Skip to main content
. 2023 Feb 23;20:25. doi: 10.1186/s12984-023-01151-6

Table 3.

Model performance metrics and training and validation scores for the predictive models

Model Accuracy AUC Specificity Sensitivity NPV PPV Train score Validation, median (IQR)
MAL-AOU
 18 features
  LR 0.72 0.74 0.56 0.81 0.63 0.76 0.66 0.60 (0.19)
  KNN 0.56 0.48 0.33 0.69 0.38 0.65 0.75 0.60 (0.17)
  SVM 0.60 0.56 0.33 0.75 0.43 0.67 0.86 0.63 (0.10)
  RF 0.68 0.76 0.44 0.88 0.67 0.74 1.00 0.65 (0.18)
 6 features
  LR 0.68 0.74 0.78 0.63 0.54 0.83 0.59 0.47 (0.28)
  KNN 0.52 0.66 0.44 0.56 0.36 0.64 1.00 0.65 (0.18)
  SVM 0.60 0.69 0.56 0.63 0.45 0.71 0.89 0.65 (0.25)
  RF 0.72 0.80 0.67 0.75 0.60 0.80 1.00 0.70 (0.20)
 5 features
  LR 0.60 0.69 0.78 0.50 0.47 0.80 0.57 0.58 (0.25)
  KNN 0.60 0.56 0.44 0.69 0.44 0.69 1.00 0.60 (0.16)
  SVM 0.52 0.77 0.78 0.38 0.41 0.75 0.57 0.50 (0.18)
  RF 0.64 0.69 0.33 0.81 0.50 0.68 1.00 0.70 (0.09)
 4 features
  LR 0.60 0.70 0.67 0.56 0.46 0.75 0.58 0.53 (0.28)
  KNN 0.56 0.60 0.33 0.69 0.38 0.65 1.00 0.65 (0.19)
  SVM 0.64 0.74 0.67 0.63 0.50 0.77 0.61 0.60 (0.15)
  RF 0.64 0.64 0.44 0.75 0.50 0.71 1.00 0.74 (0.18)
MAL-QOM
 18 features
  LR 0.76 0.81 0.67 0.81 0.67 0.81 0.75 0.68 (0.10)
  KNN 0.72 0.78 0.56 0.81 0.63 0.76 0.78 0.50 (0.19)
  SVM 0.76 0.83 0.78 0.75 0.64 0.86 0.77 0.68 (0.10)
  RF 0.76 0.83 0.67 0.81 0.67 0.81 1.00 0.50 (0.19)
 6 features
  LR 0.60 0.71 0.67 0.56 0.46 0.75 0.63 0.60 (0.26)
  KNN 0.52 0.57 0.56 0.50 0.38 0.67 0.73 0.65 (0.10)
  SVM 0.64 0.49 0.33 0.81 0.50 0.68 0.97 0.60 (0.10)
  RF 0.52 0.67 0.67 0.50 0.43 0.73 0.81 0.60 (0.19)
 5 features
  LR 0.60 0.72 0.67 0.56 0.46 0.75 0.61 0.60 (0.15)
  KNN 0.76 0.75 0.56 0.88 0.71 0.78 1.00 0.60 (0.26)
  SVM 0.52 0.62 0.67 0.44 0.40 0.70 0.81 0.60 (0.26)
  RF 0.60 0.71 0.56 0.63 0.45 0.71 0.85 0.70 (0.16)
 4 features
  LR 0.56 0.72 0.56 0.56 0.42 0.69 0.67 0.60 (0.19)
  KNN 0.60 0.62 0.33 0.75 0.43 0.67 1.00 0.70 (0.23)
  SVM 0.60 0.71 0.67 0.50 0.43 0.73 0.77 0.70 (0.10)
  RF 0.72 0.75 0.67 0.75 0.60 0.80 0.99 0.70 (0.21)
NEADL
 18 features
  LR 0.56 0.57 0.69 0.33 0.65 0.38 0.62 0.50 (0.26)
  KNN 0.52 0.41 0.63 0.33 0.63 0.33 0.97 0.60 (0.25)
  SVM 0.60 0.65 0.94 0.00 0.63 0.00 0.67 0.65 (0.10)
  RF 0.76 0.81 0.75 0.78 0.86 0.64 0.81 0.70 (0.16)
 6 features
  LR 0.52 0.57 0.63 0.33 0.63 0.33 0.60 0.65 (0.20)
  KNN 0.56 0.48 0.63 0.44 0.67 0.40 0.95 0.60 (0.20)
  SVM 0.64 0.62 0.50 0.89 0.89 0.50 0.55 0.70 (0.18)
  RF 0.72 0.85 0.75 0.67 0.80 0.60 0.80 0.70 (0.16)
 5 features
  LR 0.64 0.72 0.75 0.44 0.71 0.50 0.62 0.65 (0.20)
  KNN 0.64 0.63 0.69 0.56 0.73 0.50 0.94 0.60 (0.10)
  SVM 0.64 0.76 1.00 0.00 0.64 0.00 0.70 0.60 (0.09)
  RF 0.68 0.82 0.75 0.56 0.75 0.56 0.86 0.68 (0.18)
 4 features
  LR 0.64 0.72 0.75 0.44 0.71 0.50 0.65 0.60 (0.20)
  KNN 0.68 0.71 0.75 0.56 0.75 0.56 0.93 0.68 (0.20)
  SVM 0.60 0.70 0.63 0.56 0.71 0.45 0.62 0.60 (0.28)
  RF 0.76 0.87 0.75 0.78 0.86 0.64 0.80 0.70 (0.18)
SIS-ADL
 18 features
  LR 0.92 0.98 0.94 0.86 0.94 0.86 0.98 0.90 (0.08)
  KNN 0.80 0.75 0.94 0.43 0.81 0.75 0.96 0.68 (0.10)
  SVM 0.96 0.96 1.00 0.86 0.95 1.00 0.95 0.90 (0.15)
  RF 0.68 0.76 0.83 0.29 0.75 0.40 1.00 0.70 (0.09)
 6 features
  LR 0.72 0.80 0.83 0.43 0.79 0.50 0.77 0.75 (0.27)
  KNN 0.72 0.77 0.72 0.71 0.87 0.50 0.78 0.70 (0.06)
  SVM 0.76 0.82 0.83 0.57 0.83 0.57 0.77 0.70 (0.18)
  RF 0.68 0.72 0.72 0.57 0.81 0.44 0.87 0.65 (0.19)
 5 features
  LR 0.80 0.81 0.89 0.57 0.84 0.67 0.75 0.65 (0.19)
  KNN 0.76 0.76 0.83 0.57 0.83 0.57 0.73 0.65 (0.10)
  SVM 0.84 0.92 0.83 0.86 0.94 0.67 0.72 0.70 (0.13)
  RF 0.68 0.74 0.78 0.43 0.78 0.43 0.80 0.65 (0.16)
 4 features
  LR 0.76 0.87 0.83 0.57 0.83 0.57 0.75 0.70 (0.09)
  KNN 0.68 0.69 0.78 0.43 0.78 0.43 0.82 0.70 (0.08)
  SVM 0.72 0.88 0.67 0.86 0.92 0.50 0.72 0.74 (0.20)
  RF 0.64 0.72 0.72 0.43 0.76 0.38 0.90 0.70 (0.19)

IQR interquartile range, MAL Motor Activity Log, AOU Amount of Use, QOM Quality of Movement, NEADL Nottingham Extended Activities of Daily Living, SIS-ADL Stroke Impact Scale Activities of Daily Living domain, LR logistic regression, KNN k-nearest neighbors, SVM support vector machine, RF random forest, AUC area under the receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value