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Abstract 

Using latent variables in gene expression data can help correct unobserved confound-
ers and increase statistical power for expression quantitative trait Loci (eQTL) detection. 
The probabilistic estimation of expression residuals (PEER) and principal component 
analysis (PCA) are widely used methods that can remove unwanted variation and 
improve eQTL discovery power in bulk RNA-seq analysis. However, their performance 
has not been evaluated extensively in single-cell eQTL analysis, especially for different 
cell types. Potential challenges arise due to the structure of single-cell RNA-seq data, 
including sparsity, skewness, and mean-variance relationship. Here, we show by a series 
of analyses that PEER and PCA require additional quality control and data transforma-
tion steps on the pseudo-bulk matrix to obtain valid latent variables; otherwise, it can 
result in highly correlated factors (Pearson’s correlation r = 0.63 ~ 0.99). Incorporating 
valid PFs/PCs in the eQTL association model would identify 1.7 ~ 13.3% more eGenes. 
Sensitivity analysis showed that the pattern of change between the number of eGenes 
detected and fitted PFs/PCs varied significantly in different cell types. In addition, using 
highly variable genes to generate latent variables could achieve similar eGenes discov-
ery power as using all genes but save considerable computational resources (~ 6.2-fold 
faster).

Keywords:  Single-cell RNA-seq, Pseudo-bulk, Latent variable, PEER factors, Principal 
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Introduction
Inferring latent variables that explain the variations in the gene expression data has been 
an essential step for expression quantitative trait locus (eQTL) analyses. It can be used 
to identify the unobserved confounding effects and potential cellular phenotypes (e.g., 
transcription factor or pathway activation). Popular methods include principal compo-
nent analysis (PCA) [1], surrogate variable analysis (SVA) [2], and probabilistic estima-
tion of expression residuals (PEER) [3, 4]. PCA is a well-established method for latent 
variable inference and has been implemented in eQTL analyses [5, 6]. PEER implements 
a Bayesian framework to estimate the latent variables and jointly learns the contribution 
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to the gene expression variability from known covariates and hidden factors. The 
inferred factors (i.e., PEER factors) can be applied to increase the power of eQTL discov-
ery. This method was introduced in 2010 and has been widely used in bulk eQTL analy-
ses [7–10], and recently, the emerging field of single-cell RNA-sequencing (scRNA-seq) 
pseudo-bulk eQTL analysis [11–14].

As the scale of scRNA-seq studies rapidly grows, eQTL analyses that use pseudo-bulk 
approaches have emerged. Pseudo-bulk refers to the aggregation of the gene expression 
profiling of all cells from one sample into a single pseudo-sample; thus, the expression 
matrix dimension will be assimilated as the bulk RNA-seq data as a “sample x gene” 
matrix. However, due to the nature of scRNA-seq data structures, the bulk expression 
matrix and scRNA-seq pseudo-bulk expression matrix can be very different. There are 
three main differences: matrix sparsity, distribution normality or skewness, and mean–
variance dependency. First, since the scRNA-seq matrix is sparse and many elements are 
zero, the pseudo-bulk gene expression matrix still contains many zeros. Second, some 
evidence showed that the underlying distribution of gene expression across cells largely 
follows non-normal distributions, such as Gamma, Point-Gamma, or non-parametric 
distributions [15], and inter-individual distributions of mean gene expression in pseudo-
bulk matrix of many genes could be non-normal and heavily right-skewed. Third, mean–
variance dependency exists between the intra-individual mean and variance due to the 
characteristics of the underlying distribution, and such relationships could be retained 
between the  inter-individual mean and variance. These features mentioned above of 
pseudo-bulk data may violate the assumptions of the PEER method. Consequently, the 
inferred PEER factors (PFs) could suffer from biases or spurious correlations with each 
other, which might lead to the problematic interpretation of the factors themselves and 
compromise the discovery power of pseudo-bulk eQTL association.

Moreover, how many PFs/PCs should be fitted in the eQTL association model to 
improve the discovery power for pseudo-bulk data is unclear. Previous bulk eQTL analy-
sis either chose a fixed number [9] or a certain threshold based on the sample size [7, 
10]. Some studies have run sensitivity tests [7, 8, 10], but such optimization has not been 
systematically evaluated for single-cell data at the population-scale level. A recent study 
[16] has evaluated the automatic elbow detection method and Buja and Eyuboglu (BE) 
algorithm for PCA in bulk eQTL analysis. However, such an investigation has not been 
conducted for single-cell pseudo-bulk data. Another recent study [13] compared the 
performance between different inference methods for single-cell pseudo-bulk data but 
only in induced pluripotent stem cells (iPSCs).

Here, we identify some common scenarios where pitfalls occur when inferring latent 
variables in single-cell eQTL analyses and how they can be avoided with data-driven 
approaches. We have performed analyses using PEER factors and PCA, where we have 
observed spurious correlations among the inferred factors. To help with the future appli-
cation of PEER and PCA to single-cell RNA-seq data, we propose guidelines for the 
quality control and scaling of the pseudo-bulk expression matrix, diagnosing and trou-
bleshooting the inferred latent variables, and a new way to select the optimal number of 
latent variables to improve the eQTL discovery.
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Results
Behavior of latent variants under different quality control and transformation options

We investigated how PEER factors behave under different quality control (QC) and 
transformation options on the pseudo-bulk matrix using three independent scRNA-seq 
datasets: one from peripheral blood mononuclear cells (PBMCs, N = 980) and the others 
from fibroblast cells and iPSCs [12] (N = 79 and 31). To construct a pseudo-bulk expres-
sion matrix for each cell type, the gene expression level per individual was calculated 
as the intra-individual mean counts across cells (see the “Methods” section). We first 
generated PFs while including sex, age, and six genotype PCs as covariates. We observed 
strong correlations among PFs (see CD4NC cells as an example in Fig. 1, and other cell 

Fig. 1  Correlation among inferred PEER factors and global intra-individual mean–variance dependence. A 
Pair-wise correlation plot among the first 10 PEER factors generated from single-cell expression in CD4NC 
(Naive CD4) cells without any quality control (option #1). The upper triangle panel shows the pair-wise 
estimates of Pearson’s correlation, and the bottom triangle panel shows the pair-wise scatter plot between 
the PEER factors. The diagonal panel shows the distribution of each PEER factor. The significance of the 
correlation test is annotated by * p-value ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. B Diagnostic plot of the factor weights 
without further quality control on the pseudo-bulk matrix (option #1, upper panel) and option #11 QC (lower 
panel). C Relationship between intra-individual pseudo-bulk mean and Fano factor per gene. Both axes are 
Log10 transformed. The color of the dots indicates the proportion of zero expression across individuals ( π0 ) 
for each gene. D Scatter plot of first 10 PEER factors generated from all genes against those from top 2000 
highly variable genes (option #11 vs option #12)
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types shown in Additional file 1: Fig. S1). For instance, while most known covariates are 
not correlated (Pearson’s r =  − 0.04 ~ 0.06, except − 0.13 between PC3 and PC4; Addi-
tional file  1: Fig. S2), the first and second PFs show a modest correlation (Pearson’s 
r = 0.20) and the correlations among PFs 5–7 are equal to 1. Although the hidden fac-
tor model of PEER allows for non-orthogonal components, the mean of the pair-wise 
Pearson’s r across the first 10 PFs were all larger than 0.5 in all 14 cell types, suggesting 
that many PFs are redundant and overfitted. Additionally, we found that the variance 
explained by the first PF was overwhelmingly larger than the rest of the PFs, where the 
latter’s contributions seem negligible (upper panel in Fig. 1B and Additional file 1: Fig. 
S1B). Another issue is that, due to the sparsity in scRNA-seq data, there is a certain pro-
portion of genes whose intra-individual expression is mostly zero (Fig.  1C); therefore, 
regardless of what the transformation or normalization methods are used, the intra-indi-
vidual distribution of these genes will still be strongly right-skewed which violates the 
normality assumption of PEER (see examples in Additional file 1: Fig. S3).

To alleviate the impact of these properties, we mixed and matched different options in 
combinations (13 options in total) to generate PEER factors: (1) excluding the genes with 
zero expression in more than a certain % across the individuals (i.e., π0 ≥ 0.9 or 1 ); (2) 
log(x + 1) transformation; (3) standardization, which scales the distribution to mean = 0 
and standard deviation = 1; (4) rank-based inverse normal transformation (RINT); (5) 
selecting the top 2000 highly variable genes (HVGs, ranked by variance-to-mean ratio 
before the transformation and scaling) to generate the PFs (see the “Methods” sec-
tion). The results showed that the correlations among PFs were still high even when 
genes with high π0 were excluded and/or log(x + 1) transformed (options #1–5, Fig. 2A). 
Among options #6–11, option #7 (standardization + π0 ≥ 0.9 excluded) and option #11 
(log(x + 1) + standardization + π0 ≥ 0.9 excluded) had the lowest mean pair-wise cor-
relation among PFs (Fig. 2A and Additional file 1: Fig. S4). Between these two, we identi-
fied option #11 as optimal because the skewness of gene expression across individuals 
(measured by the Pearson’s moment coefficient of skewness, µ3 ) was lower than option 
#7 (median skewness for all genes is 0.86 ~ 3.8 vs 0.90 ~ 5.12 across 14 cell types). We also 
tried to generate PFs using the top 2000 HVGs (options #12–13 in Fig. 2A, B), and they 
were highly correlated with those generated using all the genes (Fig. 1D and Additional 
file 1: Fig. S1D), highlighting that the HVGs can explain most of the variation that was 
explained when using all the genes and reduce the runtime from 46.2 min to 7.4 min on 
average for different cell types (Fig. 2B).

Impact of latent variables on eQTL detection power

Next, we investigated how PEER factors generated from different options affect the 
eQTL discovery power. We calculated PFs using all genes or the top 2000 HVGs (both 
pre-excluded genes with π0 ≥ 0.9 ) and compared the number of eGenes (at least associ-
ated with one significant eQTL) identified when incrementally fitting PFs as covariates 
from 0 to 50. Notably, the pattern of change in the number of eGenes varied across dif-
ferent cell types (Fig. 2). For CD4NC cells, the number of eGenes continually increased 
until reaching an asymptote of around 30, while CD4SOX4 cells peaked between 10 and 
15 and decreased as more factors were included. Also, the pattern of change in eGene 
discovery power was consistent regardless of using all genes or the top 2000 HVGs 
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(Fig. 2C). These consistencies reaffirmed that using the top 2000 HVGs captures most 
of the latent variation that all genes can explain in this dataset. We also compared the 
number of eQTLs/eGenes when PFs were generated without QCs or by QC option #11. 
The latter can identify 9.0 ~ 23.1% more eQTLs or 1.7 ~ 13.3% more eGenes at the peak 
(Additional file  1: Fig. S5). It was also observed that the number of eGenes started to 
drop much earlier when incorporating highly correlated PFs (Additional file 1: Fig. S5). 
Performing these sensitivity analyses in new studies is time-consuming and computa-
tionally expensive, especially for large cohorts with many cell types. Our results showed 
that using the top 2000 HVGs to generate PFs could achieve similar power in eGene dis-
covery compared to using all genes (Additional file 1: Table S1) while saving significant 

Fig. 2  Performance of different QC options on generation of PEER factors and sensitivity test for eGene 
detection using PEER and PCA. A The mean pair-wise correlation among the first 50 PEER factors. Each color 
and shape represent a specific cell type. B Time to generate 50 PEER factors by different quality control 
options on the pseudo-bulk matrix. C The x-axis denotes the number of PFs/PCs fitted as covariates in the 
association model. The y-axis represents the number of eGenes with at least one eQTL at local FDR < 0.05. 
The shape of each scatter point indicates whether generating PFs/PCs using all genes or the top 2000 highly 
variable genes (selected based on variance-to-mean ratio before transformation and scaling) to generate 
PEER factors (both excluded genes with π0 ≥ 0.9 , log(x + 1) transformed and standardized). The local 
regression lines are fitted for number of eGenes for number of latent variables. Different line types indicate 
four different scenarios
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computational resources (~ 6.2-fold faster on average, Fig. 2B). The computational time 
for eQTL analyses given a different number of PFs was recorded in Additional file 1: Fig. 
S6.

Furthermore, the optimal number of fitted PEER factors is not solely dependent on 
sample size but on how much variation can be explained. For CD4SOX4 cells, the inferred 
PFs did not significantly increase the eGene detection power in most scenarios (Fig. 2C 
and Additional file 1: Table S1); therefore, selecting the number of PFs in eQTL asso-
ciation just based on sample size could be erroneous. To balance the discovery power 
and potential false positives, there are different methods to determine the optimal num-
ber of factors. Two commonly used methods are the automatic elbow detection method 
and Buja and Eyuboglu (BE) algorithm, which has been comprehensively evaluated for 
PCA in bulk RNA data [16]. We ran these two methods for PCs inferred from the single-
cell data for each QC option (see the “Methods” section). The results showed that the 
BE algorithm selected an unexpectedly large number of PCs (mostly from 100 ~ 200), 
while the automatic elbow detection method mostly selected 3 ~ 22 (Additional file  1: 
Fig. S7). We speculate that this is because, in the single-cell data, the first few PCs 
explain the most variation. In the BE algorithm, randomly selecting K number of PCs 
will likely choose the PCs explaining a tiny proportion of the total variance. Accord-
ingly, when comparing the variance explained by the first K PCs and randomly selected 
K PCs, the former is often much larger. These two methods are not directly applicable to 
PEER because the relevance factor is conceptually different from the variance explained 
for each PC. To overcome this, we proposed a “local greedy” algorithm to choose the 
optimal number of PFs, which takes the eQTL sensitivity results into account (see the 
“Methods” section). By this strategy, most cell types will be only adjusted with 2 ~ 10 PFs 
rather than 20 ~ 50 but retain ~ 71% power gain of eGene discovery (Additional file  1: 
Fig. S8). We further compare the elbow detection method and the local greedy algorithm 
for PCA (Additional file 1: Fig. S9). The elbow detection method identified, on average 
0.6% fewer eGenes than the local greedy algorithm, but the optimal number of PCs was 
much higher (31 vs 7) across 14 cell types. Notably, in CD4SOX4 cells, the elbow detection 
method identified 20.5% fewer eGenes than the local greedy algorithm, which shows its 
disadvantage in single-cell pseudo-bulk eQTL analysis that it did not take eQTL sensitiv-
ity results into account.

Effect of sample size on single‑cell eQTL latent variables

To expand our exploration into other cell types, we tested the data from Neavin et al. 
[12], who noted that the number of detected eGenes dropped with the incremental 
increase of PFs in the four iPSC clusters but not in the six fibroblast clusters (Figure S20 
in the original paper). Strong correlations among PFs were also observed in four iPSC 
subtypes (after the 4th or 5th PF) but not in fibroblast subtypes (Additional file 1: Fig. 
S10). In the case of iPSC subtypes, fitting more PFs in the eQTL association analysis 
added more noise, which led to the loss of power. We hypothesize that the difference 
is due to the sample size since the input pseudo-bulk expression matrices were already 
quality-controlled using quantile normalization and z-transformation. There are rules of 
thumb for the minimum sample size required for factor analysis [17, 18], which suggest 
3–20 samples per factor. When the sample size is small, the first few PFs explain almost 
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all the variation, leaving little for the additional factors to explain. Thus, the following 
factors become strongly correlated due to overfitting (observed as similar or equivalent 
weights for certain PFs, Additional file 1: Fig. S1B). The sample sizes were 79 for fibro-
blast and 31 for iPSCs; thus, iPSCs are more likely to suffer from sample size bias. We 
validated our hypothesis by down-sampling the fibroblast dataset (N = 31 to match the 
iPSCs; see the “Methods” section). The mean of pair-wise correlations among 10 PFs 
ranged from 0.11 to 0.99 in the six fibroblast subtypes (Additional file 1: Fig. S11), indi-
cating that insufficient sample sizes could result in high correlations among PFs even 
if the expression matrices were well normalized. We also down-sampled the fibroblast 
clusters to 40 and 50 separately and found a negligible correlation among inferred PFs 
when N = 50 but moderate correlations (0.004–0.390) when N = 40, suggesting that we 
might need at least five samples per factor in such a dataset.

As principal components (PCs) are also commonly used to control for confounding 
factors in the eQTL analysis, we also conducted the same exploration for PCs in the 
OneK1K cohort. The PCs inferred without proper QC and scaling also showed spuri-
ous correlations but were very modest compared to PFs (Additional file 1: Fig. S12). The 
eQTL sensitivity analyses showed that the number of eGenes detected was consistent 
with that using PEER factors. Similarly, the trend curves of the incremental number of 
latent variables overlap (Fig.  2 and Additional file  1: Fig. S13). These findings suggest 
that either PCs or PFs for single-cell eQTL mapping can be used to improve the number 
of eGene discoveries. However, the computational burden and flexibility are different 
between these two methods [13, 16].

Discussion
Our results demonstrate that generating PEER factors and principal components 
requires more careful consideration in single-cell data. We recommend always check-
ing the correlation among inferred latent variables (also with the known covariates) in 
single-cell pseudo-bulk data and conducting sensitivity analysis to select the optimal 
number of latent variables to be incorporated in eQTL mapping for each cell type. As we 
are moving towards the era of identifying single-cell, context-dependent, and dynamic 
eQTL [19–21], learning latent variables directly from single-cell level data [22, 23] and 
comparing them with those from pseudo-bulk would provide insights into the genetic 
control of gene expression at a more refined resolution.

Applying methods designed for bulk RNA-seq data to scRNA-seq pseudo-bulk data 
could be challenging as the assumptions might not be fully satisfied. This work high-
lights the pitfalls when learning PEER factors and principal components from scRNA-
seq data. It presents diagnostic guidelines for performing further QC and normalization 
on single-cell data matrices to avoid spurious correlations among the inferred factors. 
Optimization for the number of latent factors included in the eQTL association model 
should be carried out by a data-driven approach. Using highly variable genes to generate 
the latent factors could achieve similar eGene discovery power as using all genes.
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Methods
Three single-cell datasets were used in this study to explore the performance of the 
PEER and PCA methods. The OneK1K consortium [14] is a population-scale sin-
gle-cell RNA-seq dataset collected in Tasmania, Australia. This cohort includes 982 
individuals, each with gene expression profiling for ~ 1000 (mean = 1297.0, stand-
ard deviation = 23.6) peripheral blood mononuclear cells (PBMCs). This dataset was 
quality controlled (QC), normalized and variance stabilized at the single-cell level 
by sctransform [24], and classified into 14 cell types by scPred [25] (see more details 
in ref [14]). We further identified two individuals with problematic metrics during 
the preliminary test of PEER (one with a deficient number of cells and the other with 
abnormal cell composition). We removed them in the primary analysis, ending up 
with 980 individuals. The final sample sizes for 14 different cell types range from 795 
to 980 (Additional file 1: Table S1). Neavin et al. [12] collected 64,018 fibroblasts from 
79 donors and 19,967 iPSC from 31 donors. The fibroblast data were classified into six 
subtypes, and iPSCs into four subtypes. For each subpopulation, the pseudo-bulk was 
calculated as the mean expression per gene per individual and then quantile-normal-
ized and z-transformed.

PEER factors are latent variables that can explain the variability in gene expression. 
The original method [3] was proposed in 2010, and the software [4] was released in 2012. 
We used the R package “peer” (v1.0) to generate the PFs for the single-cell data applying 
max iterations = 2000 and the number of PFs = 50. Rank-based inverse normal trans-
formation (RINT) was applied to the data by the function RankNorm() in the R pack-
age “RNOmni” [26]. The transformed matrix was standardized to a mean of zero with a 
unit standard deviation per gene. For analysis using the top 2000 HVGs, a refined gene 
list (pre-excluded genes with π0 > 0.9 or mean < 0.001) was ranked by their variance-
to-mean ratio (also known as Fano factor) before transformation and scaling. Note that 
these HVGs are not the same HVGs usually defined in the QC step of the raw expression 
matrix for single-cell data. The former indicates the genes with high mean variability 
across individuals, while the latter shows the genes that are highly variable across cells. 
We have varied different QC and transformation strategies to process the pseudo-bulk 
matrix to generate the PFs. There are 13 options in total:

Option # π0 Log1p STD RINT HVG2000

1  = 1

2  = 1

3  ≥ 0.9

4  = 1 x

5  ≥ 0.9 x

6  = 1 x

7  ≥ 0.9 x

8  = 1 x

9  ≥ 0.9 x

10  = 1 x x

11  ≥ 0.9 x x

12  = 1 x

13  ≥ 0.9 x
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The π0 indicates the threshold to filter out genes with high proportion of zero expres-
sion across individual. Log1p indicates log(x + 1) transformation per gene. STD indicates 
z-score scaling per gene. RINT indicates rank-based inverse normal transformation per 
gene. HVG2000 indicates whether to use top 2000 highly variable genes or all genes.

The eQTL association analysis was performed by Matrix eQTL (v2.3) [27]. We 
fit sex, age, the first six genotype PCs, and PEER factors as the covariates. We only 
tested the SNPs located in the cis-region of the gene within the 1  Mb from either 
upstream or downstream and with minor allele frequency > 5%. A local false discovery 
rate (LFDR) was calculated to control the false-positive rate for each chromosome 
tested by the R package “qvalue” [28]. An eGene was reported when at least one sig-
nificant eQTL was found at LFDR < 0.05. The PEER factors were also generated with-
out known covariates. The spurious correlations were also identified among these 
PFs, and no major difference in the eGene detection power was observed under both 
scenarios, whether using all genes or HVG2000.

To choose an optimal number of latent variables fitted in the eQTL association model, 
we propose a local greedy detection algorithm. We first calculated the percentage change 
of eGenes with every incremental latent variable added. Then, we performed a LOESS 
(locally estimated scatterplot smoothing) of the percentage change against the number 
of latent variables. Instead of choosing the number of PFs/PCs maximizing the number 
of eGenes, we selected the number of PFs/PCs right before the LOESS curve became 
negative. The rationale behind this algorithm is that if the number of eGenes reaches 
saturation, the percentage change is expected to be symmetrically distributed around 
0. By this balanced strategy, we only need to adjust 2 ~ 10 PFs rather than 20 ~ 50 but 
can retain the most power gain of eGene discovery (Additional file 1: Fig. S8). The PFs 
and PCs are generated with HVG2000 using QC option #12 as an example when testing 
the algorithm. We also implemented the automatic elbow detection method and Buja 
and Eyuboglu (BE) algorithm [16] to identify the optimal number of PCs for all the QC 
options as a comparison. The parameters used in BE algorithm are as default (B = 20, 
alpha = 0.05).

Comparison of performance between PCA and PEER

To investigate whether the strong correlation of PEER factors in iPSC data from Neavin 
et al. [12] arose due to the small sample size, we randomly down-sampled the six fibro-
blast subtypes from 79 to 31 individuals (to match the sample size of the iPSCs) 30 times 
and then generated PEER factors with these sub-samples. For each sub-sample, pair-wise 
Pearson’s correlations among 10 PEER factors were estimated. A similar down-sampling 
analysis was also conducted for sample sizes equal to 40 and 50.
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