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Abstract 

Background  Machine Learning is increasingly used to predict rehabilitation outcomes in stroke in the context of 
precision rehabilitation and patient-centered care. However, predictors for patient-centered outcome measures for 
activities and participation in stroke rehabilitation requires further investigation.

Methods  This study retrospectively analyzed data collected for our previous studies from 124 participants. Machine 
Learning models were built to predict postintervention improvement of patient-reported outcome measures of daily 
activities (i.e, the Motor Activity Log and the Nottingham Extended Activities of Daily Living) and participation (i.e, the 
Activities of Daily Living domain of the Stroke Impact Scale). Three groups of 18 potential predictors were included: 
patient demographics, stroke characteristics, and baseline assessment scores that encompass all three domains under 
the framework of International Classification of Functioning, Disability and Health. For each target variable, classifica‑
tion models were built with four algorithms, logistic regression, k-nearest neighbors, support vector machine, and 
random forest, and with all 18 potential predictors and the most important predictors identified by feature selection.

Results  Predictors for the four target variables partially overlapped. For all target variables, their own baseline scores 
were among the most important predictors. Upper-limb motor function and selected demographic and stroke 
characteristics were also among the important predictors across the target variables. For the four target variables, 
prediction accuracies of the best-performing models with 18 features ranged between 0.72 and 0.96. Those of the 
best-performing models with fewer features ranged between 0.72 and 0.84.

Conclusions  Our findings support the feasibility of using Machine Learning for the prediction of stroke rehabilita‑
tion outcomes. The study was the first to use Machine Learning to identify important predictors for postintervention 
improvement on four patient-reported outcome measures of activities and participation in chronic stroke. The study 
contributes to precision rehabilitation and patient-centered care, and the findings may provide insights into the iden‑
tification of patients that are likely to benefit from stroke rehabilitation.
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Background
Stroke is a leading cause of disability that requires long-
term post-stroke care and rehabilitation [1]. Along 
the course, patients and family and the care team are 
required to make multiple clinical decisions. Clinical 
decision making in rehabilitation benefits from accu-
rate predictions of prognosis, which prompts research 
that investigates predictors for stroke-rehabilitation 
outcomes.

Two recent trends in rehabilitation are precision 
rehabilitation and patient-centered care. Clinical deci-
sion making in the context of precision rehabilita-
tion involves identifying the characteristics of patients 
who would likely benefit from rehabilitation programs. 
Machine learning (ML) is increasingly used for the 
task of understanding predictors for rehabilitation out-
comes by the construction of models that can predict 
outcomes when given new data. ML is a branch of arti-
ficial intelligence that uses algorithms to find patterns 
in the input data and generate models to predict target 
variables. Through pattern-finding, the models identify 
the most important “features,” or potential predictors, 
for the “target,” or the predicted variable. The advan-
tages of ML include its ability to take a large amount 
of features at once, to conduct multidimensional data 
analyses, and to learn from the data without substantial 
a priori knowledge about the features [2].

In stroke rehabilitation, studies have investigated the 
feasibility of ML models for the prediction of postinter-
vention outcomes. Most studies focused on patients in 
the subacute stage. The predicted outcome measures in 
these studies represent the three domains of the World 
Health Organization’s International Classification 
of Functioning, Disability and Health (ICF) [3], and 
range from measures of motor function, including the 
Ten-Meter Walk Test, Six-Minute Walk Test, and Berg 
Balance Scale [4], to measures of activities and partici-
pation, including the Barthel Index [5, 6], the modi-
fied Rankin Scale [7–10], the Functional Independence 
Measure (FIM) [4], and patients’ discharge placement 
[11, 12]. However, few ML predictive studies on chronic 
stroke investigated the postintervention outcomes [13–
16]. To our knowledge, two studies investigated postin-
tervention improvements in upper-limb (UL) motor 
function measured by the  Fugl-Meyer Assessment 
Upper Extremity subscale (FMA-UE) [13, 14] or lower-
limb motor function measured by step threshold [16]. 
One study used the Stroke Impact Scale (SIS), a meas-
ure in the ICF domain of activities and participation. 
Studies using ML remains scarce on the prediction of 
postintervention improvements, especially in measures 
of the ICF domains of activities and participation, for 
chronic stroke.

The other recent trend in medicine and rehabilitation, 
patient-centered care, aims at engaging the patients, 
family, and caregivers in the clinical decision-making 
process. To achieve this goal, patient-reported out-
come measures (PROMs) for activities and participation 
should be incorporated in the assessment in addition to 
therapist-rated and impairment-level measures. How-
ever, most of the existing ML predictive studies on stroke 
rehabilitation outcomes investigated therapist-rated out-
come measures such as the Barthel Index [5, 6] and the 
FIM [4] for the acute and subacute stages. In the chronic 
stage, earlier reports studied the FMA-UE [13, 14], and 
one recent study investigated SIS [15] as the concept 
of PROMs emerges. There is still a need to expand our 
knowledge of the relevance of ML predictive models to 
include more commonly used PROMs of activities and 
participation.

Another common practice found in the literature has 
been the inclusion of only one predicted outcome meas-
ure. However, given the heterogeneous nature of the 
stroke population, including multiple predicted outcome 
measures in research studies was recommended [4]. In 
fact, most therapists use multiple assessment tools to 
quantify related but distinct aspects of body functions, 
activities, and participation in clinical practice. For exam-
ple, the Motor Activity Log (MAL) [17] and the Not-
tingham Extended Activities of Daily Living (NEADL) 
[18, 19] are commonly used patient-reported assessment 
tools of activities, and the SIS [20] has been widely used 
to measure function of participation.

The MAL was designed to measure the use of the 
affected upper-limb in basic activities of daily living 
(ADL). Patients are asked to rate how much (amount of 
use; MAL-AOU) and how well (quality of movement; 
MAL-QOM) they use the affected arm for a number of 
given ADL. The NEADL measures instrumental ADL and 
assesses functional independence in community living. 
The SIS measures patients’ health-related quality of life 
and includes items for participation; one of its domains is 
Activities of Daily Living (SIS-ADL). Assessing multiple 
outcome measures to provide multifaceted clinical infor-
mation about potential prognosis could empower the 
patients and their families to make appropriate decisions 
that are most relevant and meaningful to the patient. 
However, most predictive studies only reported one out-
come measure. There is a need to expand the repertoire 
of outcome measures in research studies to meet clinical 
applications.

This study used ML to build predictive models to pre-
dict postintervention outcomes and identify the most 
important predictors for these outcome measures in 
stroke rehabilitation. We have expanded on previ-
ous findings to use multiple PROMs for activities and 
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participation in consideration of clinical applications and 
recent trends in stroke rehabilitation.

Methods
Study design and participants
This study is a retrospective analysis of data collected for 
previous studies conducted by our research team; avail-
able results have been published elsewhere [21, 22]. The 
inclusion criteria of the original studies were (1) at least 
3  months after the onset of a first-ever unilateral cer-
ebral stroke; (2) a baseline FMA-UE between 16 and 56; 
(3) ability to follow instructions, with one study includ-
ing only participants without Wernicke’s aphasia; (4) a 
spasticity score of ≤ 3 on the Modified Ashworth Scale; 
and (5) no other neurologic or orthopedic disorders. The 
exclusion criteria of the original studies were (1) serious 
vision disorders in one study [22] and (2) psychiatric and 
balance problems in the other study [21].

Intervention and assessment
The participants received one of the following therapy 
programs: InMotion robotic-assisted therapy, Bi-Manu-
Track robotic therapy [21], robotic-priming mirror ther-
apy, robotic-priming bilateral upper limb training [22], or 
conventional occupational therapy. Dosages were simi-
lar across the therapy programs; participants received 
3 weeks of therapy, 3 to 4 days a week, and 60 min a day. 
Assessments were completed before and after the thera-
pies, and for most participants, at a 3-month follow-up.

Outcome measures and potential predictors
Participants’ level of ADL was measured by three assess-
ment tools with four PROMs: the MAL-AOU and 
MAL-QOM, NEADL, and SIS-ADL. For each meas-
ure, participants who achieved the minimal clinically 
important difference (MCID) from pretest to posttest 
were labeled as responders, and those who did not were 
labeled as non-responders. For MAL, we adopted an 
MCID of 0.5 of average change, corresponding to 10% 
of the rating scale [23–25]. The MCIDs for NEADL total 
changes and SIS-ADL total changes were 6.1 [18] and 
5.9 [26], respectively. For an ML model, the status of 
response to therapy (i.e., responders versus non-respond-
ers) on a given PROM served as the predicted variable, 
called the “target” in ML terminology.

We included 18 potential predictors, called “features” in 
ML terminology, in the ML models. The potential predic-
tors can be grouped into three categories: (1) participant 
demographics: age, sex, and years of education; (2) stroke 
characteristics: time since stroke, the National Institute 
of Health Stroke Scale (NIHSS) score, side of hemiplegia, 
and diagnosis (hemorrhagic or ischemic); and (3) baseline 
assessment scores: FMA-UE, Box and Block Test (BBT), 

Wolf Motor Function Test-Time (WMFT-Time), Wolf 
Motor Function Test-Quality (WMFT-Quality), Chedoke 
Arm and Hand Activity Inventory (CAHAI), MAL-AOU, 
MAL-QOM, NEADL, FIM, SIS-Total, and SIS-ADL. The 
baseline assessment scores were selected to encompass 
all three domains under the ICF framework: body func-
tion, activities, and participation.

Data analysis
The potential predictors and the target variables were 
used to build ML models. The objective of the ML pro-
grams was to find patterns to classify the samples into 
responders and non-responders. For each PROM, four 
ML algorithms were used to find the patterns: logistic 
regression (LR), k-nearest neighbors (KNN), support 
vector machine (SVM), and random forest (RF). KNN 
and SVM were selected because they were frequently 
reported to yield high performance in existing predic-
tive studies of stroke rehabilitation outcomes [5, 8, 9, 11, 
13, 27]. LR was selected as a baseline model to test the 
predicting capability of a simpler algorithm for our data 
set. RF was selected to test whether its higher model 
complexity would benefit the predictions. Using multi-
ple algorithms to construct models and compare perfor-
mances is also common. One previous study specifically 
recommended the use of multiple algorithms [13].

In addition to models with all 18 features, in considera-
tion of clinical parsimony, we also built predictive mod-
els with the four, five, and six most important features, 
which we identified by feature selection procedure (see 
details in the next paragraph). Therefore, for each target 
variable, 16 models were built (four algorithms x four 
numbers of features).

Figure 1 visualizes steps for the data analysis using ML. 
For each target variable, the data set was first randomized 
and split into a training set and a testing set, with the 
training set containing 80% of the samples. The training 
set was used to build models, and the testing set was used 
to test the performance of the models. To select the most 
important features to use in the parsimonious models, 
feature selection was performed using the standardized 
training set by calculating mutual information gain (MI; 
also known as information gain). The testing data set was 
never used for model construction or feature selection. 
This ensured that the data used to test model perfor-
mance did not influence any decisions about the models 
and was truly unseen until performance testing.

During model construction, the Synthetic Minor-
ity Over-sampling Technique (SMOTE) [28] was 
used to minimize the effect of class imbalance, where 
models may favor the majority class, creating biases 
and potential false optimistic classification accuracy. 
Except for models built with RF, the data were also 
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standardized to avoid dominating effects of features on 
scales of larger numbers [29]. For model tuning, grid 
search was used to identify values for hyperparameters 
that obtained the highest classification accuracy with 
stratified tenfold cross validation. For LR, the search 
procedure identified the optimal c value and maximum 
iterations. For KNN, the search procedure identified 
the optimal number of neighbors and the distance 
weight. For SVM, the search procedure identified the 
optimal kernel and c value, which specifies the size of 
the hyperplane margin and therefore regularizes the 
model. For RF, the search procedure identified the 
optimal number of estimators and maximum depth. 
All other hyperparameters were set as the default.

After the models were constructed, model performance 
was tested using the testing set. Model performance was 
primarily assessed by classification accuracy and the area 
under the receiver operating characteristic curve (AUC). 
We also calculated specificity, sensitivity, negative predic-
tive value (NPV), and positive predictive value (PPV).

Descriptive statistics and normality checks were per-
formed with R 4.0.3 software [30]. The construction 
and validation of the ML models and the corresponding 
data preprocessing were conducted using Python 3.8.2 
software [31], with the packages sklearn 1.0 [32] and 
imblearn 0.8 [33].

Results
Participant characteristics
A total of 128 participants were located in our data base; 
four participants dropped out before the postinterven-
tion assessment, resulting in missing data, and were 
excluded from the study. The study included 124 par-
ticipants. Table  1 summarizes the demographics, stroke 
characteristics, and baseline assessment scores of the 

participants. Of the 124 participants, 79 achieved MCID 
for MAL-AOU, 79 for MAL-QOM, 43 for NEADL, and 
36 for SIS-ADL.

Fig. 1  Flowchart for the machine-learning data analysis. SMOTE synthetic minority oversampling technique, KNN k-nearest neighbors, SVM support 
vector machine

Table 1  Participant Characteristics

SD standard deviation, IQR interquartile range, NIHSS National Institutes of 
Health Stroke Scale, FMA-UE Upper Extremity subscale of the Fugl-Meyer 
Assessment, BBT Box and Block Test, CAHAI Chedoke Arm and Hand Activity 
Inventory, WMFT Wolf Motor Function Test, FIM Functional Independence 
Measure, MAL Motor Activity Log, AOU Amount of Use, QOM Quality of 
Movement, NEADL Nottingham Extended Activities of Daily Living, SIS Stroke 
Impact Scale, ADL Activities of Daily Living

Mean ± SD/ 
Median (IQR)/
Participants, no. (%)

Demographics

 Age (years) 55.75 ± 11.22

 Male sex 84 (68%)

 Years of education 12.00 (6.00)

Stroke characteristics

 Right-sided hemiplegia 70 (57%)

 Time since stroke (months) 14.00 (22.00)

 Hemorrhagic stroke diagnosis 55 (44%)

 NIHSS score 4.00 (3.00)

Baseline Assessment Scores

 FMA-UE 30.00 (14.00)

 BBT 1.00 (13.25)

 CAHAI 31.50 (20.25)

 WMFT-Time 12.11 (8.14)

 WMFT-Quality 2.41 ± 0.54

 FIM 110.00 (12.25)

 MAL-AOU 0.91 (1.01)

 MAL-QOM 0.59 (0.99)

 NEADL 28.00 (25.25)

 SIS-Total 63.13 ± 12.04

 SIS-ADL 37.50 (10.25)
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Most important predictors
Table  2 presents the MI gains for the predictors with 
gains higher than zero. Notably, across all target vari-
ables, their corresponding baseline scores had non-zero 
MI gains for the achievement of MCID. Further, baseline 
UL motor function (FMA-UE and BBT) and baseline SIS-
Total scores were important for all target variables. MAL 
scores were also at the top five important predictors for 
all target variables.

Model performance
Figure  2 visualizes the confusion matrices for the mod-
els. Table 3 summaries the performance metrics as well 
as training scores and medians and interquartile ranges 
of the validation scores. Good model performance was 
achieved across the outcome measures. For all out-
come measures, similar or slightly decreased prediction 
accuracies could be achieved with a reduced number of 
features. Among the MAL-AOU models with 18 fea-
tures, LR yielded the best performance (accuracy = 0.72, 
AUC = 0.74). For MAL-AOU models with fewer fea-
tures, RF with 6 features performed the best (accu-
racy = 0.72, AUC = 0.80). For MAL-QOM models with 
18 features, SVM and RF yielded the best performance 
(accuracy = 0.76, AUC = 0.83), and LR achieved similar 
performance (accuracy = 0.76, AUC = 0.81). Among the 
MAL-QOM models with fewer features, KNN with 5 fea-
tures performed the best (accuracy = 0.76, AUC = 0.75). 
For NEADL models with 18 features, RF yielded the best 
performance (accuracy = 0.76, AUC = 0.81). For NEADL 
models with fewer features, the best performance 
occurred with RF fitted with 4 features (accuracy = 0.76, 
AUC = 0.87). For SIS-ADL predicted with 18 features, 

SVM yielded the best performance (accuracy = 0.96, 
AUC = 0.96). For SIS-ADL models fitted with fewer fea-
tures, SVM with 5 features yielded the best performance 
(accuracy = 0.84, AUC = 0.92).

Discussion
ML is increasingly used in the prediction of postint-
ervention prognosis in stroke. Previous studies have 
investigated prognostic predictors as well as the per-
formance of predictive models. However, most studies 
were on acute to subacute stroke, and few studies exist 
on chronic stroke. Further, studies on postintervention 
improvements in subacute stroke included measures of 
motor function and measures of activities and participa-
tion, whereas few studies on chronic stroke investigated 
activities and participation. In addition, most studies 
have included only one predicted outcome measure and 
focused on therapist-rated measures. The use of PROMs 
is attracting more attention in recent years as health care 
shifts toward patient-centered care, but few studies have 
investigated postintervention improvements measured 
by PROMs in chronic stroke.

This current study extended from the existing literature 
by investigating the most important predictors for MCID 
achievements on multiple PROMs for activities and par-
ticipation in chronic stroke using ML. We identified dif-
ferent sets of the most important predictors for the target 
variables, reflecting the distinct, albeit related, aspects of 
ADL assessed in the four PROMs. We also obtained good 
model performances for the target variables, demonstrat-
ing the feasibility of ML for predicting postintervention 
improvement on PROMs of activities and participa-
tion in chronic stroke. In addition, we were able to build 

Table 2  Mutual information gains for the predictors sorted in descending order for each target variable

ADL Activities of Daily Living, AOU Amount of Use, BBT Box and Block Test, CAHAI Chedoke Arm and Hand Activity Inventory, FMA-UE Upper Extremity subscale of the 
Fugl-Meyer Assessment, MAL Motor Activity Log, NEADL Nottingham Extended Activities of Daily Living, NIHSS National Institutes of Health Stroke Scale, QOM Quality 
of Movement, SIS Stroke Impact Scale, WMFT Wolf Motor Function Test

MAL-AOU MAL-QOM NEADL SIS-ADL

Predictor Gain Predictor Gain Predictor Gain Predictor Gain

Time since stroke 0.14 SIS-Total 0.12 SIS-Total 0.07 FMA-UE 0.10

WMFT-Quality 0.13 WMFT-Quality 0.06 SIS-ADL 0.06 SIS-ADL 0.09

SIS-Total 0.10 MAL-QOM 0.06 NEADL 0.05 MAL-AOU 0.05

FMA-UE 0.06 FMA-UE 0.03 MAL-AOU 0.03 CAHAI 0.05

MAL-QOM 0.06 MAL-AOU 0.03 BBT 0.02 Diagnosis 0.06

CAHAI 0.04 FIM 0.03 NIHSS 0.02 SIS-Total 0.02

FIM 0.03 Side of hemiplegia 0.02 FIM 0.01 Time since stroke 0.01

WMFT-Time 0.03 NEADL 0.02 Other predictors 0 NIHSS 0.01

MAL-AOU 0.01 Sex 0.01 Other predictors 0

Other predictors 0 Years of education 0.01

Other predictors 0
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parsimonious models with smaller sets of predictors that 
performed similar or just slightly worse than the full 
models, which could benefit clinical practice in the selec-
tion of prioritized assessments.

ML for predicting postintervention outcomes in stroke
Emerging research has reported the feasibility of ML for 
the prediction of postintervention outcome in stroke. 
However, in the field of health care research, achieving 
the sample size of big data analysis is often difficult. This 
is because of a variety of limitations, such as patient pri-
vacy policies, the heterogeneity of disease manifestation, 
the variability in care plans, and cost and time for inter-
vention and data collection, to name just a few. Findings 
of this current study, however, indicates the feasibility of 
using ML for the prediction of postintervention outcome 
with a limited sample size. Despite the relatively smaller 
sample size, we were able to obtain high classification 
accuracies and acceptable to outstanding [34] AUCs 

using techniques to lower the effects of dimensionality 
and class imbalance.

The practice of feature selection contributed to clini-
cal parsimony. Clinically, it is more efficient if accurate 
prediction of prognosis can be obtained by assessment 
results from fewer tools. In our results, at least one of 
the models with fewer features for each target variable 
was able to achieve similar performance compared with 
18 features. The results provided support for the clinical 
application of ML by finding that highly accurate pre-
dictions of postintervention outcomes in stroke can be 
achieved with only a few clinical assessments and patient 
information.

Another issue working with our data set was class 
imbalance, where one of the classes (responders versus 
non-responders) outnumbered the other. In a data set 
with imbalanced classes, the learning machine may focus 
on finding patterns in the majority class when striving to 
increase classification accuracy. This usually results in a 

Fig. 2  Confusion matrices for the predictive models. MAL Motor Activity Log, AOU Amount of Use, QOM Quality of Movement, NEADL Nottingham 
Extended Activities of Daily Living, SIS-ADL Stroke Impact Scale Activities of Daily Living domain, LR logistic regression, KNN k-nearest neighbors, SVM 
support vector machine, RF random forest
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Table 3  Model performance metrics and training and validation scores for the predictive models

Model Accuracy AUC​ Specificity Sensitivity NPV PPV Train score Validation, 
median 
(IQR)

MAL-AOU

 18 features

  LR 0.72 0.74 0.56 0.81 0.63 0.76 0.66 0.60 (0.19)

  KNN 0.56 0.48 0.33 0.69 0.38 0.65 0.75 0.60 (0.17)

  SVM 0.60 0.56 0.33 0.75 0.43 0.67 0.86 0.63 (0.10)

  RF 0.68 0.76 0.44 0.88 0.67 0.74 1.00 0.65 (0.18)

 6 features

  LR 0.68 0.74 0.78 0.63 0.54 0.83 0.59 0.47 (0.28)

  KNN 0.52 0.66 0.44 0.56 0.36 0.64 1.00 0.65 (0.18)

  SVM 0.60 0.69 0.56 0.63 0.45 0.71 0.89 0.65 (0.25)

  RF 0.72 0.80 0.67 0.75 0.60 0.80 1.00 0.70 (0.20)

 5 features

  LR 0.60 0.69 0.78 0.50 0.47 0.80 0.57 0.58 (0.25)

  KNN 0.60 0.56 0.44 0.69 0.44 0.69 1.00 0.60 (0.16)

  SVM 0.52 0.77 0.78 0.38 0.41 0.75 0.57 0.50 (0.18)

  RF 0.64 0.69 0.33 0.81 0.50 0.68 1.00 0.70 (0.09)

 4 features

  LR 0.60 0.70 0.67 0.56 0.46 0.75 0.58 0.53 (0.28)

  KNN 0.56 0.60 0.33 0.69 0.38 0.65 1.00 0.65 (0.19)

  SVM 0.64 0.74 0.67 0.63 0.50 0.77 0.61 0.60 (0.15)

  RF 0.64 0.64 0.44 0.75 0.50 0.71 1.00 0.74 (0.18)

MAL-QOM

 18 features

  LR 0.76 0.81 0.67 0.81 0.67 0.81 0.75 0.68 (0.10)

  KNN 0.72 0.78 0.56 0.81 0.63 0.76 0.78 0.50 (0.19)

  SVM 0.76 0.83 0.78 0.75 0.64 0.86 0.77 0.68 (0.10)

  RF 0.76 0.83 0.67 0.81 0.67 0.81 1.00 0.50 (0.19)

 6 features

  LR 0.60 0.71 0.67 0.56 0.46 0.75 0.63 0.60 (0.26)

  KNN 0.52 0.57 0.56 0.50 0.38 0.67 0.73 0.65 (0.10)

  SVM 0.64 0.49 0.33 0.81 0.50 0.68 0.97 0.60 (0.10)

  RF 0.52 0.67 0.67 0.50 0.43 0.73 0.81 0.60 (0.19)

 5 features

  LR 0.60 0.72 0.67 0.56 0.46 0.75 0.61 0.60 (0.15)

  KNN 0.76 0.75 0.56 0.88 0.71 0.78 1.00 0.60 (0.26)

  SVM 0.52 0.62 0.67 0.44 0.40 0.70 0.81 0.60 (0.26)

  RF 0.60 0.71 0.56 0.63 0.45 0.71 0.85 0.70 (0.16)

 4 features

  LR 0.56 0.72 0.56 0.56 0.42 0.69 0.67 0.60 (0.19)

  KNN 0.60 0.62 0.33 0.75 0.43 0.67 1.00 0.70 (0.23)

  SVM 0.60 0.71 0.67 0.50 0.43 0.73 0.77 0.70 (0.10)

  RF 0.72 0.75 0.67 0.75 0.60 0.80 0.99 0.70 (0.21)

NEADL

 18 features

  LR 0.56 0.57 0.69 0.33 0.65 0.38 0.62 0.50 (0.26)

  KNN 0.52 0.41 0.63 0.33 0.63 0.33 0.97 0.60 (0.25)

  SVM 0.60 0.65 0.94 0.00 0.63 0.00 0.67 0.65 (0.10)

  RF 0.76 0.81 0.75 0.78 0.86 0.64 0.81 0.70 (0.16)
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bias toward the majority class [29]. Consider an extreme 
example, where there are 90 cases in the positive class 
and 10 in the negative class, the classifier could conveni-
ently classify all cases as positive and obtain a high train-
ing accuracy of 0.90. However, the specificity and NPV 
would be zero. Among the techniques to work with class 
imbalance, we chose to use SMOTE because of our rela-
tively smaller sample size (N = 124). Tozlu et al. [14] also 

used SMOTE to deal with class imbalance; of their 102 
participants, 43 achieved MCID on FMA-UE and 59 did 
not.

The most important predictors
Our results showed that the baseline scores of a given 
PROM were among the important features for classifying 
responders versus non-responders on that measure. This 

Table 3  (continued)

Model Accuracy AUC​ Specificity Sensitivity NPV PPV Train score Validation, 
median 
(IQR)

 6 features

  LR 0.52 0.57 0.63 0.33 0.63 0.33 0.60 0.65 (0.20)

  KNN 0.56 0.48 0.63 0.44 0.67 0.40 0.95 0.60 (0.20)

  SVM 0.64 0.62 0.50 0.89 0.89 0.50 0.55 0.70 (0.18)

  RF 0.72 0.85 0.75 0.67 0.80 0.60 0.80 0.70 (0.16)

 5 features

  LR 0.64 0.72 0.75 0.44 0.71 0.50 0.62 0.65 (0.20)

  KNN 0.64 0.63 0.69 0.56 0.73 0.50 0.94 0.60 (0.10)

  SVM 0.64 0.76 1.00 0.00 0.64 0.00 0.70 0.60 (0.09)

  RF 0.68 0.82 0.75 0.56 0.75 0.56 0.86 0.68 (0.18)

 4 features

  LR 0.64 0.72 0.75 0.44 0.71 0.50 0.65 0.60 (0.20)

  KNN 0.68 0.71 0.75 0.56 0.75 0.56 0.93 0.68 (0.20)

  SVM 0.60 0.70 0.63 0.56 0.71 0.45 0.62 0.60 (0.28)

  RF 0.76 0.87 0.75 0.78 0.86 0.64 0.80 0.70 (0.18)

SIS-ADL

 18 features

  LR 0.92 0.98 0.94 0.86 0.94 0.86 0.98 0.90 (0.08)

  KNN 0.80 0.75 0.94 0.43 0.81 0.75 0.96 0.68 (0.10)

  SVM 0.96 0.96 1.00 0.86 0.95 1.00 0.95 0.90 (0.15)

  RF 0.68 0.76 0.83 0.29 0.75 0.40 1.00 0.70 (0.09)

 6 features

  LR 0.72 0.80 0.83 0.43 0.79 0.50 0.77 0.75 (0.27)

  KNN 0.72 0.77 0.72 0.71 0.87 0.50 0.78 0.70 (0.06)

  SVM 0.76 0.82 0.83 0.57 0.83 0.57 0.77 0.70 (0.18)

  RF 0.68 0.72 0.72 0.57 0.81 0.44 0.87 0.65 (0.19)

 5 features

  LR 0.80 0.81 0.89 0.57 0.84 0.67 0.75 0.65 (0.19)

  KNN 0.76 0.76 0.83 0.57 0.83 0.57 0.73 0.65 (0.10)

  SVM 0.84 0.92 0.83 0.86 0.94 0.67 0.72 0.70 (0.13)

  RF 0.68 0.74 0.78 0.43 0.78 0.43 0.80 0.65 (0.16)

 4 features

  LR 0.76 0.87 0.83 0.57 0.83 0.57 0.75 0.70 (0.09)

  KNN 0.68 0.69 0.78 0.43 0.78 0.43 0.82 0.70 (0.08)

  SVM 0.72 0.88 0.67 0.86 0.92 0.50 0.72 0.74 (0.20)

  RF 0.64 0.72 0.72 0.43 0.76 0.38 0.90 0.70 (0.19)

IQR interquartile range, MAL Motor Activity Log, AOU Amount of Use, QOM Quality of Movement, NEADL Nottingham Extended Activities of Daily Living, SIS-ADL 
Stroke Impact Scale Activities of Daily Living domain, LR logistic regression, KNN k-nearest neighbors, SVM support vector machine, RF random forest, AUC​ area under 
the receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value
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was similar to findings of predictive studies of UL motor 
function in chronic stroke using ML [13, 14] and tradi-
tional statistical methods [35]. In studies for the acute 
and subacute stages, similar findings have been reported 
with measures for motor function and ADL.

Iwamoto et  al. [36] found that FMA-UE scores at 
the initiation of inpatient rehabilitation were the most 
important predictor for identifying participants that 
would achieve an MCID on the FMA-UE 30  days after 
treatment. Harari et  al. [4] built ML models to predict 
discharge scores of FIM, Ten-Meter Walk Test, Six-Min-
ute Walk Test, and the Berg Balance Scale after inpatient 
rehabilitation stay; they found that the most impor-
tant predictors for these scores were their own scores at 
admission. In two other studies with patients admitted to 
inpatient rehabilitation facilities, the discharge Barthel 
Index scores and improvements were both predicted by 
the admission Barthel Index scores [5, 6].

Lin et al. [8] analyzed data from a nation-wide disease 
registry and built predictive models for 90-day post-
stroke scores on the modified Rankin Scale. They found 
that the 30-day modified Rankin Scale scores was the 
most important predictor for both ischemic and hem-
orrhagic stroke. Our findings and previous findings 
together suggest that it is important to include the base-
line score of an assessment as a potential predictor in 
future studies on postintervention outcome prediction.

Baseline UL motor function, namely, the BBT and the 
FMA-UE, were found to be important predictors for 
achieving the MCID on all target variables. The finding 
was consistent with existing literature. In chronic stroke, 
baseline FMA-UE was found to predict postintervention 
UL motor function in two studies using ML [13, 14]. For 
studies using traditional statistical analysis, baseline BBT 
was found to predict postintervention outcomes of activ-
ities and participation [37, 38], and FMA-UE was found 
to predict both UL motor function and activities and 
participation [25, 36, 39]. Our findings further supported 
the predictive value of UL motor function for postinter-
vention achievement of MCID in the PROMs of activi-
ties and participation in chronic stroke. Similar findings 
were also reported for studies using acute and subacute 
parameters to predict discharge assessment scores or 
long-term outcomes [5, 6, 40–43]. The similar findings 
across disease stages suggested that preintervention UL 
motor function is an important predictor for postinter-
vention outcomes for all stages in stroke and should be 
included as a potential predictor if available in future pre-
dictive studies.

Demographic and stroke characteristics were fre-
quently included as potential predictors in rehabili-
tation outcome prediction. For example, in chronic 
stroke, age was previously reported as a predictor for 

postintervention UL motor function [14] and UL activity 
[39]. In acute to subacute stroke, age was found to pre-
dict the possibility of home discharge after rehabilitation 
stay [11] and functional outcomes at discharge [6, 44, 
45], at 3  months post-stroke [9], and at 6  months post-
stroke [10]. Sex has also been previously reported as an 
important predictor for long-term post-stroke functional 
outcome [10] and postintervention UL activity [37]. Our 
results identified only sex and years of education in the 
lists of predictors with non-zero gains for MAL-QOM. 
Although the gains were negligibly small at 0.01, indi-
cating their minimal relationship with postintervention 
achievement of MCID in MAL-QOM, the findings were 
partially in line with previous studies.

Stroke characteristics, i.e., time since stroke, side of 
hemiplegia, NIHSS scores, and diagnosis (i.e., hemor-
rhagic or ischemic) were identified as important predic-
tors for one or two target variables. Previous studies also 
reported that time since stroke predicted functional out-
comes in the subacute stage [4, 44] and postintervention 
UL motor function for the chronic stage [13, 14]. Stroke 
severity was previously reported to predict long-term 
post-stroke functional outcomes in acute and subacute 
stroke [46–48]; our results showed that stroke severity, 
as measured by NIHSS, can also predict postintervention 
improvements in NEADL in chronic stroke. The finding 
should be cautiously interpreted, however, because there 
may be an underrepresentation of severe cases in our 
study. Our participants had NIHSS scores ranging from 
0 to 13, which correspond to no stroke symptoms, minor 
stroke, and moderate stroke. Therefore, this finding 
should not be generalized to patients with severe stroke 
in the chronic stage. In summary, our results that demo-
graphic and stroke characteristics were among the most 
important predictors were largely consistent with previ-
ous findings, and we recommend future studies include 
these characteristics in the potential predictors when 
performing feature selection.

Note that, methodologically, feature selection could be 
conducted before model construction from the cohort or 
after model construction for specific models. This study 
identified the most important predictors a priori from 
the cohort, instead of post hoc from specific models. This 
decision took in considerations of the steps adopted by 
previous studies in stroke rehabilitation [10, 13, 14], clini-
cal applications to identify a set of assessments to prior-
itize regardless of chosen algorithms, and the reduction 
of overall complexity of this study.

Predictive models and predictors across the four PROMs
Despite some overlapping predictors for the four target 
variables, the four sets of predictors were different. We 
chose these assessments because they include items for 
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different aspects of activities and participation. There 
is also a hierarchy among these assessments. The MAL 
assesses the more basic ADL. The NEADL considers 
mobility and community living activities. The SIS-ADL 
considers the daily activities of higher complexities, and 
some of the activities may require the collaboration of 
other body parts and/or use of instruments. The impor-
tant predictors for each target variable likely reflected 
what each particular assessment tool captures. The find-
ings highlight the importance of using different sets of 
predictors for these ADL assessments and support the 
use of feature selection to screen for the most relevant 
and meaningful predictors in future studies.

Among the four PROMs, postintervention achieve-
ment of MCID in SIS-ADL appeared to be predicted well 
across algorithms and numbers of features used. On the 
contrary, MCID achievement in NEADL required the 
more complex method, RF, to achieve good prediction 
performance. The NEADL concerns mobility and com-
munity living activities in an extended context, and may 
involve aspects not as well captured by the predicting 
variables we used. Regardless, good prediction perfor-
mance was achievable with the combination of a more 
complex prediction method and predictors that cover 
a wider range of aspects, such as general stroke sever-
ity (NIHSS) and overall impact of the stroke (SIS). These 
measures include items for cognition, mobility, and emo-
tion, among others, that may contribute to the extended 
aspects of activities and participation.

Study limitations
The major limitation of this study is the limited sam-
ple size; however, we have made an effort to minimize 
model bias and variance that could result from it by 
using SMOTE, reducing dimensionality through fea-
ture selection, and ensuring that the data used to test 
model performances did not affect model construction. 
Through these efforts, we were able to construct at least 
one model with acceptable to excellent metrics for each 
target variable. In fact, low specificity and/or sensitivity 
are commonly seen in the literature using ML to predict 
stroke rehabilitation outcomes with relatively small sam-
ple sizes.

Although we would recommend future studies use 
larger sample sizes, achieving the size of big data in 
health care is often difficult and/or costly. Future stud-
ies may use more advanced techniques to minimize the 
effects of small sample sizes.

Further, the accurate prediction of postintervention 
ADL outcomes may be more complex and involve pre-
dictors that were not included in this study. For example, 
nutritional status [49], aphasia [50, 51], and cognition 
[52] were reported to predict ADL outcomes after stroke 

rehabilitation. This study, as a secondary data analysis, 
did not collect data on all potential predictors, making 
it impossible to address these predictors. Future studies 
may investigate the predictive power of a wider range of 
predictors when investigating postintervention ADL in 
the stroke population.

Finally, ML is characterized by its data-driven nature, 
and therefore the results of this study, as well as many 
other studies using ML, may not be readily generalized to 
data from other facilities or other patient characteristics. 
However, this study and previous studies have repeatedly 
confirmed the feasibility of ML in predicting postinter-
vention outcomes in the stroke population. Further, some 
predictors were repeatedly reported and may be impor-
tant to consider in future studies, such as UL motor func-
tion, selected demographic and stroke characteristics, 
and baseline scores of assessments used to quantify the 
outcomes. We recommend that health care facilities 
develop their own models by taking findings of this and 
previous studies as references.

Conclusion
In this study, we obtained high accuracies and AUCs 
using ML to predict postintervention PROMs for activi-
ties and participation in chronic stroke, demonstrating 
the feasibility of ML methods for this research task. We 
also identified the most important predictors for achiev-
ing MCID on these PROMs. Consistent with existing 
literature, UL motor function, selected demographic 
and stroke characteristics, and the baseline scores of 
the PROMs were important predictors across the four 
PROMs. Individual predictors identified for the PROMs 
also reflected the characteristics and contexts of the 
ADL that these assessments capture. The study findings 
may contribute to precision rehabilitation by providing 
insights into the identification of patients that are likely 
to benefit from stroke rehabilitation.
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