the 5mC landscape restructur-
ing during the development of specific tissues [113, 115].
Additionally, hydroxymethylation presence is associated
with transcription of tissue-specific genes [113, 114],
which can be especially important in constantly changing
organs that must adapt to environmental signals (such
as the brain), where the 5Shmc level is the highest among
the tissues. In sperm cells, 5ShmC level is four times lower
than that in somatic cells [116].
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Major epigenetic modifications of histones
Methylation

Histone methylation is a modification resulting from
the transfer of the methyl group from SAM to e-amino
group of lysine (K) or w-guanidino group of arginine (R)
residues, mostly on the N-terminal tail of histones H3
or H4 [117]. The lysine residue can be mono-, di- or tri-
methylated, while an arginine residue can be mono- or di-
methylated [117]. Methylation does not change the charge
potential of modified histone and can be associated either
with activation or repression of gene expression [10]. His-
tone methyltransferases (HMTs) are the catalyzers for
the methylation of histones [10]. HMTs that add a methyl
group to the lysine residue are called lysine methyltrans-
ferases (HKMTs), while the methylation of arginine resi-
due is performed by protein arginine methyltransferases
(PRMTs) [118]. Most lysine methyltransferases contain
the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax)
domain as their catalytic domain [119, 120]. However,
the DOT1L (disruptor of telomeric silencing-1-like) is a
unique lysine methyltransferase that lacks a SET domain
and catalyzes the methylation of only lysine 79 residue
of histone H3 (H3K79) in the histone core [120]. HMTs
methylate their substrate to a defined level and specific
changes in the catalytic site of the amino acid sequence
can alter the level of methylation activity [121]. For exam-
ple, the mutation F281Y in Neurospora crassa defective in
methylation-5 (DimS5) histone H3 lysine 9 methyltrans-
ferase gene can change the enzyme activity from trimethy-
lase to monomethylase [121]. A similar effect is observed
for the equivalent mutation F1205Y in human Dim5
homolog euchromatic histone-lysine N-methyltransferase
2 gene (G9A), where this mutation changes activity from
demethylase to monomethylase [121]. Histone demeth-
ylation is performed by histone demethylases (HDMTs)
[120]. Demethylation can also be performed using protein-
arginine deiminase type-4 (PADI4) enzyme in the process
of deamination of monomethylated arginine residue to cit-
rulline without arginine regeneration [122].

For example, the abbreviated form of methylation
description is H3R8me2 for dimethylation of arginine 8
residue in histone H3, and H3K36me3 for trimethylation
of lysine 36 residue in histone H3.

Acetylation

Histone acetylation is a modification resulting from the
transfer of the acetyl group from acetyl-CoA to e-amino
group of the lysine side chains in N-terminal tail of core
histones (H2A, H2B, H3, H4) [117]. Acetylation neu-
tralizes the positive charge potential from lysine resi-
dues, consequently weakening the interaction between
DNA and histones. Those changes cause loosening of
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chromatin and lead to transcriptional activity [123].
Additionally, histone acetylation regulates protein—pro-
tein interaction via bromodomains and in consequence
takes part in histone deposition and DNA repair [123].
Acetylation is performed by histone acetyltransferases
(HATs) [124]. HATs are classified as type A or type B
transferases. Enzymes included in type A are localized in
the cell nucleus and contain bromodomains, which allow
them to bind and acetylate histones already embedded in
chromatin structure [124]. However, type B acetyltrans-
ferases are located in the cytoplasm and can modify only
newly synthesized histones. All type B enzymes mainly
acetylate newly synthesized histones in the cytoplasm and
are more conservative [124]. Deacetylation is performed
using histone deacetylases (HDACs). They are less site-
specific when compared to HATs, and commonly create
large complexes with each other and additional proteins
[125].

For example, the abbreviated form of acetylation descrip-
tion is H4K5ac for the lysine 5 residue in histone H4.

Phosphorylation
Histone phosphorylation is a modification resulting from
the transfer of the phosphate group (PO,) from ATP to the
hydroxyl group of serine, threonine, tyrosine side chain, mainly
in the N-terminal tail of histones [117]. Phosphorylation of
these amino acids introduces an additional negative charge
potential to the histone, which then changes chromatin struc-
ture [117]. A phosphate group presence increases the ability
for DNA binding by transcriptional factors and enzymes. Next,
the attached enzymes can add new post-transcriptional modi-
fications (PTMs) or participate in double-strand breaks (DSBs)
repair [126]. The phosphate group can be attached to the
histone tails by kinases and detached by phosphatases [117].
For example, the abbreviated description of phospho-
rylation is H3S10ph for serine 10 residue in histone H3.

Ubiquitination

Histone ubiquitination is a process of an addition of a
small 76 amino acid protein called ubiquitin mainly to
the e-amino group of lysine residue in a side chain via the
covalent isopeptide bond [127]. Ubiquitination is cata-
lyzed by a sequence of 3 enzymes: ubiquitin-activating
enzyme (E1), ubiquitin-conjugating enzyme (E2) and
ubiquitin ligase (E3) [128]. Poly-ubiquitination is created
by the extension of mono-ubiquitination at lysine resi-
dues: K6, K11, K27, K29, K33, K48, and K63 or methio-
nine M1 [129]. The function of ubiquitination depends
on the location within the histone tail, and whether a
histone is mono- or poly-ubiquitinated. Mono-ubig-
uitination primarily controls gene expression probably
via the changing chromatin structure or by providing an
interaction surface for other protein complexes [130],
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while poly-ubiquitination is involved in a wide range of
processes, including protein to protein interaction (i.e.,
K63-linked ubiquitin chains in DSB repair response), or
protein guidance towards degradation in proteasomes
(i.e., K48-linked ubiquitin chains) [131]. Ubiquitination is
removed by deubiquitinating enzymes (DUBs) [128].

For example, the abbreviated description of ubiquitina-
tion is H2BK120ub for lysine 120 residue in histone H2B.

Other histone modifications

Of the described modifications, the less common
modifications can also be present on histone tails, i.e.,
SUMOylation (a modification by small ubiquitin-like
modifiers), a group of short chain lysine acylations
including: crotonylation, or butyrylation(s), (widely
reviewed in [132]), or PARsylation poly(ADP-ribose)
metabolism. However, there is only little literature data
available concerning their role, so far [133, 134], thus
we made only a brief description here. It was already
shown that SUMOylation represents a marker of defec-
tive sperm quality (motility and morphology), is linked
to chromatin remodeling and constitutive heterochro-
matin [135-139]. In D. melanogaster a general lysine
crotonylation depends on the acetylation status of the
spermatid chromatin, while in mice crotonylation was
strictly linked to transcription regulation of sex chro-
mosome-linked genes in round spermatids and genome-
wide histone replacement in elongating spermatids [88,
140, 141]. Additioanlly, dysregulation of crotonylation by
Cdyl (chromodomain Y-like transcription corepressor)
resulted in a lower sperm count and motility [88]. A role
of other modifications from butyrylation subgroup, have
been linked to active gene transcription in meiotic and
post-meiotic cells in male germ cells, [142]. PARsylation
has been found in elongating spermatids (mouse study)
as an important player for proper sperm nucleoprotein
exchange and correct sperm head formation [143, 144].

Epi-changes in primordial germ cells

Spermatogenesis is a complex process that starts from
spermatogonial stem cells (SSCs) and ends with mature
spermatozoa [50]. Primordial Germ Cells (PGCs), which
are the more primitive ancestors of SSCs, are at least
equally important for sperm production from an epige-
netic standpoint [145]. At this stage, major DNA meth-
ylation modifications occur, which ensure appropriate
epigenetic patterns in developing gonocytes [145, 146].
The pluripotency of PGCs and their open chromatin state
give rise to SSCs by undergoing asymmetrical cell divi-
sions [145, 146]. There are also suggestions (but still dis-
putable), that PGCs have been reported to survive in low
numbers in multiple adult tissues (including testes, both
mice and human) as VSELs (very small embryonic like
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stem cells), that are epiblast-derived cells deposited dur-
ing early gastrulation playing an important role in turno-
ver of tissue specific/committed stem cells, and expressing
several markers characteristic for pluripotent stem cells
[147-150]. The pluripotent VSELs express variety of
PGCs markers, and their number is increased in testicular
pathologies (i.e., cancer), revealing reduced 5mC expres-
sion and altered Igf2-HI19 (H19 imprinted maternally
expressed transcript — insulin like growth factor 2) pattern
and thus influencing the epigenetic profile [147-150].
Three stages can be listed during PGC development: speci-
fication, migration, and colonization [151]. They are timed,
as follows: embryonic day E6.0-E8.0, E8.0-E10.0, and E10.0-
E13.0 in mice, while in humans: 2.0-3.0 weeks, 5.5-8.0 weeks,
and 8.5-9.0 weeks of embryonal development [146, 151].
PGCs undergo massive DNA demethylation, mainly in a
replication-coupled manner. This change is associated with
rapid cell cycle progress, the lack of a specific gene expression
(i.e., developmental pluripotency-associated protein 3 gene —
STELLA, ubiquitin like with PHD and ring finger domains 1
gene—UHRFI), and repression of DNMT3a, and DNMT3b
activity [102]. This results in the absence of both maintenance
and de novo methylation. Demethylation is essential for the
erasure of genomic imprints, which could affect the particular
stages of spermatogenesis [102]. The wave of demethylation
in mice happens between E6.5-E10.5 and E10.5-E12.5 and

Page 10 of 23

includes approximately 90% of genome-wide loss of 5mC
[146], while in humans starts before 7 weeks of embryo-
nal development, with global methylation decreasing from
more than 80% to approximately 20% (Fig. 2) [145, 152]. In
the 11-week human embryos, DNA methylation reaches its
lowest level at approximately 8%. This status is maintained
until at least until week 19%, which indicates that de novo
methylation occurs later in embryo development [145]. More
importantly, the differentially methylated regions (DMRs)
of imprinted genes are completely demethylated from week
10" at least until the week 19™ [145]. However, some regions
in DNA retain relatively substantial methylation, namely the
alpha satellite regions in the centromeric and pericentromeric
regions of the chromosomes (36.5% of DNA methylation
retained), and evolutionary young and active transposable
elements with 24% of methylated DNA [145]. Also, hydroxy-
methylation of DNA was observed in PGCs in male 10-week
embryos at a low level of approximately 2%. The presence
of 5ShmC indicates an auxiliary role of the active process in
global DNA demethylation [145].

After PGCs colonize gonads, they undergo a sex-spe-
cific transformation toward gonocytes, and between the
weeks 9-26 they gradually enter the mitotic arrest for the
remaining phase of fetal development [153, 154]. Mitotic
divisions resume 8-12 weeks after birth, and gonocytes
transform into self-renewing spermatogonial stem cells
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(SSCs) [155]. De novo methylation starts to emerge in
mitotically arrested gonocytes [156]. The global methyla-
tion pattern is established before birth [157], while full
methylation of paternal imprints (H19-IGF2 and DLKI-
DIO3: delta like non-canonical Notch ligand 1 — iodothy-
ronine deiodinase 3) is fully established only before the
onset of meiosis during puberty [156]. Simultaneously,
maternally imprinted genes remain fully unmethylated
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from the PGC stage onwards [156]. Also, the expression
of DNA methyltransferases changes in time. All the three
of them follow a similar expression pattern. In mice, high
levels of DNMT1, DNMT3a, and DNMT3b are being
observed in spermatogonium A, leptotene/zygotene sper-
matocytes, and round spermatids [101].

PGCs also exhibited dynamic changes in histone modi-
fication patterns (Fig. 3). Three main modifications occur
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at lysine 4, 9 and 27 residues (K7, K9, K27) of histone H3.
Both H3K4me3 (activating) and H3K27me3 (repressive)
are present in the promoter region of somatic genes (i.e.,
Hox: Homeobox proteins gene, Gfap: Glial fibrillary acidic
protein gene) as a bivalent histone modification and they
ensure gene repression in an absence of DNA methyla-
tion [37, 158]. However, in the promoter region of PGC-
specific genes only activating H3K4me3 modification was
observed, which corresponds to an active gene expression
[158]. Additionally, bivalent marks are distributed differ-
ently in female and male PGCs, suggesting their role in
establishing male and female-specific methylation pat-
terns [159]. Furthermore, H3K4me3 is expected to be
involved in the blocking of the de novo DNA methylation,
as Dnmt3L binds only to unmethylated H3K4 [104, 160].
In PGCs the global reduction of H3K9me2 and increase
in repressive H3K27me3 are being observed in mice at
E8.5, while in humans after week 9 of gestation, and these
changes are likely associated with the activation of PGC-
specific genes, such as Ddx4 (DEAD-box helicase 4), Dazl
(deleted in azoospermia-like), and Stra8 (stimulated by
retinoic acid gene 8) [161-163]. Simultaneously, H3K9
acetylation increases, while H3K9 trimethylation remains
at a high level [162].

Self-Renewal of spermatogonia and commitment
to meiosis

Spermatogenesis starts with spermatogonial stem cells
(SSCs), also known as ‘spermatogonia A type’ (SPG A),
ready for replication via mitosis [102]. This process ena-
bles the cells to multiply continuously and maintain a
constant number of stem cell reservoir within the gonad.
Two types of SPG A in human testes can be found: SPG A
dark (SPG Ad), and SPG A pale (SPG Ap). The first one is
associated with the self-renewal of SSCs and constitutes
a reserve pool of gonadal stem cells [164]. Pale spermat-
ogonia A can also be subjected to mitotic self-renewal
divisions, but in addition, they can differentiate into sper-
matogonia B (SPG B) [164]. In the next step, SPG B trans-
form into primary spermatocytes, which enter the first
meiotic division. Those transitions are controlled by the
activation and repression of specific genes by post-trans-
lational modifications of histone tails [117]. Acetylation
of histone H4 (H4K8, H4K16) prefers the neighbourhood
of transcription start sites (TSSs) in SSCs, but it controls
only constitutively active genes [165]. Also, the acetyla-
tion of histone H3 (i.e., H3K9, H3K18, H3K23), and vari-
ants: H2A, and H2B is present in both SPG A and SPG
B cells [166]. Those modifications might be necessary
during DNA replication [117]. Histone methylation ful-
fils the critical role in maintaining the balance between
self-renewal of spermatogonia and commitment to meio-
sis. Commonly occurring histone methylation sites are
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H3K27, H4K20 in their dimethylated states, and H3K9,
H4K20 in trimethylated states [167]. Those PTMs interact
with promyelocytic leukaemia zinc finger transcriptional
repressor (PLZF), which is essential in the maintenance of
the stem cell pool [167]. But the most important modifica-
tion responsible for the stem cell persistence in a pluripo-
tent state is the methylation of lysine 4 residue in histone
H3 (H3K4me2/me3) [37, 38, 67]. This modification can
exist in constitutive heterochromatin (in the dimethylated
state) or facultative heterochromatin (in the trimethylated
state). It is present at the promoter and enhancer regions
of genes associated with pluripotency (i.e., octamer-
binding transcription factor 4—OCT4, Nanog homeobox
— NANOG) and activates their transcription [38, 67].
H3K9me works oppositely to H3K4me and is added by
histone lysine methyltransferase G9a in a promoter region
of the same genes. However, it acts through the block-
ing gene transcription and — in consequence — promot-
ing cell differentiation [73]. Demethylation of H3K9me
restores self-renewal phenotype in SSCs [117]. After the
commitment to meiosis, SSCs undergo numerous changes
in histone profile, among which the most prominent
ones are modifications in H3 and H4 methylation pro-
files, and incorporation of a new variant of histone H3
called H3.4 in human, and H3t in mice [168-170]. The
changes in methylation pattern mainly occur in the fol-
lowing: H3K4, H3K9, H3K27, and H4K20. In early sper-
matogonia, repressive methylations like H3K9 and H3K27
occur. Their role is to impede genes’ action associated
with pluripotency, such as NANOG (Nanog homeobox),
SOX2 (SRY-box transcription factor 2), LEFTY (left-right
determination factor), and PRMDI14 (PR/SET domain 14)
[117]. In late spermatogonia, transcriptionally activating
modifications as H3K4me strengthen, and are probably
linked with an increase in the expression of genes nec-
essary at the early stages of meiotic division [118]. The
histone variant H3t in mice (H3.4 in human) replaces
canonical H3 in SPGs B and early spermatocytes. H3t is
probably introduced during mitotic divisions through-
out the entire genome, except for sex chromosomes [168,
169]. The incorporation of H3t into chromatin structure
causes its decondensation due to more flexible entry-
exit regions of H3t compared to canonical H3 histone
[168, 169]. The absence of histone H3t in mice results in
a suspension of SPG differentiation into spermatocytes
[168, 169]. An interesting — but still scantly described —
is variant H3.5 observed in testes of patients with normal
spermatogenesis in spermatogonia or preleptotene/lep-
totene-stage primary spermatocytes, where accumulated
around TSS sites may play a role in the chromatin loosen-
ing [171, 172]. The general representation of histone vari-
ants during particular stages of spermatogenesis has been
summarized in Fig. 4 and detailed reviews [169, 170].
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Meiosis

The next step of spermatogenesis is meiosis — a complex
process with the main goal to reduce cell ploidy from 2n
(diploid) to 1n (haploid) [173]. One tetraploid (4n) pri-
mary spermatocyte enters meiosis, and after two meiotic
divisions results in four haploid spermatids [174]. Sper-
matogenesis consists of two consecutive divisions with
the intermediate product in the form of diploid second-
ary spermatocytes [174]. During spermatogenesis, the
most important point is the first phase of meiosis I called
prophase 1. Dividing cells spend overwhelming majority
of meiosis time in prophase I, the phase full of actions
crucial for proper cell division [173, 175]. The first one
is meiotic recombination, known as the crossing-over
[176]. This process is critical for the maintenance of
genetic diversity in the offspring. Lack of crossing-over
events leads to disturbances in maintenance of proper
ploidy in gametes, and then to infertility problems. In
some regions of DNA, so-called: ‘hot spots, recombina-
tion occurs more often [176]. The other important pro-
cess is meiotic sex chromosome inactivation (MSCI). The
absence of MSCI induces meiotic arrest at the pachytene
stage of prophase I due to numerous unrepaired DNA
double-strand breaks (DSB) [177]. The third one crucial

for prophase I is the synapsis of homologous chromo-
somes, which is necessary for later phases of meiosis L.
It also allows mechanisms mentioned above to be carried
out correctly [176, 177]. Also during prophase I, great
changes in the expression of meiotically associated genes
are being observed, such as: TEXI9 (testis expressed
19), PRDM9 (PR/SET domain 9), SYCP3 (synaptone-
mal complex protein 3), and BRDT (bromodomain testis
associated) [126, 178]. All those events are completely or
partially controlled by histone epigenetic modifications.
Prophase I can be divided into 5 major stages: leptotene,
zygotene, pachytene, diplotene and diakinesis.

Preleptotene

During the preleptotene stage of prophase I, prepara-
tion for meiotic recombination of primary spermatocyte
begins. In this stage of prophase I, chromosomes are
loosely packed and appear singly [179]. To keep the chro-
matin stable in a loose state, mostly the histone modifi-
cations with decondensing type of influence are present,
mainly acetylation of histone H4 lysine residues 5, 8, and
12 (H4K5ac, H4K8ac, H4K12ac) [180]. In both: human
and mice, the main role of H4 acetylation is to unlock
access to recombination sites, creating recombination
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hot spots by DNA-binding zinc-finger protein (PRDM9)
and trimethylation of histone H3 on lysine 4 residue
(H3K4me3) [181, 182]. This modification is the most
important mark of recombination hot spots, and it is
used for further loosening of the chromatin structure
[182]. In mice, Prdm9 can also trimetylate lysine 36 resi-
due (H3K36me3), and then leads to the creation of the
bivalent signature exclusively in the region of recombina-
tion [182]. Repressive histone marks are mostly absent in
the recombination hot spots, in the exception of the coin-
cidence of H3K27me3 and H3K4me3 in bivalent recom-
bination sites [183].

Leptotene and Zygotene
At the leptotene stage, the first step of homologous
recombination (HR) occurs. In both: human and mice,
topoisomerase Spoll induces double-strand breaks
(DSBs) within hot spots of relaxed DNA chromatin [176].
Two copies of the Spoll enzyme create an asymmetric
DNA break, while each copy cuts one strand of DNA
[176, 184]. After the appearance of DSB, the most impor-
tant modification for this stage — the phosphorylation in
serine 139 residue of the histone variant H2AX is added
(also known as YH2AX, expressed especially at prelep-
totene, but weakly also in spermatogonial cells, primary
pachytene spermatocytes and in elongated spermatids)
[126, 185]. Three waves of phosphorylation of the yH2AX
have been observed during prophase I, two of which are
related to HR [76]. The first wave occurs during leptotene
and is performed by ATM serine/threonine kinase, while
the second one depends on ATR serine/threonine-pro-
tein kinase and is present from the early to mid-zygotene
stage [76]. Ubiquitination of lysine 120 residue on histone
H2B (H2BK120ub) by ring finger protein 20 (RNF20) is
another active modification during the zygotene [186].
Both yYH2AX and H2BK120ub are responsible for loos-
ening of chromatin structure and recruitment of repair
proteins like: the mediator of DNA damage checkpoint
protein 1 (MDC1), Mrell, Rad50, and Nbsl (MRN)
complex, and breast cancer type 1 susceptibility protein
(BRCA1) and this process is similar in human and mouse
[117, 186]. For correct phosphorylation and ubiquitina-
tion, proper methylation and acetylation of histone H4
must be established. Especially, the dimethylation of argi-
nine 3 residue in histone H4 (H4R3me2) performed by
protein arginine methyltransferase 5 (Prmt5) [187], and
acetylation of lysine 16 residue in histone H4 (H4K16ac)
by MOF (male absent on the first) histone acetyltrans-
ferase [76]. The absence of Prmt5 and MOF results in a
lack of proper epigenetic marking, leading to inappropri-
ate yYH2AX phosphorylation as a consequence [76, 187].
During the leptotene and zygotene stages of the pro-
phase, the acetylation of lysine 9 residue in histone H3
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(H3K9ac), and lysine 5, 8, 12, 16 residues in histone H4
(H4K5ac, H4K8ac, H4K12ac, H4K16ac) occurs in X and Y
chromosomes [188]. Those modifications resemble tran-
scriptionally active chromatin and might be associated with
the activation of genes located within sex chromosomes
[188]. Correspondent modifications, namely H4K5ac,
H4K8ac, and H4K12ac, can also be found in autosomal
chromosomes where they play a similar role [180].

Pachytene

During the pachytene stage of prophase, DSBs induced
in leptotene are repaired using Holliday junctions (HJs)
or synthesis-dependent strand annealing (SDSA) mech-
anisms [176]. However, only an HJ pathway results in
crossing-over [176]. At the pachytene stage, chromatin
decondensation in hot spots is promoted. A loosening
of DNA structure allows the enzymes to bind properly
to DSB sites. Acetylation of H3K9, H3K14, and H3K56
is responsible for relaxation and recruitment of repair
enzymes [189]. Additionally, ubiquitination H2AK119
intensifies, and H2AK13-15 start to emerge. Those altera-
tions take part in the recruitment of repair proteins,
such as RAP80 (receptor-associated protein 80), BRCA1
(breast cancer type 1 susceptibility protein), and 53BP1
(tumor protein p53 binding protein 1) [190]. Finished
DSB repair marks the end of homologous recombination
(HR) in meiosis [176].

On the other hand, MSCI starts to emerge in the
pachytene [177]. MSCI is a meiotic silencing mechanism
of asynapsed chromatin (MSUC) that affects only X and
Y chromosomes. MSUC action ensures that asynapsed
regions of autosomes are not transcriptionally active
[177]. MSCI performs the same function, but it occurs in
the sex chromosomes, and it is responsible for creating
the sex body, also known as XY body [177]. In pachytene,
chromatin condensation and gene repression are pro-
moted by the reduction of histone modifications respon-
sible for marking histones with activation epimarks on
sex chromosomes [188]. Among those, the most promi-
nent is a reduction of acetylation at: H3K9, H4K12, and
H4K16, and reduction of methylation at H3K4me3 [188].
In contrast, repressive modifications like: methylation
at H3K9 and H3K4, and hyperacetylation at H3K5, and
H3K8 are present [188]. In pachytene, the third wave of
YH2AX phosphorylation occurs on asynapsed fragments
of sex chromosomes [76, 177]. DNA damage response
precedes yH2AX phosphorylation [191]. First, BRCA1
accumulates on asynapsed sex chromosome axes and
allows the recruitment of TOPBP1 (DNA topoisomer-
ase 2-binding protein 1) and ATR kinase. In the next
step, the yH2AX phosphorylation by ATR occurs, which
in consequence attracts MDC1 (mediator of DNA dam-
age checkpoint protein 1) [191]. MDCI1 then coordinates
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spread of yH2AX to the subsequent nucleosomes [191].
The absence of YH2AX modification on sex chromo-
somes leads to defects in XY synapsis, MSCI failure, and
complete arrest in the pachytene stage [177, 191]. Addi-
tionally, to ensure that gene silencing will persist, new
histone variants are introduced from pachytene onwards.
One of them is H2A.Z, which replaces canonical H2A
histone [126].

The so-called: ‘pachytene checkpoint’ occurs in the late
pachytene stage [192]. In response to HR or synapsis for-
mation failures, the pachytene checkpoint is involved in
arrest or delaying of spermatocytes progress through the
pachytene stage. This mechanism prevents the forma-
tion of aneuploid spermatids [192]. Dotl histone meth-
yltransferase is responsible for the methylation of lysine
79 residue in histone H3 (H3K79me), which controls this
checkpoint. The absence of Dot enzyme decreases the
level of H3K79me, and thus leads to meiotic arrest at the
pachytene stage of prophase I [192, 193]. This quality-
control mechanism is well characterized in yeast and is
evolutionary-conserved from yeast to mammals [192].

The activation of some genes located on sex chromo-
somes (~13%) is necessary for the later phases of meio-
sis and spermiogenesis [194, 195]; however, the MSCI
process inactivates the expression of all genes located
within the sex body [194, 196]. In the dividing cell, spe-
cial mechanisms allow certain genes to be re-expressed,
and this reactivation starts at the pachytene stage. Two
major changes in the histone code are responsible for this
reactivation. The first of them is the replacement of the
H2A histone with H2A.B.3 (known also as H2A.Lapl)
variant, which is mouse orthologue of human H2A.B
variant [194, 197]. This reinstatement occurs around
transcription start sites (TSS), and is associated with
the relaxation of chromatin structure (less compacted
nucleosome states) and gene transcription [194, 197,
198]. This histone variant is selectively located within X
chromosome genes active in round spermatids [194]. The
second modification that helps to restore the transcrip-
tional activity later in spermatogenesis, is the polyubiq-
uitination of an unknown substrate by RNF8 (ring finger
protein 8) with deubiquitination of H2AK119 by SCML2
(Scm polycomb group protein like 2) [97]. As shown in
mouse study, those modifications promote H3K27 acety-
lation of the enhancer region of escape genes in the late
pachytene stage, and H3K4me2 of the promoter region in
early diplotene. Histone ubiquitination is removed from
sex chromosomes at the late diplotene stage, while both
H3K27ac and H3K4me2 persist in spermiogenesis as an
epigenetic memory, where they facilitate the activation
of escape genes such as Gm9 (predicted gene 9) or Prdx4
(peroxiredoxin 4) [97].
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Diplotene and diakinesis

From diplotene through metaphase, bivalent meth-
ylation/phosphorylation  post-translational modifica-
tions will be imposed, namely: H3K9me2/H3S10ph and
H3K27me2/H3S28ph [199]. Those modifications could
facilitate specific condensed chromatin conformation
during meiosis, as well as mitosis [199]. Additionally, the
presence of H3K9me2/3 on sex chromosomes ensures
chromatin condensation of XY chromosomes, which is
necessary for MSCI persistence and transition to post-
meiotic status of sex chromosomes [200]. Starting from
diplotene until the end of meiosis, histones H3 and H4
are underacetylated on sex chromosomes, except for
H4K16 throughout the X and Y chromosomes, and H4K5
only in the pericentromeric region [188].

After the end of prophase I, primary spermatocytes
complete the following phases of the first meiotic divi-
sion: metaphase I, anaphase I, telophase I and cytokine-
sis, and become secondary spermatocytes. Secondary
spermatocytes quickly finish the second meiotic division,
which results in haploid spermatids.

Spermiogenesis

In a process of spermiogenesis, the last step is the trans-
formation of round spermatids into sperm cells, which
are the final differentiation point of male reproductive
cells [201]. During this transformation, immature sper-
matids undergo chromatin condensation, acrosome and
tail formation, elongation, and cytoplasm reduction
[201]. This transformation is possible due to histone-to-
protamine exchange, which is the most important event
performed during spermiogenesis. Transition nuclear
proteins (TNPs: TNP1 and TNP2) mediate the transi-
tion from histones to protamines. In the first step, TNPs
substitute histones, and are later replaced by protamines
[134, 201, 202]. Protamines are small, arginine-rich pro-
teins, expressed specifically in spermiogenesis starting
from elongating spermatids onwards [203]. In mammals,
two protamines P1 and P2 (in human encoded by PRM
and PRM?2, respectively) are incorporated into the chro-
matin structure. The arginine-rich DNA-anchoring
domain allows protamines to wrap around the major
groove of DNA helix. This neutralizes the negative charge
of DNA backbone and allows nucleo-protamine chroma-
tin to be coiled and condensed much tighter than nucleo-
histone chromatin type of packaging [203]. Most of the
sperm chromatin is associated with protamines [204]. In
mouse sperm cells, only 1% of the whole genome remains
attached to histones, while in humans, the histones are
present in 10%-15% of the sperm chromatin [35, 134,
204, 205]. Disturbances in ratio between particular pro-
tamines or between protamines and histones lead to
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decrease of semen parameters and to reproductive prob-
lems [134, 205, 206]. The remaining nucleo-histone chro-
matin is present principally around the centromeric and
telomeric regions of the chromosomes [204, 207]. The
main histone variants and their involvement in modifi-
cations during the histone-to-protamine exchange, fol-
lowed by relevant mouse models have been summarized
in [134].

Histone acetylation is essential for the histone-to-pro-
tamine transition. H4K5, H4K8, and H4K12 acetylation
are the first markers of the histone H4 hyperacetylation,
which facilitates chromatin opening at the early stages
of spermatid elongation [90, 208, 209]. In mouse round
spermatids, the histone H4 phosphorylation of the ser-
ine 1 residue (H4S1) forego hyperacetylation [210]. This
modification may help to compact DNA before histone-
to-protamine transition [211]. Additionally, histone
H3 hyperacetylation, mainly at lysine 9, 18, 23 residues
(H3K9ac, H3K18ac, H3K23ac), has been demonstrated
in spermatids, but its role in histone-to-protamine
exchange is less prominent [166].

Thanks to histone hyperacetylation, DNA topoi-
somerase II beta (TOP2P) binds to DNA and induces
DSB formation [212]. Similar to HR and MSCI, both
ATM and ATR enzymes catalyze the formation of his-
tone yH2AX, but during spermiogenesis also additional
protein kinase TSSK6 (testis-specific serine/threonine
kinase) is required [12]. yH2AX then binds to MDC1
protein, which facilitates ubiquitination of histones H2A
and H2B by recruitment of RNF8 E3 ubiquitin ligase
[96, 117]. Additionally, MDC1 replaces H2A/B histones
for a H2AZ/H2B dimer [117]. Those modifications lead
to chromatin opening and promote H4Kl6ac by MOF
histone acetyltransferase [96, 213]. H4K16 acetylation
indicates global histone removal [96]. This process is per-
formed by bromodomain testis-specific protein (BRDT),
which binds to tetra-acetylated H4 histone and guides
the histone removal [208, 214, 215].

In elongating spermatids, histone methylation is also
present, and mainly consists of H3K4me2/3, H3K9me2/3,
H3K27me3, and H3K79me2/3 [117, 193]. During this
stage, both repressive and activating histone modifica-
tions are present. Activating H3K4me2/3 helps in the
ubiquitination of histone H2A by providing a binding
place for PHD finger protein 7 (PHF7) E3 ubiquitin ligase
[213]. In round spermatids, H3K4mel/2/3 is located
in euchromatin and activates gene expression of genes
important for spermiogenesis [117]. Then in elongating
spermatids, H3K9mel/2 and H3K36me3 regulate the
expression of genes coding transition nuclear proteins
and protamines. H3K9mel/2 presence in the promoter
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region of those genes downregulates their expression
[93], while H3K36me3 acts in the opposite manner [98].

After final changes in chromatin compaction and nec-
essary epigenetic modifications, the non-motile elon-
gated spermatids are released into the lumen of the
seminiferous tubules in the process of spermiation. Next,
during the transition through epididymis, the contact
with unique microenvironmental lumen factors leads to
the maturation of the sperm cells — assessment of motil-
ity and ability to fertilize [216—220].

Conclusions

The ever-growing number of studies of epigenetic
changes in both male and female gametogenesis leads to
the detailed understanding of the mechanisms govern-
ing the contribution and teamwork of the paternal and
maternal genomes during the fertilization process and
embryo development, also at the level of genetic and epi-
genetic cooperation. In this review, we have summarized
the most important epigenetic modifications of DNA
and histones crucial for the process of spermatogenesis.
Following the facts, that each step of spermatogenesis is
characterized by determined epimarks, and the complex-
ity of male gametogenesis is intricated, the important
role of epigenetic changes in male germ cell development
is clearly highlighted. It is also significant in the context
of male reproductive failures, with unknown or unclear
genetic background, so far, and the rising number of
cases with epigenetic background of the infertility as the
main reason.

It is known that the majority of data have been pro-
vided from mouse studies. It is caused by the fact that
still there is a low availability of human material from
particular gametogenesis stages (incl. ethical issues)
or embryonal ones. There is also no availability (or are
problems with culturing) for cell lines related to human
spermatogenesis that could be used for genetic or epige-
netic research. Of course, even if it is known that mice
phenotype of predicted model is often with a less severe
phenotype that human (because of alternative ways of
compensation for the loss of a proper protein), methyla-
tion patterns and reprogramming events are relatively
conserved between human and mouse and mouse still
is a good model organism for inferring general mecha-
nisms. Translation of mouse model results into human
male infertility enhances understanding of fertility path-
ways, and is able to mimick some aspects of primary
human infertility (examples of the mouse-to-human
modelling has been widely reviewed in [221, 222]). It
seems to be important to expand further studies and to
involve mouse models also for epididymis evaluation in
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the epigenetic manner. The increasing number of data
indicates changes of epigenetic markers of sperm DNA
also during the maturation in epididymis (and its par-
ticular parts), and thus puts attention also on the epige-
netic role of this organ, leading to the need of revision
of the statement that the histone PTMs are completed
before the release of the sperm from the male gonad
[21, 217, 223]. So, in the context of male reproduction
there is a strong need to deep evaluation of the epididy-
mal processes in the epigenetic manner, particularly in
the light of the known rich epididymal microenviron-
ment and its already described influence both: on sperm
maturation (motility, fertilization capability), as well as
on the rate of sperm DNA damage [21, 202, 217-220,
223]. Thus, the link between proper epimarks and
sperm chromatin integrity perhaps will possess part of
its principles also from the epididymal side. Addition-
ally, the adult diseases of the offspring linked to pater-
nal transmission of dysfunctions related to epigenetic
patterns (i.e., obesity), should also be evaluated more
extensively, with the special attention to the environ-
mental influence and the life style of the future father
[68, 224-226].

From the clinical view point, the sperm epimarks
should also be checked for azoospermic or cryptozoo-
spermic patients subjected to fertilization with gam-
etes aspirated from testicular biopsy — one step before
epididymal maturation. Maybe there would be an
answer for cases with successful fertilization rate (=we
have an embryo) but unsuccessful embryo development
(why it is not developing, when preimplantation genet-
ics is fine), aberrant imprinting patterns, birth defects or
poor health outcome of ART-born children [222, 224—
227]. Thus, there is a strong need for further evaluation
of epigenetic marks and mechanisms in male repro-
ductive context, not only on human samples but also
with the mouse models, because of the fact that animal
studies give better accessibility of biological samples to
develop a great variety of experimental pathways (specif-
ically in testis-derived gametes and in embryo evaluation
after ART). Recently expanding range of high-resolution
methods and big data analyses seem to give great capa-
bilities of a detailed and complex data acquirement at
the single cell level, including genetic and epigenetic
data among the whole genome and methylome, and thus
leading to getting of priceless evidences for reproduc-
tion, and also for developing of novel routes for disease
aetiology and its prevention or treatment in the future.
The exploration of this area concerning potential linkage
between male reproductive epigenome and infertility or
other disease phenotypes in the offspring (not neces-
sarily related to fertility) should be more extensive in a
practical and theoretical challenges.
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Abbreviations

n Haploid genome

2n Diploid genome

4n Tetraploid genome

53BP1 Tumor protein p53 binding protein 1

5caC 5-Carboxy-cytosine
5fC 5-Formyl-cytosine

S5hmC 5-Hydroxymethyl-cytosine

5mC 5-Methyl-cytosine

ac Acetylation

ART Artificial reproductive technique

ATP Adenosine triphosphate

BER Base excision repair

BRCAT1 Breast cancer type 1 susceptibility protein

BRDT Bromodomain testis associated

BRDT Bromodomain testis-specific protein

Camk4 Calcium/calmodulin-dependent protein kinase IV

Cdyl Chromodomain protein, Y chromosome-like

Cfp1 CXXCfinger 1

Chd5 Chromodomain helicase DNA binding protein 5

Dazl Deleted in azoospermia-like

Ddx4 DEAD-box helicase 4

Dim5 Defective in methylation-5

DLK1-DIO3 Delta like non-canonical Notch ligand 1 - iodothyronine deiodi-
nase 3

DMRs Differentially methylated regions

DNA Deoxyribonucleic acid

Dnmt3a DNA methyltransferase 3A

Dnmt3l DNA (cytosine-5-)-methyltransferase 3-like

DNMTs DNA methyltransferases

DOTIL Disruptor of telomeric silencing-1-like

Dot1l DOT1-like, histone H3 methyltransferase

DSBs Double-strand breaks

DUBs Deubiquitinating enzymes

E1 Ubiquitin-activating enzyme

E2 Ubiquitin-conjugating enzyme

E3 Ubiquitin ligase

Epcl Enhancer of polycomb homolog 1

Fancd2 Fanconi anemia, complementation group D2

Fanci Fanconi anemia, complementation group |

FbxI10 Lysine (K)-specific demethylase 2B

G9A Euchromatic histone-lysine N-methyltransferase 2 gene

Gfap Glial fibrillary acidic protein gene

Gm9 Predicted gene 9

H19-1GF2 H19 imprinted maternally expressed transcript — insulin like
growth factor 2

HATs Histone acetyltransferases

Hdac3 Histone deacetylase 3

Hdac6 Histone deacetylase 6

HDACs Histone deacetylases

Hs Holliday junctions

HKMTs Lysine methyltransferases

HMTs Histone methyltransferases

Hox Homeobox proteins gene

HR Homologous recombination

Hréb Ubiquitin-conjugating enzyme E2B

Jhmd2a/Jmidia Lysine (K)-specific demethylase 3A (Kdm3a)

JmJdic Jumonji domain containing 1C

Kdm1la Lysine (K)-specific demethylase 1A
Kdm4d Lysine (K)-specific demethylase 4D
LEFTY Left-right determination factor

INcRNA Long non-coding RNA

MDC1 Mediator of DNA damage checkpoint protein 1
me Methylation

Mettl21a Methyltransferase like 21A

miRNA MicroRNA

MI12 Lysine (K)-specific methyltransferase 2D
KAT8 Lysine acetyltransferase 8

MOF Male absent on the first

MRN Mre11, Rad50, and Nbs1
MSCI Meiotic sex chromosome inactivation
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MSUC
Mthfr
Mtrr

NANOG
ncRNA
Nsd1
OCT4
PADI4
Parp1/2
PGCs
ph
PHF7
piRNA
PLZF
Prdm9
PRDMO9
Prdx4
PRM1
PRM2
PRMD14
Prmt1
Prmt5
Prmt5
Prmt7
PRMTs
Ptip
PTMs
Pygo2
RAP80
RNA
RNF20
RNF8
rRNA
SAM
SCML2
SDSA
SET
Setd?2
Setdb1
SIRNA
Sirml
Sly
sNoRNA
SNRNA
SOX2
SPC
SPD
SPG A
SPG Ad
SPG Ap
SPGB
Spol1
SSCs
STELLA
Stra8
SUMO
Suv3oh1/2
SYCP3
DG
TET
Tet1
TEX19
Tip60
TNPs
TOP2(
TOPBP1
tRNA
Tsské
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Methylenetetrahydrofolate reductase
5-methyltetrahydrofolate-homocysteine methyltransferase
reductase

Nanog homeobox

Non-coding RNA

Nuclear receptor-binding SET-domain protein 1
Octamer-binding transcription factor 4
Protein-arginine deiminase type-4

Poly (ADP-ribose) polymerase family, member 1/2
Primordial germ cells

Phosphorylation

PHD finger protein 7

Piwi-interacting RNA

Promyelocytic leukaemia zinc finger transcriptional repressor
PR domain containing 9

PR/SET domain 9

Peroxiredoxin 4

Protamine 1

Protamine 2

PR/SET domain 14

Protein arginine N-methyltransferase 1

Protein arginine methyltransferase 5

Protein arginine N-methyltransferase 5

Protein arginine N-methyltransferase 7

Protein arginine methyltransferases

PAX interacting (with transcription-activation domain) protein 1
Post-transcriptional modifications

Pygopus 2

Receptor-associated protein 80

Ribonucleic acid

Ring finger protein 20

Ring finger protein 8

Ribosomal RNA

S-adenosyl-L.-methionine

Scm polycomb group protein like 2
Synthesis-dependent strand annealing
Su(var)3-9, Enhancer-of-zeste and Trithorax

SET domain containing 2

SET domain, bifurcated 1

Small interfering RNA

Sirtuin 1

Sycp3 like Y-linked

Small nucleolar RNA

Small nuclear RNA

SRY-box transcription factor 2

Spermatocyte

Spermatid

Spermatogonia A

Spermatogonia A dark

Spermatogonia A pale

Spermatogonia B

SPO11 initiator of meiotic double stranded breaks
Spermatogonial stem cells

Developmental pluripotency-associated protein 3 gene
Stimulated by retinoic acid gene 8

Small ubiquitin-like modifiers

Suppressor of variegation 3-9 1/2

Synaptonemal complex protein 3

Thymine-DNA glycosylase

Ten-Eleven Translocation

Tet methylcytosine dioxygenase 1

Testis expressed 19

Lysine acetyltransferase 5 (Kat5)

Transition nuclear proteins

DNA topoisomerase Il beta

DNA topoisomerase 2-binding protein 1

Transfer RNA

Testis-specific serine kinase 6
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TSSs Transcription start sites
ub Ubiquitination
Ubr2 Ubiquitin protein ligase E3 component n-recognin 2
UHRF1 Ubiquitin-like with PHD and ring finger domains 1 gene
Utx Lysine (K)-specific demethylase 6A
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