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ABSTRACT The continued emergence of SARS-CoV-2 variants is one of several factors
that may cause false-negative viral PCR test results. Such tests are also susceptible to
false-positive results due to trace contamination from high viral titer samples. Host immune
response markers provide an orthogonal indication of infection that can mitigate these con-
cerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab
RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses, and nonvi-
ral conditions (n = 318) to develop support vector machine classifiers that rely on a parsimo-
nious 2-gene host signature to diagnose COVID-19. We find that optimal classifiers include
an interferon-stimulated gene that is strongly induced in COVID-19 compared with nonviral
conditions, such as IFI6, and a second immune-response gene that is more strongly induced
in other viral infections, such as GBP5. The IFI61GBP5 classifier achieves an area under the re-
ceiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independ-
ent RNA-seq cohort (n = 553). We further provide proof-of-concept demonstration that the
classifier can be implemented in a clinically relevant RT-qPCR assay. Finally, we show that its
performance is robust across common SARS-CoV-2 variants and is unaffected by cross-con-
tamination, demonstrating its utility for improved accuracy of COVID-19 diagnostics.

IMPORTANCE In this work, we study upper respiratory tract gene expression to develop
and validate a 2-gene host-based COVID-19 diagnostic classifier and then demonstrate its
implementation in a clinically practical qPCR assay. We find that the host classifier has util-
ity for mitigating false-negative results, for example due to SARS-CoV-2 variants harboring
mutations at primer target sites, and for mitigating false-positive viral PCR results due to
laboratory cross-contamination. Both types of error carry serious consequences of either
unrecognized viral transmission or unnecessary isolation and contact tracing. This work
is directly relevant to the ongoing COVID-19 pandemic given the continued emergence
of viral variants and the continued challenges of false-positive PCR assays. It also suggests
the feasibility of pan-respiratory virus host-based diagnostics that would have value in con-
gregate settings, such as hospitals and nursing homes, where unrecognized respiratory viral
transmission is of particular concern.
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The COVID-19 pandemic has inflicted unprecedented human health consequences, with
millions of deaths reported worldwide since December 2019 (1). Testing is a cornerstone

of pandemic management, yet existing assays suffer from accuracy limitations. Even the
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gold-standard testing modality of nasopharyngeal (NP) swab RT-PCR returns falsely neg-
ative in a substantial proportion of cases (2 to 4) and may fail to detect SARS-CoV-2 var-
iants with mutations at primer target sites (5 to 7). False-positive tests due to sample
cross-contamination in the laboratory are also a significant complication (8, 9) as they
can lead to costly contact tracing efforts and the unnecessary isolation of uninfected
individuals, including essential workers.

Measuring the host immune response offers a complementary approach to direct
detection of the SARS-CoV-2 virus and holds potential for overcoming the limitations of
existing COVID-19 diagnostics. RNA-sequencing (RNA-seq) studies of NP swabs and blood
have demonstrated that COVID-19 elicits a unique host transcriptional response compared
with nonviral and other viral acute respiratory illnesses (ARIs) (10 to 12). A host gene expres-
sion signature of COVID-19, when utilized in combination with molecular detection of SARS-
CoV-2, can serve as a fallback to identify suspected false-negative or false-positive results of
traditional viral PCR tests, thus improving overall diagnostic reliability.

Recent studies have employed machine learning on RNA-seq data from NP swabs
to develop host-based COVID-19 diagnostic classifiers that rely on a relatively large
number of genes (10, 13). While highly promising, these classifiers have yet to undergo
validation in external cohorts. Furthermore, RNA-seq is not widely available in clinical
settings, and thus the immediate practical utility of RNA-seq classifiers is limited.

Here, we address these gaps by identifying 2-gene host signatures that could practi-
cally be incorporated into an RT-qPCR (qPCR) assay alongside a control gene and one or more
viral targets. We leverage NP swab RNA-seq data from two large patient cohorts to derive and
validate top-performing support vector machine (SVM) binary classifiers that use 2 host genes
to diagnose COVID-19. The optimal 2-gene signatures combine an interferon-stimulated
gene (ISG) that is strongly induced in COVID-19, such as IFI6, with another immune response
gene that is more strongly induced in other viral ARIs, such as GBP5. We then provide proof-
of-concept demonstration that such a 2-gene classifier can practically be applied to qPCR
data using a third sample cohort. Finally, we show that the host classifier is robust across
SARS-CoV-2 variants, including those that can yield a false-negative viral PCR result, and is
unaffected by laboratory cross-contamination that can yield a false-positive viral PCR result.

RESULTS
Development and validation of a 2-gene, host-based COVID-19 classifier from

NP swab RNA-seq data. We previously developed multigene host classifiers for
COVID-19 using RNA-seq data from NP swabs of patients tested for COVID-19 at the
University of California, San Francisco (UCSF) who were diagnosed with either COVID-
19, other viral ARIs, or nonviral ARIs (10). In the present work, we sought to develop a
parsimonious 2-gene signature that could be practically incorporated into a PCR assay
alongside a control gene and one or more viral targets.

We began by identifying top-performing 2-gene candidates in our RNA-seq cohort
after supplementing it with additional samples collected in the intervening time. The
full UCSF cohort used in the present work included n = 318 patients, of whom 90 had
PCR-confirmed COVID-19 (with viral load equivalent to PCR cycle threshold (CT) , 30),
59 had other viral infections detected by metagenomic sequencing (mostly rhinovirus
and influenza), and 169 had no virus detected and were presumed to suffer from non-
viral ARIs (Table S1; Data Set S1).

The UCSF samples were split into a training set (70%) and a testing set (30%), with
stratification to ensure each one contained similar proportions of patients with COVID-19.
We then applied a greedy selection algorithm to identify 2-gene combinations that best dis-
tinguished the patients who had COVID-19 from the patients who did not, regardless of
whether they had another viral infection or no viral infection. The performance metric was
the area under the receiver operating characteristic curve (AUC) of a support vector machine
(SVM) binary classifier that used the selected genes as features, calculated using 5-fold cross-
validation within the training set (Fig. 1a). Thus, a first gene was selected to maximize the
AUC it achieved on its own, and a second gene was selected to maximize the AUC when
combined with the first gene. Table 1 lists nine combinations consisting of each of the three
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best “first” genes and their respective three best “second” genes. The “first” genes in the top
combinations were the interferon-stimulated genes (ISGs) IFI6, IFI44L, and HERC6, which we
previously showed are strongly induced in COVID-19 (10). Most of the “second” genes were
also related to immune and inflammatory processes.

The performance of the nine 2-gene combinations on previously unseen data was
estimated by (i) 10,000 rounds of 5-fold cross-validation within the training set and by (ii)
training on the training set and classifying the testing set (Table 1; Data Set S2). Using the
latter approach, we observed AUC values as high as 0.93 (Fig. 1b; Table 1). On Youden’s
index, the top performing combinations achieved sensitivity in the range of 82 to 89%, posi-
tive predictive value (PPV) as high as 82%, and negative predictive value (NPV) as high as
95%. Overall specificity was as high as 93% (Table 1), though specificity with respect to the
other viral samples posed a more significant challenge than specificity with respect to the
nonviral samples. The best-performing combination in this regard was IFI61GBP5, which
achieved specificity of 96% with respect to nonviral samples and 80% with respect to other
viral samples.

We further validated the classifiers using an external, independently generated and
quantified NP swab RNA-seq data set from a cohort of n = 553 patients in New York (166
with COVID-19, 79 with other viral infections, 308 with nonviral conditions) (12) (Table S1;

FIG 1 Development of 2-gene host-based SVM COVID-19 diagnostic classifiers from RNA-seq data. (a) Schematic of the greedy feature selection algorithm
used to identify top performing 2-gene combinations. (b) Receiver operating characteristic (ROC) curve demonstrating performance of SVM classifiers using the
indicated 2-gene combinations. The classifiers were trained on the UCSF training set and applied to the UCSF testing set. AUC = area under the ROC curve. (c)
Expression distributions of the “first” and “second” genes IFI6 and GBP5, respectively, in the full UCSF cohort. Shown are variance-stabilized gene expression
values after centering and scaling. Color indicates patient group.

TABLE 1 Performance of the indicated 2-gene SVM classifiers for COVID-19 diagnosis in the UCSF RNA-seq cohorta

2-gene combination
70% training set (n = 222) AUC
10,000 rounds of 5-fold CV

30% testing set (n = 96) AUC
Trained on 70% training set PPV NPV Sens Spec All

Spec No
Virus

Spec Other
Virus

IFI6, GRINA 0.959 (0.005) 0.934 0.686 0.951 0.889 0.841 0.907 0.600
IFI6, C15orf48 0.949 (0.005) 0.908 0.706 0.952 0.889 0.855 0.944 0.533
IFI6, GBP5 0.948 (0.005) 0.905 0.815 0.928 0.815 0.928 0.963 0.800
IFI44L, GBP5 0.944 (0.004) 0.883 0.605 0.931 0.852 0.783 0.852 0.533
IFI44L, PTAFR 0.934 (0.006) 0.910 0.710 0.923 0.815 0.870 0.963 0.533
IFI44L, FCGR1A 0.932 (0.004) 0.859 0.731 0.886 0.704 0.899 0.981 0.600
HERC6, TNIP3 0.923 (0.005) 0.844 0.714 0.897 0.741 0.884 0.926 0.733
HERC6, GBP5 0.917 (0.005) 0.841 0.633 0.879 0.704 0.841 0.907 0.600
HERC6, C0A3 0.914 (0.005) 0.816 0.571 0.885 0.741 0.783 0.889 0.400
aThe area under the curve (AUC) is reported as mean and standard deviation when multiple cross-validation (CV) rounds were performed within the training set, or as a
single score when the model was trained on a training set and evaluated on a testing set. The positive predictive value (PPV), negative predictive value (NPV), sensitivity
(Sens), and specificity (Spec) values shown are calculated on Youden’s index when the model is evaluated on the testing set.
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Data Set S1). The 2-gene combinations achieved comparable performance on the external
data set (Table 2; Data Set S2). The best-performing combinations were IFI44L1GBP5 (AUC
0.919) and IFI61GBP5 (AUC 0.91), when the classifier was trained on the UCSF 70% training
set. On Youden’s index, the classifiers achieved sensitivity of 83 to 84%, PPV as high as 74%,
NPV as high as 92%, and overall specificity of 88% (Table 2). We observed that COVID-19
samples with very low viral loads were more likely to be misclassified as negative for COVID-
19 (Fig. S1). These results demonstrate that 2-gene diagnostic classifiers for COVID-19 are
feasible, generalizable, and perform well on real-world cohorts that include patients with
other respiratory viral infections.

Among the top 2-gene combinations nominated by the greedy selection algorithm,
IFI61GBP5 appeared to provide the best balance of sensitivity and specificity with respect
to both nonviral and other viral samples. When visualizing the expression of this gene pair
in the UCSF cohort, we noted that IFI6 alone almost completely separated the COVID-19
and nonviral samples (Fig. 1c). However, some of the other viral ARI samples showed
equivalent levels of IFI6 expression. Adding GBP5 allowed for improved separation, as
expression of this ISG was typically higher in other viral ARIs (Fig. 1c). We confirmed that
in both the UCSF and the New York cohorts, these genes exhibited fold changes
between patient groups that should be detectable by qPCR (IFI6 COVID-19 versus no vi-
rus log2FC ;4; GBP5 COVID-19 versus other virus log2FC ;1.5), and so this pair was cho-
sen for implementation in a proof-of-concept qPCR assay.

Proof-of-concept implementation of a 2-gene, host-based qPCR COVID-19
diagnostic classifier. Having validated the performance of the host-based classifier
using the RNA-seq cohorts, we sought to demonstrate it could technically be imple-
mented in a clinically relevant qPCR assay. We therefore measured the expression of
IFI6 and GBP5 (relative to the reference gene RPP30) using qPCR assays on swabs from
a new cohort of patients with (n = 72) or without (n = 72) COVID-19 (Table S2; Data Set
S3). Because these swabs were not sequenced, we could not definitively assign those
without COVID-19 as either nonviral or other viral cases. However, the low prevalence
of other viral ARIs during the time frame of sample collection, due to the public health
measures implemented for COVID-19 (14), suggested they were mostly nonviral. Using
5-fold cross-validation, we observed that the IFI61GBP5 SVM classifier achieved an
AUC of 0.842 (60.08) in distinguishing patients with and without COVID-19 from the
qPCR data (Fig. 2a; Table S3).

Host signatures are robust to SARS-CoV-2 variants and laboratory cross-con-
tamination. We next assessed whether the 2-gene host classifier was robust across
SARS-CoV-2 variants, which could conceivably yield an altered host response and/or
harbor mutations that disrupt primer target sites and lead to false-negative viral PCR
tests (5, 7, 15). We performed qPCR for the genes IFI6 and GBP5 on samples with the
Omicron variant (n = 3), which causes S-gene target dropout in certain viral PCR assays;
on samples with the California N-gene variant (n = 4), which causes N-gene target
dropout (15); and on samples with the Delta variant (n = 7). SVM classifiers trained on
the qPCR results of the samples with and without COVID-19, described above,

TABLE 2 Performance of the indicated 2-gene SVM classifiers for COVID-19 diagnosis in the New York RNA-seq cohorta

2-gene combination
External dataset (n = 553) AUC
Trained on UCSF 70% training set PPV NPV Sens Spec All

Spec No
Virus

Spec Other
Virus

IFI6, GRINA 0.883 0.725 0.908 0.795 0.871 0.922 0.671
IFI6, C15orf48 0.861 0.699 0.897 0.771 0.858 0.912 0.646
IFI6, GBP5 0.910 0.742 0.924 0.831 0.876 0.916 0.722
IFI44L, GBP5 0.919 0.749 0.929 0.843 0.879 0.919 0.722
IFI44L, PTAFR 0.894 0.659 0.942 0.886 0.804 0.877 0.519
IFI44L, FCGR1A 0.896 0.701 0.929 0.849 0.845 0.883 0.696
HERC6, TNIP3 0.852 0.687 0.915 0.819 0.840 0.899 0.608
HERC6, GBP5 0.866 0.677 0.900 0.783 0.840 0.883 0.671
HERC6, C0A3 0.797 0.563 0.898 0.807 0.731 0.795 0.481
aThe positive predictive value (PPV), negative predictive value (NPV), sensitivity (Sens), and specificity (Spec) values shown are calculated on Youden’s index when the model
is evaluated on the testing set.
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predicted COVID-19 with high likelihood in all variant samples (Fig. 2b), demonstrating
the potential utility of a host signature as a complement to viral PCR.

On the other hand, false-positive viral PCR tests frequently result from trace cross-
contamination of samples with high viral titers into negative specimens processed contempo-
raneously in the laboratory (9). To examine whether an IFI61GBP5 host classifier would also
be affected in such cross-contamination events, we spiked extracted NP swab RNA from a
sample with very high SARS-CoV-2 viral load (CT � 12) into n = 7 COVID-19 negative swab
specimens at a dilution of 1:105, which would be expected to yield a positive viral PCR result
with CT , 30. Reassuringly, however, the host-based probability of COVID-19 was not signifi-
cantly affected in the contaminated specimens (Fig. 2c).

DISCUSSION

We leveraged multiple cohorts—encompassing over 1,000 patients with COVID-19,
other viral ARIs, and nonviral conditions—to develop and validate 2-gene host-based
COVID-19 diagnostic classifiers that could be practically incorporated into clinical PCR assays
in combination with a control gene and one or more viral targets. We found that the host
classifier enabled reliable identification of COVID-19 even in the face of SARS-CoV-2 variants
that cause false-negative viral PCR tests, and remained unaffected by simulated laboratory
cross-contamination that can cause false-positive viral PCR tests.

Given the inevitable continued emergence of SARS-CoV-2 variants, which may disrupt
primer target sites, assays capable of detecting infection regardless of viral sequence are essen-
tial to avoid adverse outcomes owing to infected individuals going unrecognized in congre-
gate settings, such as hospitals or nursing homes. The adverse effects of false-positive tests are
also nontrivial. The positive predictive value of highly specific viral PCR assays diminishes for
asymptomatic individuals undergoing continual surveillance testing in low prevalence settings
(9). False-positive results then become more likely, leading to unnecessary isolation and quar-
antine, depletion of essential personnel, and unwarranted contact tracing.

Our host-based classifiers were developed and evaluated using the practical gold-
standard of clinical viral PCR, which would be more accurate in the general case than any
host-based classifier (at least for existing variants). We emphasize, however, that we do not
envision the use of host classifiers as a replacement for viral PCR, but rather as a complementary
approach to compensate for its potential failure modes. While our proof-of-concept work

FIG 2 Performance of 2-gene SVM COVID-19 diagnostic classifiers in qPCR assays. (a) ROC curve demonstrating
performance of the IFI61GBP5 SVM classifier for distinguishing samples from patients with and without COVID-
19 using the qPCR data, estimated by 5-fold cross-validation. Mean and standard deviation of the AUC across the five
folds is reported. (b) Average probability of COVID-19 derived from the IFI61GBP5 qPCR cross-validation classifiers for
samples with the Omicron variant (n = 3), the N-gene variant (n = 4), and the Delta variant (n = 7). (c) Average
probability of COVID-19 derived from the IFI61GBP5 qPCR cross-validation classifiers for n = 7 samples without
COVID-19 before and after introduction of trace contamination from a sample with high SARS-CoV-2 viral load.
Statistical significance was assessed using a one-sided (greater than) paired Mann-Whitney test. ns, not significant.
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suggests that addition of host targets is likely to improve overall diagnostic accuracy, a prospec-
tive assessment using clinically confirmed false-positive and false-negative viral tests is needed,
and a randomized controlled trial of our assay will be required to firmly establish its clinical
utility.

Our study has some limitations. Our classifier models were trained and tested on cohorts
with particular characteristics, including the distribution of COVID-19, other viral, and nonvi-
ral cases; the mix of other respiratory viruses represented; and within the COVID-19 group,
the distributions of viral load, time since onset of infection, and disease severity. Most of
these variables likely affect classifier performance and will vary in reality with time and place.
Moreover, the analyzed nasopharyngeal swabs represented a convenience sample derived
from a clinical SARS-CoV-2 testing laboratory, as well as from publicly available data, which
could introduce bias. However, the fact that our classifiers translated well across diverse real-
world cohorts argues that they are quite robust to these issues. Finally, it is possible that
host gene expression would differ in response to infection with future SARS-CoV-2 variants,
which could impact host-based diagnosis.

While we did not explicitly explore it here, our results suggest that parsimonious host
classifiers could serve not only as a COVID-19 diagnostic but also as a pan-respiratory virus
surveillance tool. Even prior to the COVID-19 pandemic, viral lower respiratory tract infec-
tions were a leading cause of disease and death (16), and many respiratory viral infections
go undetected, leading to preventable transmission and unnecessary antibiotic treatment
(17). Since our classifiers rely heavily on ISGs and type I interferon signaling is a biologically
conserved mechanism, these genes could be used in future work as the basis for a diagnos-
tic that identifies respiratory viruses more generally. Such a diagnostic could have consider-
able value as a screening tool in hospitals, nursing homes, or other congregate settings with
potential for adverse consequences from unrecognized respiratory viral transmission.

MATERIALS ANDMETHODS
Patient cohorts and consent. The UCSF cohort used to develop the RNA-seq classifiers was initially

described in our prior study applying metagenomic sequencing to NP swabs from adult patients with
mostly mild acute respiratory illnesses tested for COVID-19 early during their disease course (10). Additional
samples collected at UCSF since then were sequenced or used for qPCR in the present work. All UCSF samples
were collected in accordance with UCSF Institutional Review Board protocol number 17-24056, which granted
a waiver of consent. The New York cohort used to validate the RNA-seq classifiers on an external data set was
previously published (12).

RNA-seq data preprocessing. In the UCSF cohort, we assigned patient samples to one of three viral
status groups: (i) samples with a positive clinical RT-PCR test for SARS-CoV-2 were assigned to the “COVID-19”
group, (ii) samples with another pathogenic respiratory virus detected by the CZ-ID (formerly, ID-Seq) pipeline
(18) in the metagenomic sequencing data were assigned to the “other virus” group, and (iii) remaining samples
were assigned to the “no virus” group. The full process for assignment into viral status groups is described in
detail in our original study (10), and we applied it as before to the additional swabs reported in the present work.

We wished to retain for classifier development COVID-19 samples with likely active infection (culturable virus),
which several studies have related to viral PCR CT ,30 (19 to 21). Because not all CT values were available, we
relied on the relationship between viral reads-per-million (rpM) in the sequencing data and PCR CT that we previ-
ously reported (10): log2(rpM) = 31.9753 – 0.9167*CT. Metadata for the UCSF samples are provided in Data Set S1.

We pseudoaligned the UCSF samples with kallisto (22) (v. 0.46.1), using the bias correction setting,
against an index consisting of all transcripts associated with human protein coding genes (ENSEMBL v. 99), cyto-
solic and mitochondrial rRNA sequences, and the sequences of ERCC RNA standards. Samples retained in the
data set had at least 400,000 estimated counts associated with transcripts of protein coding genes. Gene-level
counts were generated from the kallisto transcript abundance estimates using the R package tximport (23)
(v. 1.14) with the scaledTPMmethod. Genes were retained if they had at least 10 counts in at least 20% of samples.

In the New York cohort, samples were also assigned by the authors into the three viral status groups
described above based on a combination of RT-PCR and metagenomic sequencing, and we used their assign-
ments as is. Because we did not have access to the underlying sequencing data, we used the gene counts origi-
nally generated by the authors using STAR alignment and the R function featureCounts. We excluded samples
with less than five million total counts as well as samples that had discordant COVID-19 test results between two
assays, but did not filter based on viral load. Genes were retained if they had at least 32 counts in at least 10% of
samples. Metadata for the New York samples are provided in Data Set S1.

For each RNA-seq cohort, gene counts were subjected to the variance stabilizing transformation
(VST) from the R package DESeq2 (v. 1.26.0), and the transformed values were then standardized (centered
and scaled) to yield the final input features.

RNA-seq SVM classifier development and validation. SVM learning was implemented in scikit-
learn (https://scikit-learn.org) using the sklearn.svm.SVC class function with default parameters and probabilistic
output. The UCSF cohort was split into a training set (70%) and a testing set (30%), with stratification to ensure
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each set contained a similar proportion of samples with COVID-19. For the greedy feature selection, the per-
formance of a binary SVM classifier to distinguish patients with and without COVID-19 relying on each single
feature (gene) was evaluated by running 5-fold cross-validation within the training set and calculating the aver-
age AUC across the folds. The three best-performing “first” genes were then selected. To extend these “first”
genes to 2-gene combinations, another round of the algorithm was performed, picking the three best-per-
forming “second” genes when combined with each of the “first” genes.

In order to rigorously assess the performance of the SVM 2-gene models, we employed two approaches: (i)
running 10,000 rounds of 5-fold cross-validation on the UCSF 70% training set and calculating the average
AUC and standard deviation, and (ii) training each model on the UCSF 70% training set and applying it to the
30% testing set to generate an AUC score (Table 1). We then validated the 2-gene models by training each
model on the UCSF 70% training set and testing it on the external New York cohort to generate an AUC score
(Table 2). Individual sample classification probabilities for the IFI61GBP5 classifier are tabulated in Data Set S2.

RT-qPCR of host genes. RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription
kit (Applied Biosystems), according to the manufacturer’s protocol, and analyzed by qPCR in a Bio-Rad CFX384
thermocycler (Bio-Rad) using TaqMan Fast Advanced Master Mix (Applied Biosystems) and TaqMan Gene
Expression Assays (Applied Biosystems), according to the manufacturer’s protocol. Assay IDs are provided in
Table S2. DCT values were calculated with respect to the reference gene RPP30 (also known as RNASEP2), the
standard host control gene used in many viral PCR tests. DCT values are provided in Data Set S3.

qPCR SVM classifier proof-of-principle. The input features for qPCR-based SVM COVID-19 diagnos-
tic classifiers were standardized (centered and scaled) DCT values. Standardization was performed using
the mean and standard deviation of the respective training samples. Performance of the IFI61GBP5 SVM
classifier in distinguishing between the samples with (n = 72) and without (n = 72) COVID-19 was assessed
by 5-fold cross-validation.

We then applied the IFI61GBP5 classifiers from the 5-fold cross-validation to SARS-CoV-2 variant samples
and to samples that had been contaminated with 1:105 dilution from a high SARS-CoV-2 viral load sample, and
calculated the average predicted probability of COVID-19. Because the variant and contamination samples
were assayed in separate experiments after the generation of the training data set, they were always processed
alongside n = 6 to 7 COVID-19 negative controls from the original training data set. The median DCT difference
observed for these control samples between the training data set and the experiment in which they were
rerun was applied to all the samples in the respective experiment in order to account for systematic shifts.

Data availability. Gene counts for all UCSF samples have been deposited under NCBI GEO accession
GSE188678. The New York data set can be obtained according to the Data Availability statement in the
original publication (12). Code for RNA-seq and qPCR SVM classifier development and validation is avail-
able at https://github.com/czbiohub/Covid-Host-Classifier-Code.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.04 MB.
DATA SET S2, XLSX file, 0.04 MB.
DATA SET S3, XLSX file, 0.01 MB.
FIG S1, TIF file, 0.5 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.01 MB.
TABLE S3, DOCX file, 0.01 MB.

ACKNOWLEDGMENTS
J.A., E.M., J.K., A.O.P. and C.R.L. are listed as inventors on a patent application filed by

Chan Zuckerberg Biohub and the University of Califronia San Francisco for the use of
host genes for COVID-19 diagnosis.

REFERENCES
1. World Health Organization. 2021. WHO COVID-19 dashboard. https://covid19

.who.int/.
2. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-

Achig P, Del Campo R, Ciapponi A, Sued O, Martinez-García L, Rutjes AW, Low
N, Bossuyt PM, Perez-Molina JA, Zamora J. 2020. False-negative results of initial
RT-PCR assays for COVID-19: a systematic review. PLoS One 15:e0242958.
https://doi.org/10.1371/journal.pone.0242958.

3. Long DR, Gombar S, Hogan CA, Greninger AL, O'Reilly-Shah V, Bryson-
Cahn C, Stevens B, Rustagi A, Jerome KR, Kong CS, Zehnder J, Shah NH, Weiss
NS, Pinsky BA, Sunshine JE. 2021. Occurrence and timing of subsequent severe
acute respiratory syndrome coronavirus 2 reverse-transcription polymerase
chain reaction positivity among initially negative patients. Clin Infect Dis 72:
323–326. https://doi.org/10.1093/cid/ciaa722.

4. Kanji JN, Zelyas N, MacDonald C, Pabbaraju K, KhanMN, Prasad A, Hu J, Diggle
M, Berenger BM, Tipples G. 2021. False negative rate of COVID-19 PCR testing:
a discordant testing analysis. Virol J 18:13. https://doi.org/10.1186/s12985-021
-01489-0.

5. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ,
Pang J, Tan CCS, Boshier FAT, Ortiz AT, Balloux F. 2020. Emergence of
genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet
Evol 83:104351. https://doi.org/10.1016/j.meegid.2020.104351.

6. Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, MacNeil A,
Slayton RB, Tong S, Silk BJ, Armstrong GL, Biggerstaff M, Dugan VG. 2021.
Emergence of SARS-CoV-2 B.1.1.7 lineage—United States, December 29,
2020–January 12, 2021. MMWRMorb Mortal Wkly Rep 70:95–99. https://doi
.org/10.15585/mmwr.mm7003e2.

A 2-Gene Host Signature for COVID-19 Diagnosis mSystems

January/February 2023 Volume 8 Issue 1 10.1128/msystems.00671-22 7

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188678
https://github.com/czbiohub/Covid-Host-Classifier-Code
https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1371/journal.pone.0242958
https://doi.org/10.1093/cid/ciaa722
https://doi.org/10.1186/s12985-021-01489-0
https://doi.org/10.1186/s12985-021-01489-0
https://doi.org/10.1016/j.meegid.2020.104351
https://doi.org/10.15585/mmwr.mm7003e2
https://doi.org/10.15585/mmwr.mm7003e2
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00671-22


7. U.S. Food and Drug Administration. 2021. Genetic variants of SARS-CoV-2 may
lead to false negative results with molecular tests for detection of SARS-CoV-
2—letter to clinical laboratory staff and health care providers. https://www.fda
.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2
-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2.

8. Surkova E, Nikolayevskyy V, Drobniewski F. 2020. False-positive COVID-19
results: hidden problems and costs. Lancet Respir Med 8:1167–1168. https://
doi.org/10.1016/S2213-2600(20)30453-7.

9. Healy B, Khan A, Metezai H, Blyth I, Asad H. 2021. The impact of false posi-
tive COVID-19 results in an area of low prevalence. Clin Med (Lond) 21:
e54–e56. https://doi.org/10.7861/clinmed.2020-0839.

10. Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Castañeda G, DeRisi JL,
Detweiler AM, Hao SL, Kangelaris KN, Kumar GR, Li LM, Mann SA, Neff N,
Prasad PA, Serpa PH, Shah SJ, Spottiswoode N, Tan M, Calfee CS, Christenson
SA, Kistler A, Langelier C. 2020. Upper airway gene expression reveals sup-
pressed immune responses to SARS-CoV-2 compared with other respiratory
viruses. Nat Commun 11:5854. https://doi.org/10.1038/s41467-020-19587-y.

11. McClain MT, Constantine FJ, Henao R, Liu Y, Tsalik EL, Burke TW, Steinbrink JM,
Petzold E, Nicholson BP, Rolfe R, Kraft BD, Kelly MS, Saban DR, Yu C, Shen X, Ko
EM, Sempowski GD, Denny TN, Ginsburg GS, Woods CW. 2021. Dysregulated
transcriptional responses to SARS-CoV-2 in the periphery. Nat Commun 12:
1079. https://doi.org/10.1038/s41467-021-21289-y.

12. Butler D, Mozsary C, Meydan C, Foox J, Rosiene J, Shaiber A, Danko D,
Afshinnekoo E, MacKay M, Sedlazeck FJ, Ivanov NA, Sierra M, Pohle D,
Zietz M, Gisladottir U, Ramlall V, Sholle ET, Schenck EJ, Westover CD, Hassan C,
Ryon K, Young B, Bhattacharya C, Ng DL, Granados AC, Santos YA, Servellita V,
Federman S, Ruggiero P, Fungtammasan A, Chin C-S, Pearson NM, Langhorst
BW, Tanner NA, Kim Y, Reeves JW, Hether TD, Warren SE, Bailey M, Gawrys J,
Meleshko D, Xu D, Couto-Rodriguez M, Nagy-Szakal D, Barrows J, Wells H,
O'Hara NB, Rosenfeld JA, Chen Y, Steel PAD, et al. 2021. Shotgun transcrip-
tome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals
unique host responses, viral diversification, and drug interactions. Nat Com-
mun 12:1660. https://doi.org/10.1038/s41467-021-21361-7.

13. Ng DL, Granados AC, Santos YA, Servellita V, Goldgof GM, Meydan C,
Sotomayor-Gonzalez A, Levine AG, Balcerek J, Han LM, Akagi N, Truong K,
Neumann NM, Nguyen DN, Bapat SP, Cheng J, Martin CS-S, Federman S, Foox
J, Gopez A, Li T, Chan R, Chu CS, Wabl CA, Gliwa AS, Reyes K, Pan C-Y, Guevara
H, Wadford D, Miller S, Mason CE, Chiu CY. 2021. A diagnostic host response
biosignature for COVID-19 from RNA profiling of nasal swabs and blood. Sci
Adv 7:eabe5984. https://doi.org/10.1126/sciadv.abe5984.

14. Olsen SJ, Winn AK, Budd AP, Prill MM, Steel J, Midgley CM, Kniss K, Burns
E, Rowe T, Foust A, Jasso G, Merced-Morales A, Davis CT, Jang Y, Jones J,
Daly P, Gubareva L, Barnes J, Kondor R, Sessions W, Smith C, Wentworth

DE, Garg S, Havers FP, Fry AM, Hall AJ, Brammer L, Silk BJ. 2021. Changes
in influenza and other respiratory virus activity during the COVID-19 pan-
demic—United States, 2020–2021. MMWR Morb Mortal Wkly Rep 70:
1013–1019. https://doi.org/10.15585/mmwr.mm7029a1.

15. Vanaerschot M, Mann SA, Webber JT, Kamm J, Bell SM, Bell J, Hong SN,
Nguyen MP, Chan LY, Bhatt KD, Tan M, Detweiler AM, Espinosa A, Wu W,
Batson J, Dynerman D, Wadford DA, Puschnik AS, Neff N, Ahyong V, Miller
S, Ayscue P, Tato CM, Paul S, Kistler AL, DeRisi JL, Crawford ED. 2020. Iden-
tification of a polymorphism in the N gene of SARS-CoV-2 that adversely
impacts detection by reverse transcription-PCR. J Clin Microbiol 59:e02369-20.
https://doi.org/10.1128/JCM.02369-20.

16. World Health Organization. 2020. The top 10 causes of death. https://
www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

17. Chow EJ, Mermel LA. 2017. Hospital-acquired respiratory viral infections:
incidence, morbidity, and mortality in pediatric and adult patients. Open
Forum Infect Dis 4:ofx006. https://doi.org/10.1093/ofid/ofx006.

18. Kalantar KL, Carvalho T, de Bourcy CFA, Dimitrov B, Dingle G, Egger R, Han
J, Holmes OB, Juan Y-F, King R, Kislyuk A, Lin MF, Mariano M, Morse T, Reynoso
LV, Cruz DR, Sheu J, Tang J, Wang J, Zhang MA, Zhong E, Ahyong V, Lay S, Chea
S, Bohl JA, Manning JE, Tato CM, DeRisi JL. 2020. IDseq—an open source cloud-
based pipeline and analysis service for metagenomic pathogen detection and
monitoring. Gigascience 9:giaa111. https://doi.org/10.1093/gigascience/giaa111.

19. Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J,
Ladhani S, Zambon M, Gopal R. 2020. Duration of infectiousness and cor-
relation with RT-PCR cycle threshold values in cases of COVID-19, Eng-
land, January to May 2020. Eurosurveillance 25:2001483. https://doi.org/
10.2807/1560-7917.ES.2020.25.32.2001483.

20. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, Boodman C,
Bello A, Hedley A, Schiffman Z, Doan K, Bastien N, Li Y, Van Caeseele PG,
Poliquin G. 2020. Predicting infectious severe acute respiratory syndrome
coronavirus 2 from diagnostic samples. Clin Infect Dis 71:2663–2666. https://
doi.org/10.1093/cid/ciaa638.

21. La Scola B, Le Bideau M, Andreani J, Hoang VT, Grimaldier C, Colson P,
Gautret P, Raoult D. 2020. Viral RNA load as determined by cell culture as
a management tool for discharge of SARS-CoV-2 patients from infectious
disease wards. Eur J Clin Microbiol Infect Dis 39:1059–1061. https://doi.org/10
.1007/s10096-020-03913-9.

22. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilis-
tic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10
.1038/nbt.3519.

23. Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-
seq: transcript-level estimates improve gene-level inferences. F1000Res 4:
1521. https://doi.org/10.12688/f1000research.7563.1.

A 2-Gene Host Signature for COVID-19 Diagnosis mSystems

January/February 2023 Volume 8 Issue 1 10.1128/msystems.00671-22 8

https://www.fda.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2
https://www.fda.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2
https://www.fda.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2
https://doi.org/10.1016/S2213-2600(20)30453-7
https://doi.org/10.1016/S2213-2600(20)30453-7
https://doi.org/10.7861/clinmed.2020-0839
https://doi.org/10.1038/s41467-020-19587-y
https://doi.org/10.1038/s41467-021-21289-y
https://doi.org/10.1038/s41467-021-21361-7
https://doi.org/10.1126/sciadv.abe5984
https://doi.org/10.15585/mmwr.mm7029a1
https://doi.org/10.1128/JCM.02369-20
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://doi.org/10.1093/ofid/ofx006
https://doi.org/10.1093/gigascience/giaa111
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483
https://doi.org/10.1093/cid/ciaa638
https://doi.org/10.1093/cid/ciaa638
https://doi.org/10.1007/s10096-020-03913-9
https://doi.org/10.1007/s10096-020-03913-9
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.12688/f1000research.7563.1
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00671-22

	RESULTS
	Development and validation of a 2-gene, host-based COVID-19 classifier from NP swab RNA-seq data.
	Proof-of-concept implementation of a 2-gene, host-based qPCR COVID-19 diagnostic classifier.
	Host signatures are robust to SARS-CoV-2 variants and laboratory cross-contamination.

	DISCUSSION
	MATERIALS AND METHODS
	Patient cohorts and consent.
	RNA-seq data preprocessing.
	RNA-seq SVM classifier development and validation.
	RT-qPCR of host genes.
	qPCR SVM classifier proof-of-principle.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

