Table 2.
“Default Rigid” (DR) | “Applicator ROI” (AROI) | “Applicator Mask” (AM) | “Distance Map” (DM) | “Prediction” (DM*) | |
---|---|---|---|---|---|
Implementation | Python/ITK | ||||
Loss function | Mutual Information (MI) | MI | Kappa Statistic (KS) | MI | MI |
Transform | 3D Translation + Rotation | ||||
Image domain | MRI | MRI | Binary applicator mask | Euclidian distance map | Euclidian distance map |
Description | Use full MRI volumes, and default settings. An out-of-the box solution that serves as a benchmark. | Use applicator masks to define valid sampling regions in MRIs. | Register binary applicator masks directly. | Transform binary mask to Euclidian distance maps and register the two distance maps. | Same as “Distance Map” but using the predicted applicator masks from the neural network. |