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Introduction
As of July 2022, infection with SARS-CoV-2, the betacoro-

navirus responsible for the COVID-19 pandemic, has caused 
over 90 million cases and more than 1 million deaths in the 
United States.53 Although the virus can affect multiple organ 
systems, it mainly targets the respiratory system. SARS-CoV-2 
infection typically begins in the upper respiratory tract and 
may progress to pulmonary infection.52,95 Most COVID-19 
infections result in mild to moderate disease.10,95,160,185 
However, in severe cases, pulmonary infection causes in-
terstitial pneumonia, damage and dysfunction of alveolar 
capillaries, and acute respiratory distress. Pulmonary in-
fection, severe inflammation, and hypoxemia can lead to 
extrapulmonary disease, including systemic inflammation, 
coagulopathy, vasculopathy, and multiorgan dysfunction and 
failure.10,16,81,95,160,176,183,186

The primary animal species used to study SARS-CoV-2 infec-
tion and disease are NHP, hamsters, and mice.120 Each species 
has strengths and weaknesses with regard to capturing impor-
tant elements of COVID-19 pulmonary disease. Here we detail 
the current understanding of SARS-CoV-2–induced respiratory 
disease and pathology in humans and the analogous features 
seen in each of these 3 species. Knowing which features of 
human COVID-19 are modeled by these 3 species is critical to 
designing preclinical experiments that will effectively translate 
to humans.

Pathophysiology of SARS-COV-2 Infection in 
the Human Lung

Viral infection typically begins in the upper respiratory 
tract. The SARS-CoV-2 spike (S) glycoprotein binds to the 
receptor for angiotensin-converting enzyme 2 (ACE2) on 
the surface of respiratory epithelial cells throughout the 
respiratory tract, including ciliated nasal, oropharyngeal, 
and tracheal cells; submucosal glands; and bronchial and 
bronchiolar epithelium.3,77-79,95,152,198 Host proteases, includ-
ing the transmembrane protease serine protease 2, process S 
to promote fusion of the viral and cellular membranes, which 
in turn allows the SARS-CoV-2 genome to enter the cytosol 
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and initiate structural protein translation and viral genome 
replication. Multiple processes promote the dissemination of 
infectious viral particles to the lower respiratory tract, where 
SARS-CoV-2 primarily infects type II alveolar epithelial cells 
(pneumocytes).78,79,95,96

SARS-CoV-2 infection of the lower respiratory tract causes 
viral interstitial pneumonia that results in widespread acute 
lung injury (ALI) and pulmonary inflammation that progress 
to respiratory distress (Figure 1).10,28,52,61,79,95,160,176 Direct viral 
and indirect inflammatory damage to both pneumocytes and 
pulmonary capillary endothelial cells drives disruption of the 
alveolar–capillary barrier, resulting in increased pulmonary vas-
cular permeability, alveolar edema, and atelectasis. In addition, 
local inflammation and endothelial injury promote hypercoagula-
tion, which leads to microvascular thrombosis and pulmonary 
vascular occlusion.10,28,52,61,79,95,160,176 These pathologic changes 
lead to reductions in pulmonary compliance and aeration of 
pulmonary tissue, ventilation–perfusion mismatch, impaired 
pulmonary gas exchange, and ultimately hypoxemia leading 
to tissue hypoxia.10,52,61,95,128,160,176 Disruption of the pulmonary 
alveolar–capillary barrier and microvasculature promotes the 
reduction of pulmonary gas exchange, which can manifest as 
acute respiratory distress syndrome (ARDS). A defining feature of 
ARDS is hypoxemia, which ultimately causes tissue hypoxia, mul-
tiorgan dysfunction, and possibly death.10,52,61,95,128,160,176 Active 
viral replication is likely to have limited significance during severe 
disease that occurs later in the infection; severe disease occurs pri-
marily due to systemic hyperinflammation and resulting disease, 
including coagulopathy and reduced pulmonary function. Local 

pulmonary inflammation, vascular injury, and thromboembolic 
disease may accelerate systemic disease by causing dysregulated 
feed-forward cascades, including cytokine release syndrome, 
systemic inflammatory response syndrome (‘cytokine storm’), 
and disseminated intravascular coagulation.2,95,128,186

SARS-CoV-2–induced Disease in Humans
The presentation and clinical course of SARS-CoV-2 infec-

tion are extremely variable in human patients. The incubation 
period typically ranges from 2 to 7 d post infection (dpi).98 
Fever, fatigue, and dry cough are the most common symptoms, 
whereas dyspnea is the hallmark of moderate and severe 
disease.39,81 Other symptoms include sore throat, headache, 
myalgia, chills, congestion, rhinorrhea, ageusia, anosmia, hem-
optysis, nausea, vomiting, and diarrhea.16,39,73,81,172 Moderate 
to severe disease that requires hospitalization and ventilatory 
support generally occurs approximately 1 wk after the onset 
of symptoms.16,63 Patients who report dyspnea often exhibit 
tachypnea.16,39,73,81

Although extrapulmonary disease is common in severe 
COVID-19 infection, the respiratory system is the primary or-
gan system affected by SARS-CoV-2. Most patients experience 
mild to moderate disease in the upper respiratory tract, but a 
considerable minority develop severe disease that can include 
acute respiratory distress, extrapulmonary involvement, and 
multiorgan failure.10,95,160,185 Severe COVID-19 infection com-
monly results in ARDS, which is defined as the acute onset 
of dyspnea, hypoxemia, and radiologic findings of bilateral 

Figure 1. Pathophysiology of SARS-CoV-2 infection in the lung. (A) Healthy, uninfected lung with efficient gas exchange between the alveolar 
lumen and capillary. (B) SARS-CoV-2–infected lung with increased inflammatory infiltrates and cytokine production, alveolar edema and hem-
orrhage, cellular necrosis and luminal debris, hyaline membrane formation, endothelial activation and damage leading to increased vascular 
permeability, and microvascular thromboses—all of which contribute to impaired gas exchange.
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infiltrates that occur within 1 wk of an identified insult (for 
example, infection or trauma) and that cannot be explained by 
cardiac complications or fluid overload.6,10 Hypoxemia, charac-
terized as a blood oxygen saturation of 93% or less, is a defining 
feature of severe COVID-19 infection16,183 and may present in 
the absence of dyspnea (a condition often referred to as ‘happy 
hypoxia’).38,187,200 Hypercapnia is reported also.160 The most 
common cause of death is hypoxic multiorgan failure second-
ary to ARDS and respiratory failure.16,81 Risk factors for severe 
disease include advanced age, male sex, smoking, and several 
comorbidities, including hypertension, diabetes mellitus, coro-
nary artery disease, and chronic pulmonary disease.16,54,63,81,137,183

Compared with ARDS precipitated by other causes, COVID- 
19–associated ARDS (CARDS) commonly involves vascular 
endothelial injury, coagulopathy, and consequent dysfunctional 
pulmonary perfusion.2,64,75,125 Furthermore, a subset of patients 
exhibits the atypical ARDS phenotype of severe hypoxemia 
without reduced pulmonary compliance.64 Although some 
consider CARDS to be a distinct disease,10,64 the current expert 
consensus is that it is broadly similar to and overlaps with the 
pathophysiology of general ARDS and is therefore a subtype of 
ARDS. The atypical CARDS phenotype seen in some patients 
may be a transitional pathophysiologic state that occurs before 
progression to classic ARDS.74,124,130,160

Similar to classic ARDS, severe COVID-19 infection 
and CARDS commonly present with pulmonary function  
abnormalities that include low compliance, increased lung 
weight, a low ventilation–perfusion ratio, reduced lung gas 
volume, and high recruitability (of unaerated pulmonary 
tissue).10,59,70,93,130,160,200 Consistent with frequent reports of 
COVID-19–associated pulmonary fibrosis, one study reported 
reduced inspiratory vital capacity, indicating restriction, in 
patients with CARDS.12,17,25,60,102,134,149,174 Dysregulation of 
normal pulmonary perfusion (for example, via loss of adap-
tive hypoxic vasoconstriction), can result in maladaptive/
pathologic perfusion of unaerated tissue,8,9,64,74 and mild 
pulmonary hypertension is reported often.31,57,129,160 Severe 
COVID-19 infections are associated with long-term impair-
ment of pulmonary function, as indicated by reduced diffusion 
capacity; a meta-analysis of pulmonary function in recovering 
COVID-19 patients found reduced carbon monoxide diffusion 
capacity (DLCO).164

Several studies have demonstrated the utility of radiologic 
imaging in both prognosis and investigation of the pathophysi-
ology of severe COVID-19 infection. Despite occasional negative 
radiologic imaging findings in patients with moderate to severe 
disease,80 patients usually present with imaging findings in-
dicative of interstitial pneumonia and vascular abnormalities. 
Chest X-rays   and computed tomography (CT) often reveal 
diffuse, bilateral ground-glass opacities (GGO), predominantly 
in peripheral, basilar, and posterior lung regions; these progress 
to consolidations over the course of the disease.15,39,73,81,172,180 
CT further demonstrates GGO, air bronchograms, ‘crazy pav-
ing’ patterns, interlobular and interstitial thickening, frequent 
pulmonary embolism, vascular abnormalities that include 
congestion and filling defects, and occasional pleural effu-
sions.8,9,11,15,29,147,153 Pulmonary scintigraphy of the conducting 
airways shows intense tracer uptake, indicating tracheobronchi-
tis.169 Dual-energy CT and CT angiography show correlations 
between GGO, pulmonary perfusion defects, and abnormal 
coagulation parameters, such as D-dimer levels, indicating se-
vere disease.70,97,145 Dual-energy CT has revealed high perfusion 
of areas of GGO and consolidation, suggesting loss of physi-
ologic hypoxic vasoconstriction.97,132,160 Using paired analysis of 

matched postmortem pulmonary samples, one group correlated 
CT imaging findings with histopathologic patterns of diffuse 
alveolar damage (DAD); GGO were associated with exudative 
DAD, crazy paving patterns with proliferative (or organizing) 
DAD, and consolidation with fibrosis.12

CBC analysis in COVID-19 patients often reveals neutro-
philia, including increased numbers of immature neutrophils, 
and lymphopenia.39,73,81,172 Other abnormal peripheral blood 
immune cell parameters include a relative increase in T cells, 
monocytes, NK cells, and neutrophils exhibiting upregulated 
activation states.111,141,177,184 COVID-19 infection is associated 
with numerous blood indicators of inflammation, including 
elevated C-reactive protein, erythrocyte sedimentation rate, 
ferritin, procalcitonin, bradykinin, and IL1, IL6, IL8, and 
TNFα.39,107,167,183 Coagulation abnormalities and vascular  
endothelial cell dysfunction are common also.2,39,70,73,101,142,161,170,201

Bronchoalveolar lavage fluid (BALF) commonly contains 
viral RNA14,66 and elevated cellularity, including monocy-
tosis and lymphocytosis (mostly CD4+ and CD8+ T cells but 
also plasmacytes).14,65,66,69,171 Some groups have reported low 
T-cell counts associated with severe disease.45,103 Monocyte-
derived inflammatory macrophages drive BALF monocytosis, 
and tissue-resident alveolar macrophage numbers are re-
duced markedly.41,103,173 Evidence of SARS-CoV-2 infection 
of and replication within monocyte-derived inflammatory 
macrophages and blood monocytes has been reported.69,87 
However, one group reported that infected blood monocytes 
and macrophages abort infection and do not produce infectious 
virions.87 Infiltrating lymphocytic and monocytic cells show 
highly activated phenotypes.14,65,66,69,194 Although not as com-
mon as in other types of ARDS, a subset of patients exhibits 
elevated neutrophil levels in BALF; this finding may depend 
on the timing of specimen collection relative to symptom 
onset or initiation of ventilatory support.14,69,170,199 Single-
cell transcriptomic analysis of BALF cell populations reveals 
upregulation of proinflammatory cytokine and chemokine 
genes, including Ccl2, Ccl7, Ccl8, Ccl13, Cxcl10, Il1b, Il8, and 
Tnf,41,45,69,194 IFN-stimulated genes, and complement activa-
tion.45,69,194,199 However, IL6 levels are occasionally relatively 
low.69,170 Low BALF:blood ratios of several proinflammatory 
cytokines, including IL6, may reflect the decompartmentali-
zation or systemic release of pulmonary cytokines.170 Pleural 
effusion may occur during severe disease, with lymphocytosis, 
histiocytosis, hemophagocytosis, and occasional atypical meso-
thelial cells.29,30 Elevated levels of vasoactive eicosanoids and 
vascular endothelial growth factor may also be present, indicat-
ing endothelial injury.170 Cellular analysis of nasopharyngeal 
and pharyngeal specimens from patients with severe disease 
showed the infiltration of neutrophils and monocyte-derived 
inflammatory macrophages and upregulation of proinflam-
matory cytokines.41

SARS-CoV-2–induced Lung Pathology  
in Humans

Postmortem respiratory histopathology from COVID-19 pa-
tients is heavily biased toward later and more severe disease, 
and as such, several important caveats should be understood. 
Potential confounding factors include comorbidities, super-
infection, iatrogenic insults like mechanical ventilation, and 
postmortem autolytic changes.21,118 Furthermore, most autopsy 
studies are performed at single institutions and do not compare 
findings with controls or reference specimens (for example, 
specimens obtained from healthy tissue or other pulmonary 
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disease, including other types of viral interstitial pneumonia).86 
Most COVID-19 postmortem respiratory specimens show 
histopathologic changes similar to ARDS caused by other in-
sults, and therefore are not pathognomonic.91 Finally, a major 
characteristic of COVID-19 respiratory pathology is spatial and 
temporal heterogeneity, which complicates the ability to provide 
universal characterization.20,25,28,29,49,116,118

Gross examination of COVID-19 postmortem respiratory 
tissue demonstrates increased lung weight, foci of infarction 
and hemorrhage, extensive congestion and edema,15,25,60,99 
pulmonary arterial thrombosis, and pulmonary embolism and 
infarction.20,25,75,99 Occasionally pleural effusion is reported 
also.29,99 SARS-CoV-2 RNA and protein are detected in epithe-
lia throughout the majority of the respiratory tract, including 
epithelia of the conducting airways and both type I and II 
pneumocytes, as well as within pulmonary endothelial cells, 
alveolar macrophages, and hyaline membranes.22,109,123,146,188,192 
Postmortem histopathology of the conducting airways dem-
onstrates upper respiratory tract inflammation, including 
pharyngeal, tracheal, bronchial, and bronchiolar lymphocytic 
and neutrophilic infiltration and edema.13,15,20,25,60,115,119,150,169

The central histopathologic feature in the lungs of COVID-19 
patients is DAD. Exudative DAD is present for about 7 to 
14 d after symptom onset and includes hyaline membranes, 
epithelial damage and necrosis, pneumocyte necrosis and 
desquamation, alveolar edema, and alveolar septal thicken-
ing.2,20,25,29,34,109,126,186,192 Postmortem analysis also reveals signs 
of proliferative (or organizing) DAD, including hyperplasia of 
type II pneumocytes and myofibroblasts, atypical pneumocytes, 
alveolar fibrin deposition, and extracellular matrix deposi-
tion.20,25,29,34 One group reported an elevated number of type 
II pneumocytes with a dysfunctional transitional phenotype, 
referred to variously in the literature as preAT1 transitional 
cells, damage-associated transient progenitors, and alveolar 
differentiation intermediates.113 Viral cytopathic effects, includ-
ing multinucleated cells and viral inclusion bodies, are reported 
occasionally.60,133,163,192

Vasculopathy and thromboembolic pathology are more 
frequent in CARDS compared with other causes of ARDS, 
including influenza.2,75,125 Pulmonary vascular pathology 
and coagulopathy are indicated by endothelial damage and 
necrosis, vasculitis including capillaritis, capillary micro-
thrombosis, alveolar fibrin deposition, alveolar hemorrhage, 
vascular congestion, arterial and venous thromboembolism, 
and angiogenesis.2,20,25,99,115,168,175,186 Some studies report acute 
fibrinous organizing pneumonia, in which extensive alveolar 
fibrin deposition is a hallmark histopathologic description.91,116

Light microscopy demonstrates lymphocytic perivascular 
infiltrates and a mononuclear, primarily lymphocytic, inter-
stitial infiltrate.2,15,25,34,60,115,163 Immunohistochemistry staining 
indicated that the infiltrating lymphocytes were primarily CD4+ 
and CD8+ T cells,60 whereas single-cell transcriptomic analysis 
found no evidence of an increase in T cells in pulmonary tis-
sue, suggesting the lymphocytes detected by histopathology 
may mostly be NK cells.47,95 Some groups have reported that 
macrophages predominate in the alveolar space.34,134 One group 
found evidence of increased dendritic cells and macrophages 
by transcriptomic analysis of postmortem pulmonary tissue, 
whereas another group using the same method reported a high 
frequency of aberrantly activated monocyte-derived inflamma-
tory and tissue-resident alveolar macrophages.47,113

Although not reported as commonly in CARDS as in gen-
eral ARDS, a predominantly neutrophilic infiltrate, leading 
to neutrophilic capillaritis and present within alveoli and 

tracheal mucosal interstitium, is detected occasionally. This 
infiltrate is sometimes interpreted as resulting from superinfec-
tion.13,20-22,34,115,163 Neutrophils in microthrombi and neutrophil 
extracellular traps also appear to be involved in vascular and 
thromboembolic pathology.117,125,126,135 Some reports indicate 
occasional histopathologic signs of both bacterial and fungal 
infection.20,56,71,82,115,175 Other signs of inflammation include 
multinucleated interstitial cells25,29 and elevated proinflam-
matory cytokine production (for example, IL1, IL6, TNFα, and 
CXCL10).105

Pulmonary specimens obtained during late-stage or postacute 
disease show fibrotic changes and tissue remodeling, including 
continued interstitial extracellular matrix deposition, fibro-
blast and myofibroblast hyperplasia, and intraalveolar fibrous 
material.12,17,25,60,102,149 CARDS patients also show evidence of 
fibroproliferative disease, including extensive histopathologic 
indications of tissue remodeling, a profibrotic gene expression 
and proteomic profile in monocyte-derived macrophages, 
and signs of restrictive pulmonary mechanics.174 In addition, 
COVID-19–associated fibrotic changes can occur simultaneously 
in acute and subacute disease.134

Pathologic analysis of pulmonary specimens has contributed 
enormously to our understanding of the pathophysiology of 
COVID-19. However, relatively few premortem lung biopsies 
have been taken from patients due to safety risks, including the 
frequently critical condition of patients and risk of infectious ex-
posure.29,62 Histopathology of transtracheal and transbronchial 
biopsies indicate interstitial pneumonia with lymphocytic and 
monocytic infiltrates, exudative and proliferative (or organ-
izing) DAD, and endothelialitis.89,133,162,195 Biopsy specimens 
obtained earlier in infection show less vasculopathy.133,160,163 
Evaluation of transudative pleural effusion fluid has revealed 
lymphocytosis, histiocytosis, hemophagocytosis, and occasional 
atypical mesothelial cells; viral cytopathic effects have not been 
observed, and SARS-CoV-2 RNA has been undetectable.30 
Compared with postmortem biopsies, which are systematically 
biased toward late stage and critical disease, in vivo respiratory 
tract biopsies from patients with severe disease will be crucial 
to advancing knowledge of pathologic characteristics of SARS-
CoV-2 infection in humans.

NHP as Models of SARS-CoV-2–induced  
Respiratory Disease and Lung Pathology

Several NHP species have been used to study COVID-19, the 
most common of which are rhesus macaques (Macaca mulatta), 
cynomolgus macaques (Macaca fascicularis), and African green 
monkeys (AGM, Chlorocebus aethiops); we will also discuss 
hamadryas baboons (Papio hamadryas) and common marmo-
sets (Callithrix jacchus). NHP exhibit a high degree of genetic, 
anatomic, physiologic, and immunologic similarity to humans 
and closely reflect the human cellular expression profile and 
amino-acid sequence of ACE2.5,43,165,179 However, NHP mod-
els have several limitations, including high costs and labor, 
low supply of animals relative to demand, and ethical issues. 
Furthermore, NHP experiments involve low sample sizes and 
often lack standardization of experimental design and report-
ing.37,43,158,165,179 Nonetheless, these animals are indispensable 
for understanding SARS-CoV-2 pathogenesis and for the de-
velopment and assessment of prophylactic and therapeutic 
measures against COVID-19.

Like humans, NHPs usually develop asymptomatic in-
fections and mild to moderate clinical disease with high 
interindividual variability.18,36,37,44,46,58,76,121,138,144,151,155,165,182 
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With the exception of 4 aged AGM used in 2 studies,19,58 NHP 
do not develop severe clinical disease or acute respiratory 
distress syndrome.36,48,106,121,138,182,190 Several reports indicate 
that more severe pulmonary disease, higher viral burden, and 
prolonged virus shedding occur in aged NHP.19,138,155,166,190 
Currently, the incidence of severe disease is not different in 
male and female NHP.

A meta-analysis of studies using rhesus macaques, cynomol-
gus macaques, and AGM revealed similar disease parameters, 
including early blood leukocytosis and prolonged interstitial 
pneumonia, in all 3 species. However, the clinical presentation 
in these 3 species was significantly different from that in hu-
mans, with rhesus macaques providing a potentially superior 
model.179 Compared with cynomolgus macaques and common 
marmosets, rhesus macaques provided a superior model of 
mild to moderate COVID-19.106 However, despite similar viral 
lung titers, AGM and baboons showed more indications of 
severe disease than did age-matched rhesus macaques.19,155,182 
Common marmosets appear to be relatively resistant to both 
SARS-CoV-2 infection and clinical disease.106,155

NHP show viral shedding is detected throughout the respiratory 
tract, including nasal, oropharyngeal, tracheal, bronchial, and 
pulmonary tissue.18,19,36,44,46,48,68,76,85,106,121,138,144,151,155,166,182,190,196 
Viral replication in the upper respiratory tract peaks at 1 to 3 dpi, 
whereas in the lower respiratory tract, viral levels peak later and 
commonly persist through 14 to 18 dpi.19,106,138,151,155,156,182,190,196  
In addition, the time course of clinical disease is similar in 
humans and NHP, persisting for approximately 8 to 16 d in 
rhesus macaques.121,151 Common clinical signs in most NHP 
species include fever,18,44,46,58,76,84,85,92,106,121,138,151,155,156,166,182,196 
reduced appetite,19,36,44,48,58,84,121,138,151,157,182,196 mild weight  
loss,48,84,106,121,151,155,156,166,190 and lethargy.92,190,196 Clinical  
presentation can also include dehydration,58,121,138,151 
hunched posture,48,121,157 piloerection,121 pallor,121,138,151 ocular 
erythema,85 and rhinorrhea.138,182 Important indications of res-
piratory disease include occasional apparent dyspnea (evident 
by abdominal effort and nasal flaring),19,85 and increased respira-
tory sounds by auscultation.85 In contrast to humans, coughing 
occurs only occasionally in NHP58,85,121,196 but tachypnea is 
common,19,48,58,85,121,157 and irregular respiratory rate has been 
reported in some rhesus macaque studies.121,138,151 Tachycardia 
has been reported in rhesus macaques, cynomolgus macaques, 
and AGM.85 Finally, hypothermia, which has been reported 
in several NHP studies, sometimes correlates with severe 
disease.19,58,76

Overt respiratory distress and reduced pulmonary function 
are rarely reported in NHP. For example, a 2020 systematic 
review did not find acute hypoxemic respiratory failure, ex-
trapulmonary dysfunction, or lethal disease in any NHP.55 
Despite frequent relatively severe pulmonary pathology and 
radiologic findings (discussed later), NHP more commonly 
show mild to moderate clinical disease and therefore are not 
ideal models for CARDS. Despite these limitations, several pub-
lications indicate the potential for NHP to model severe disease 
with hypoxemic respiratory distress.19,48,58,76,85,121,138,151,157 In 
particular, severe disease with respiratory distress that required 
euthanasia was described in aged AGM.19,58 Furthermore, dysp-
nea and tachypnea or irregular respiration was seen in rhesus 
macaques, cynomolgus macaques, and AGM.19,48,58,85,121,138,151,157 
Another study detected a transient reduction in pulmonary tidal 
volume in AGM.76 Finally, pulse oximetry has occasionally de-
tected hypoxemia, including severe hypoxemia that corresponds 
to lethal disease, in aged NHP.19,58,85

Similar to those in humans, thoracic radiologic findings in most 
NHP commonly indicate interstitial pneumonia. Chest X-rays 
and CT reveal bilateral diffuse pulmonary infiltrates including 
GGO and consolidation,18,19,48,58,76,84,85,106,121,151,156,158,165,166,182,190 
predominantly in peripheral and caudal pulmonary re-
gions.84,121,144 Vascular abnormalities and crazy paving patterns 
are often detected by CT.23,76,85,108,144,155,190 Chest radiography 
revealed diffuse alveolar patterns in 2 studies that found se-
vere disease in aged AGM.19,58 Consistent with a lack of other 
clinical indications, common marmosets did not demonstrate 
pulmonary radiologic signs, which were more severe in rhesus 
macaques than in cynomolgus macaques.106 Residual pul-
monary lesions were present until as late as 38 dpi, after the 
resolution of acute disease.23 An extensive review of the vari-
ous imaging modalities used for SARS-CoV-2 models in NHP 
found that mild to moderate lung disease is detected consist-
ently in most infected NHP species but that severe radiologic 
abnormalities are uncommon.158 Compared with chest X-rays, 
CT is considered to be a more sensitive method for detecting 
radiologic abnormalities in NHP,158,165 and radiography corre-
lates well with gross pathologic and histopathologic findings.158

Blood analysis confirms inflammatory cellular responses in 
most NHP species. Monocytosis, neutrophilia, and lymphopenia 
are the most common findings,36,44,76,84,85,92,106,121,182,190 with some 
reports of lymphocytosis, neutropenia, leukopenia, and reduced 
NK cells.36,58,94,106,121,151,166,196 The results of CBC analyses appear 
to depend strongly on the timing of blood collection44,76,106,121,196 
and possibly on the inoculation dose.36 In particular, one study 
found that early lymphocytosis and later lymphopenia were 
likely the result of proliferation and subsequent pulmonary 
recruitment.5 Thrombocytopenia and other indications of 
systemic coagulopathy (including elevated fibrinogen levels, 
prolonged activated partial thromboplastin time, and up-
regulated thrombotic pathways) have been reported by several 
groups.4,44,76,85,155,166,182 Rare findings potentially resulting from 
respiratory dysfunction include hypercapnia and acidosis.155,156 
Finally, several NHP studies have detected regenerative anemia, 
which is not reported to occur in humans.85,121,155,182

NHP also exhibit numerous signs of systemic inflammation 
and both vascular and respiratory disease. Elevated markers of 
systemic inflammation include many inflammatory cytokines, 
chemokines, and acute phase proteins, frequently IL1a, IL1b, 
IL10, IFNα, IFNβ, IFNγ, IL1RA, TNFα, IP10, MIP1b, MCP1, and 
C-reactive protein.4,18,19,36,58,68,76,84,106,108,121,155,156,166,182,196 Levels 
of IL2, IL4, IL5, IL13, IL15, and CCL11 are also often above 
baseline.19,68,76,84,106,155,166,182,196 Consistent with human disease, 
multiple reports demonstrate the importance of the timing and 
balance of cytokine production in determining the severity and 
progression of disease in NHP.19,58,156

BALF examination in NHP reveals elevated proinflammatory 
cytokines, chemokines, and IFN-stimulated genes. IL6 and IL8 
are the most commonly reported elevated proinflammatory 
cytokines, but other elevated factors include IL1b, IL10, IFNα, 
IFNγ, IL1RA, TNFα, IP10, MIP1b, MCP1, and perforin.4,155,182,196 
Monocytosis was reported in 2 studies,58,182 one of which also 
reported neutrophilic infiltrates.58 Transcriptomic analysis of 
bronchoalveolar lavage cells revealed more severe inflammation 
in baboons compared to rhesus macaques, and in older baboons 
compared to younger baboons.155 In rhesus macaques, younger 
individuals showed increased type I IFN signaling compared 
to older individuals.139 The same method also revealed a cor-
relation between severe disease and inflammatory infiltration, 
and milder disease was associated with both IL10:IL6 and 
kynurenine:tryptophan ratios.58 Single-cell transcriptomics 
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showed active viral replication in pneumocytes,157 and tran-
scriptomic analysis of both blood and bronchoalveolar lavage 
cells indicated upregulation of pathways associated with com-
plement and platelet activation, thrombosis, vascular injury and 
repair, and neutrophil degranulation.4,139

Pathologic examination of the lungs of SARS-CoV-2–infected 
NHP tends to show mild to moderate pathology overall. Gross ex-
amination of infected NHP pulmonary tissue largely corroborates 
findings in humans, with multifocal to diffuse signs of inflamma-
tion, tissue damage, consolidation, hyperemia, and hemorrhage 
in most NHP species.19,36,44,84,85,106,121,138,144,156,157,182,196 Focally 
diffuse hemorrhage was the most common finding on mac-
roscopic examination in one review.165 One study reported 
pulmonary edema, detected as increased lung weight relative to 
body weight in rhesus macaques.121 Some studies also described 
hilar or mediastinal lymphadenopathy18,106,157,165 and occasional 
pleural adhesions.18,85,121,196

Inflammation and tissue damage in the upper respiratory tract 
and conducting airways are common features in NHP. Rhinitis, 
tracheitis, bronchitis, and bronchiolitis involve both mononu-
clear cells and granulocytes. Mucosal epithelial damage and 
necrosis can coincide with inflammation.18,36,42,44,121,138,155,156,182 
As in humans, NHP show rare multinucleated cells through-
out the respiratory tract.18,19,36,42,58,85,138,155 One study reported 
upper respiratory tract squamous metaplasia and bronchiolar 
lymphoid hyperplasia in rhesus macaques.121 The same group 
used electron microscopy to observe edematous but intact 
alveolar epithelial basement membranes in the context of in-
terstitial and alveolar inflammation.121 Finally, as in humans, 
rhesus macaques, cynomolgus macaques, and AGM show 
SARS-CoV-2 antigen extensively throughout the respiratory 
tract, including in type I and II pneumocytes, upper respiratory 
tract and conducting airway epithelial cells,18,36,48,106,121,138,182,190 
and alveolar macrophages.18,121,182,190 One study reported viral 
antigen detection in pulmonary endothelial cells of AGM.104

Although NHP primarily develop only mild clinical signs, 
they often have moderate to severe pulmonary histopathology. 
Compared with those of New World NHP species, including 
common marmosets and squirrel monkeys, Old World Species 
(rhesus macaques, cynomolgus macaques, AGM, and baboons) 
typically show more severe histopathologic abnormalities.42,155 
Pulmonary inflammation was more severe in baboons than 
rhesus macaques, but common marmosets had no major patho-
logic findings.155

The most common histopathologic finding in NHP 
is multifocal and diffuse interstitial pneumonia of vari-
able severity.18,19,36,42,44,48,85,92,94,106,121,138,144,151,155,156,182,190,196 
Bronchial and bronchiolar involvement is observed occa-
sionally.58,121,138,144,151,182 Severe DAD with extensive hyaline 
membrane formation is less common in NHP than in human 
autopsy reports. However, NHP frequently exhibit less severe 
alveolar epithelial and interstitial pathology (for example, cel-
lular necrosis and debris, alveolar septal thickening, alveolar 
edema, alveolar fibrin deposition, and alveolar hemorrha
ge).18,19,36,42,48,58,85,106,121,138,151,155,182,190,196 Type II pneumocyte 
hyperplasia is often reported in NHP.18,58,85,121,138,182 In addi-
tion, NHP appear to model several elements of vasculopathy 
that are associated with COVID-19, including endothelialitis 
and vasculitis, pulmonary microthrombi, alveolar hemorrhage, 
and both intimal smooth muscle and endothelial cellular pro-
liferation.4,58,84,92,106,151,155,182 However despite common signs 
of vascular disease, obvious coagulopathy is observed only 
occasionally.76,85,155,165,166,182

The inflammatory infiltrate profile in NHP lungs is similar 
to that seen in human autopsies. Mononuclear cells consisting 
of monocytes and T cells predominate in the interstitium and 
perivascular regions.18,19,36,44,85,106,121,138,144,151,156,196 Further 
reflecting the composition of the inflammatory infiltrate in 
humans, pulmonary neutrophils are present but less frequent 
in NHP,19,44,121,138,156 and eosinophils are rarely seen.44,121,155  
Macrophages, including infiltrating monocyte-derived inflam-
matory macrophages, are common in alveolar lumens.19,48,121,138,155 
One study reported increased elevated peripheral blood neutro-
phils at 1 dpi and persistent (2 weeks post-infection) elevation 
of CD8+ T cells in the lungs of aged rhesus macaques, and 
another found a correlation between pulmonary CD4+ T cells 
and lymphopenia.156,196 Common marmosets showed only 
mild pneumonitis as compared with other NHP species.106,155 
Although most NHP necropsies are performed during the acute 
or subacute disease period, residual pulmonary inflammatory 
infiltrates have been detected in AGM as long as 5 wk after 
infection.76 Fibroproliferative pathology, including alveolar septal 
thickening and elevated pulmonary collagen deposition, is 
often noted during early convalescence,4,18,44,85,121,138,155,156 with 
fibrosis and type II pneumocyte hyperplasia more frequent in 
cynomolgus macaques and AGM than in rhesus macaques.85

Hamsters as Models of SARS-CoV-2–induced 
Respiratory Disease and Lung Pathology

Although NHP exhibit many features of human SARS-CoV-2–
induced disease, in-depth pathogenesis studies frequently 
require a smaller, more cost-effective model. Syrian golden 
hamsters (Mesocricetus auratus) have proven to be a suitable 
model for studying COVID-19. The natural susceptibility of 
hamsters is due to the high similarity of their ACE2 amino acid 
sequence at the receptor binding domain of the SARS-CoV-2 S 
glycoprotein to that of humans. This feature allows evaluation 
of human clinical isolates without the need to alter either the 
virus or recipient animal, and the resulting disease includes 
many of the characteristics of COVID-19 patients.35 In addition, 
hamsters are readily available, relatively inexpensive to house, 
and generally easy to manage and handle. The sparse availabil-
ity of hamster-specific laboratory reagents is a key limitation 
of this model. Furthermore, unlike humans and many other 
animals, hamsters do not have easily accessible large veins for 
serial blood sampling, thus limiting evaluation of hematologic, 
clinical chemistry, and coagulation parameters. Similarly, BALF 
evaluation of challenged, untreated hamsters is rarely reported, 
indicating an additional limitation of this species.

The course of infection and rapid viral clearance in ham-
ster models of SARS-CoV-2 infection closely mirror those of 
humans. Viral antigen and RNA are detected in bronchiolar 
epithelial cells, type I and II pneumocytes,40,127,140 and olfac-
tory sensory neurons, basal cells, and sustentacular cells of 
the olfactory epithelium in the nasal turbinates.193 Throughout 
infection in hamsters, viral RNA load and infectious viral titers 
follow similar timelines in both the lungs and nasal turbinates. 
Both viral RNA and infectious viral titers peak at 2 dpi, and 
infectious virus is often below the limit of detection by 7 to 
10 dpi.35,40,50,83,127,140,154,191,193 Viral RNA is typically detectable 
through 14 dpi or later.50,127 In addition, young hamsters clear 
infectious virus and viral RNA faster than aged hamsters.127 
Finally, the long-lasting infection and reduced viral clearance 
of immunocompromised or immunosuppressed COVID-19 
patients can be modeled in immunosuppressed hamsters.27
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Compared with humans, hamsters display fewer signs of 
clinical disease and have little to no incubation period after in-
oculation. The hallmark clinical sign is progressive body weight 
loss starting at 1 to 2 dpi and typically peaking around 6 to 7 
dpi;35,40,50,83,127,140,191 hamsters are generally fully recovered by 
2 to 3 wk after infection.35,50,83,127,140 Other commonly reported 
clinical signs include lethargy, weakness, ruffled fur coat or pi-
loerection, hunched posture, and respiratory distress in the form 
of rapid or labored respiration starting at approximately 2 to 3 
dpi.35,40,140,191 Unlike humans, hamsters do not develop fever or 
significant changes in body temperature throughout the course 
of infection.127,140 In addition, no mortality is reported, except 
for the rare scenario of an animal reaching humane endpoint 
criteria due to excessive body weight loss.83 Inoculation dose 
plays a large role in disease severity in hamsters. Lower inocu-
lation doses of 103 pfu often result in fewer clinical symptoms 
and slower pathology onset but still yield similar viral replica-
tion kinetics and pathology by 6 to 7 dpi.83,140,191 Like humans, 
hamsters have greater risk of severe disease with advanced 
age and male sex. Multiple research groups have reported that 
male hamsters are more susceptible than females to developing 
clinical disease; males show more severe disease signs, includ-
ing greater weight loss and longer time to recovery50,143,191 and 
show more severe pulmonary damage.50,143,191 In addition, aged 
hamsters show worse disease outcomes than do young animals, 
including greater and more consistent weight loss and more 
widespread and pronounced pathologic findings.83,127 However, 
in one study, neither sex nor age influenced clinical signs, body 
weight loss, or pathologic findings.140

Due to their small size, conventional chest X-rays are not 
commonly performed in hamsters, but CT and positron emis-
sion tomography (PET) are viewed as comparable imaging 
techniques.24,50,83,143 Similar to COVID-19 patients, infected 
hamsters demonstrate bilateral GGO and lung consolidation 
indicative of interstitial pneumonia.26 In particular, abnormal 
µCT findings were found in infected hamsters until 20 dpi; 
these included transient pneumomediastinum in all animals 
on study.83 In addition, PET scans of SARS-CoV-2–infected 
hamsters that were surgically implanted with central venous 
catheters showed heavy dye accumulation in pulmonary lesions 
at 24 h after intravenous injection of 124I-iodo-DPA-713.143 These 
imaging techniques allow disease progression to be monitored 
in a noninvasive manner.

Hamsters can exhibit a ‘cytokine storm’ after infection with 
SARS-CoV-2. Proinflammatory cytokines and IFN, including 
IFNγ, IL6, IL10, TNFα, and IFNα, are potently induced starting 
at 2 dpi, peak at 4 dpi, and return to baseline by 7 dpi.35,50,154 In 
addition, at 7 dpi, TGFβ levels increase, suggesting resolution 
of the acute inflammatory response.35 This cytokine storm is 
thought to help control infection and reduce viral load but also 
likely promotes the development of more severe pulmonary 
pathology.24 In the nasal turbinates, cytokine expression follows 
a similar timeline, with abundant expression of proinflamma-
tory cytokines and chemokines that include IL1β, IL6, TNFα, 
CCL3, CCL5, and CXCL10.193 In contrast to pulmonary tissue, 
IFNα and IFNγ levels are not significantly elevated in nasal 
turbinates.193

Infected hamsters exhibit gross pulmonary consolidation, 
with approximately 50% to 60% of the lungs affected by 7 
dpi.35,40 Macroscopic pulmonary findings commonly include 
large patches of focal inflammation, pulmonary edema, 
intense red and brown lung discoloration, increased lung 
weight and lung-to-body weight ratios, and interstitial pneu-

monia.35,40,143,154,191 These features closely mirror many of the 
hallmark gross findings present in COVID-19 patients.

Comparable to COVID-19 in humans, DAD is the main 
histopathologic feature of SARS-CoV-2 infection in hamsters. 
Evidence of DAD can be seen as early as 2 dpi, with peak 
damage at 5 to 6 dpi, and evidence of resolution by 10 to 14 
dpi. Elements of DAD seen in hamsters are very similar to 
those of humans, including alveolar epithelial damage and 
necrosis, alveolar septal thickening, cellular desquamation, 
hyaline membranes, protein-rich exudates in the alveoli, and 
alveolitis.35,40,127,140,191 Another common feature of humans 
and hamsters is moderate to severe diffuse or multifocal 
bronchointerstitial pneumonia.24,35,40,127,140,191 In addition, 
signs of proliferative DAD are present in hamsters, including 
pulmonary epithelial hyperplasia and hypertrophy, papillary 
projections into luminal spaces, atypical hyperplastic prolifera-
tive type II pneumocytes, and multinucleated cells.35,40,50,127,140 
Furthermore, hamsters exhibit many of the key signs of ALI 
seen in humans110 and display similar features of vascular 
injury, including vascular leakage, alveolar hemorrhage, and 
vasculitis.35,40,83,191 Vascular endothelialitis and alveolar fibrin 
deposition have been reported also.40,127,140 Although DAD is 
a hallmark feature of SARS-CoV-2 infection in hamsters, it is 
not associated with severe morbidity or high mortality, as it is 
in humans.32,88

Inflammatory cell infiltration is another hallmark feature of 
SARS-CoV-2 infection in both humans and hamsters. Mononu-
clear cell infiltrates, including macrophages and monocytes, are 
reported in nearly all parts of the lungs, from the pulmonary 
interstitium and bronchioles to the alveolar septa and alveolar 
sacs.24,35,40,50,83,127,140,143,154 Reports also indicate infiltration of 
CD3+ T cells, polymorphonuclear cells, and multinucleated 
cells into the lungs.24,143,154 Similar to humans, fibrosis of the 
lungs occurs during the late stages of infection in hamsters and 
includes mild, multifocal pleural fibrosis, interstitial fibrosis, 
and perivascular fibrosis.40,140

Hamsters have been used more extensively than other 
animals to study the pathogenesis of SARS-CoV-2 in the upper 
respiratory tract. Viral replication kinetics after nasal infection 
and cellular damage follow a similar timeline as that described 
for the lungs. Nasal pathology after SARS-CoV-2 infection 
includes epithelial cell death and desquamation, submucosal 
infiltration in the nasal turbinates, accumulation of cell debris 
in the terminal space, and olfactory sensory nerve desqua-
mation.193 After intranasal infection, viral antigen has been 
detected in nasal epithelial cells, nasal mucosa, and sensory 
neurons, suggesting that hamsters might develop anosmia, one 
of the hallmark symptoms of COVID-19 in humans.193

Mice as Models of SARS-CoV-2–induced  
Respiratory Disease and Lung Pathology

Mice (Mus musculus) are often used to model human disease 
due to their small size, relatively low cost, ease of genetic manip-
ulation, wide availability of reagents, and ability to control many 
environmental factors to best replicate human disease. Although 
SARS-CoV-2 can infect standard inbred mice via endogenous 
mouse ACE2 (mACE2), viral replication is low and does not re-
sult in severe disease as occurs in humans.1 Many mouse models 
have been proposed to better reflect the disease and pathology 
observed in humans, but the discussion here will be limited to 
2 main approaches: a transgenic approach (K18-hACE2 mice) 
and a mouse adaptation approach (SARS-CoV-2–MA10 strain). 
Both of these models are available to the research community, 
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either as mice purchased from animal vendors or as viral stocks 
obtained from the Biodefense and Emerging Infections Research 
Resources Repository (BEI Resources).7

A common and well-characterized transgenic model used 
to study SARS-CoV-2 is the K18-hACE2 (K18) mouse. First 
created in response to the 2003 SARS-CoV epidemic, K18 mice 
express human ACE2 under the control of the human cytokera-
tin 18 promoter.112 The S glycoproteins of both SARS-CoV and 
SARS-CoV-2 have higher binding affinity to human ACE2 than 
to mouse ACE2 on epithelial cells. Most importantly, human 
ACE2 is expressed on airway epithelia, a key site of SARS-CoV-2 
infection and replication, in the K18 model. Virus is frequently 
detectable in the brains of K18 mice after infection but does 
not typically result in signs of neurologic disease.67,136,189 The 
presence of virus in the brain of K18 mice likely reflects an 
overexpression of human ACE2 beyond what is physiologi-
cally normal in humans. However, the K18 model includes 
anosmia, which occurs in both symptomatic and asymptomatic 
COVID-19 patients.197 K18 mice may exhibit disease that is 
more severe and less confined to the respiratory system than 
that of humans.

The cellular targets of SARS-CoV-2 in the lower respiratory 
tract of K18 mice are almost exclusively alveolar epithelial 
cells.33 Viral titers peak at 4 dpi and localize primarily in type 
I pneumocytes and, to a lesser extent, type II pneumocytes. 
By 6 dpi, virus particles are found in both type I and type II 
pneumocytes. Overall, this pattern of infection differs from 
that of humans, in which type II pneumocytes are the primary 
site of infection. The bronchiolar epithelium, including ciliated 
and nonciliated (club) cells, shows no evidence of infection. 
Furthermore, the pulmonary endothelial cells of K18 mice are 
not infected,33 another difference from the human form of the 
disease, in which virus is found in both conducting airway 
epithelia and pulmonary endothelial cells.

More recently, several groups have used virus adaptation to 
provide better binding of the S glycoprotein of SARS-CoV-2 to 
mouse ACE2 and allow infection in mice.51,72,100,122,159,181 The 
first strain to be published, named SARS-CoV-2-MA (mouse-
adapted), was created by using reverse genetics to alter key 
residues of the S glycoprotein.51 Serial passage of this virus strain 
in BALB/c mice yielded a more pathogenic virus, named SARS-
CoV-2-MA10 (MA10).100 Additional mouse-adapted strains 
have been developed through serial passage with or without 
the aid of reverse genetics and show different mutations in the 
S glycoprotein and nonstructural viral proteins.72,122,159,181 Each 
of these viral strains results in successful infection of standard 
inbred mouse strains, severe clinical disease, and pathology 
mirroring that commonly seen in human patients.72,100,122,159,181 
These characteristics are useful in investigating the pathologic 
mechanisms of SARS-CoV-2–associated disease and potential 
therapeutics.

In situ hybridization in MA10 mice revealed selective infec-
tion of type II pneumocytes, reflective of the cellular tropism 
of SARS-CoV-2 in humans, accompanied by a loss of surfactant 
protein transcripts (Sftpc and Sftpb) during the peak of viral 
replication at 2 dpi.100 In the terminal bronchiolar region, 
SARS-CoV-2 antigen selectively colocalizes with secretory club 
cells rather than ciliated epithelial cells. This finding suggests 
selective infection of club cells, a phenomenon that has not been 
reported in humans.100

Infectious virus has been detected in the lungs of K18 mice 
as early as 2 d after intranasal inoculation.136,178,197 Viral RNA 
in the lung is found primarily in alveolar epithelial cells and, as 
the infection progresses, expression diminishes in association 

with the accumulation of cellular debris and collapsed alveoli.178 
Viral RNA has been detected in nasal turbinates until 8 dpi, 
with minimal pathology and cellular sloughing in the olfactory 
epithelium.67,136,197 At later time points (6 to 7 dpi), infectious 
virus and viral RNA have both been detected in the brain.197 In 
the MA10 model, viral replication in the lung peaks at 1 to 2 dpi 
and drops below detectable levels by 7 dpi in 10- to 12-wk-old 
BALB/c and C57BL/6J mice.100 Viral antigen labeling follows 
a similar trend, is localized primarily in type II pneumocytes, 
and is associated with a loss of surfactant protein transcripts. 
Infection of aged BALB/c mice shows a similar peak in viral 
replication at 1 to 2 dpi; however, replication levels are main-
tained throughout the course of the infection.100,136 This pattern 
is consistent with the exacerbation of disease severity with age 
in humans.

General signs of disease for both K18 mice and MA10-infected 
BALB/c mice include rapid weight loss, lethargy, ruffled fur, 
hunched posture, and labored breathing.67,100,136,189 Both models 
show dose-dependent increases in morbidity and mortality, 
with many mice reaching euthanasia criteria by 7 dpi.67,100,178,197 
The MA10 model shows variable recovery in the later stages of 
infection for young adult mice, with some mice recovering and 
others continuing to lose weight, ultimately resulting in 15% to 
20% mortality by 7 dpi. Aged mice inoculated with 104 pfu of 
MA10 progressively lose weight, reflecting severe disease seen 
in elderly humans.100 Most studies of SARS-CoV-2 infection in 
K18 mice report no sex-associated differences in weight loss 
and mortality, although one study showed significant higher 
mortality in male mice infected with a low dose of virus.67 In 
addition, K18 mice exhibit signs of lymphopenia accompanied 
by neutrophilia in the systemic circulation, with decreased 
numbers of B cells, CD4+ T cells, CD8+ T cells, and monocytes at 
5 dpi.178 The severity of disease induced by MA10 is dependent 
on host genetic factors. Infection of C57BL/6J mice with MA10 
resulted in less severe disease and no mortality as compared 
with BALB/c mice.100 Depending on the goals of the study, 
this difference may help to achieve a specifically desired level 
of disease severity. However, in order to reproduce key disease 
phenotypes of COVID-19 patients, especially in severe cases, 
MA10 must be used in mouse strains that are relatively more 
susceptible to infection.

Pulmonary function after SARS-CoV-2 infection has been 
evaluated in mice. K18 mice display reduced lung compliance 
after SARS-CoV-2 infection. Results of a treadmill stress test 
show reduced exercise tolerance of infected mice at 5 dpi.178 
Based on results of mechanical ventilation and forced oscilla-
tion tests, abnormal lung parameters, characterized by reduced 
inspiratory capacity and increased respiratory resistance and 
elastance, can be detected by 7 dpi. Lastly, broadband forced 
oscillation maneuvers have revealed elevated tissue damping, 
elastance and stiffness in the peripheral airway, indicating 
that the primary site of disease is the lung parenchyma.178 In 
MA10-infected mice, whole-body plethysmography revealed 
increases in enhanced pause (PenH) and midexpiratory flow 
(EF50) and a decrease in the peak expiratory flow rate (Rpef),100 
indicating impaired pulmonary function.114 As compared with 
humans, both models (K18 and MA10) exhibit physiologic 
lung dysfunction after infection, including low compliance 
and reduced inspiratory capacity. Due to differences in lung 
anatomy and physiology between mice and humans, mouse 
measurements are not entirely accurate, nor as robust, as those 
of human patients. For example, important markers of physi-
ologic dysfunction, such as arterial oxygen partial pressure, are 
not easily measured in mice due to their low systemic blood 
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volume. Despite these limitations, both mouse models show 
evidence of lung dysfunction, as well as overt signs of dyspnea.

Similar to COVID-19 in humans, SARS-CoV-2 infection in 
both the K18 and MA10 models is associated with the upregula-
tion of proinflammatory cytokines and chemokines. TNFα, IL6, 
GM-CSF, CCL2, CCL7, CXCL10, and keratinocyte chemoattract-
ant (an ortholog of human IL8) are all elevated in K18 mouse 
serum after infection;67,189 another study reported upregulation 
of IL10.131 The serum of aged MA10-infected mice has elevated 
levels of IL6, IFNγ, G-CSF, and CCL2. In addition, plasma levels 
of D-dimers are elevated at 2 and 4 dpi, followed by elevation 
of bicarbonate anion concentration, hematocrit (Hct), hemo-
globin (Hgb), and prothrombin time at 7 dpi.178 These results 
are consistent with the hypercapnia and coagulopathy seen in 
COVID-19 patients. Taken together, results of blood analysis 
from both models shares many features with results seen in 
COVID-19 patients.

Due to the small size of mice, BALF collection is not com-
monly performed after SARS-CoV-2 infection; however, one 
study in K18 mice revealed an increase in CD45+ cells at 2 dpi, 
a peak in monocyte numbers at 4 dpi, and an increase in neu-
trophil and dendritic cell numbers through 7 dpi.178 Instead, 

protein evaluation of lungs collected at necropsy has been 
performed in both K18 and MA10 models. Lung homogenates 
of infected K18 mice display increases in IFNβ, IFNγ, TNF-α, 
G-CSF, IL1β, IL6, IL10, CXCL1, CXCL9, CXCL10, CCL2, CCL3, 
CCL4, CCL5, and CCL12.67,136,178 Increases in transcripts associ-
ated with hypoxia, including Sgp11, Retnla, Cxcl12, and Hif1a, 
have been reported also.67 Lung homogenates of aged MA10 
mice show increases in TNFα, IL1α, IL1β, G-CSF, IL5, IL6, IL10, 
and CCL2.100 Overall, both the K18 and MA10 mouse models 
recapitulate many of the same proinflammatory signals that are 
characteristic of ALI in humans.

Compared with NHP, the lung pathology of mice infected 
with SARS-CoV-2 tends to be more severe. At necropsy, as 
much as 80% of the lungs of K18 mice is grossly affected.189 
In the MA10 model, lungs tend to be firm, red and heavy.100 
Based on scoring of gross lung discoloration, aged mice show 
maximal discoloration scores on 4 to 5 dpi, indicating conges-
tion, edema, and DAD.100

As discussed above, ALI is a key feature of human SARS-
CoV-2 infection that can result in respiratory failure and ARDS. 
Features of ALI include rapid onset (within 24 h of exposure), 
histologic evidence of tissue injury, alteration of the alveolar–

Figure 2. Similarities to and differences from SARS-CoV-2–induced respiratory disease and pathology in animal models compared with  
humans. K18, K18-hACE2 transgenic mice; MA10, MA10 mice infected with mouse adapted SARS-CoV-2.
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capillary barrier, presence of an inflammatory response, and 
evidence of pulmonary physiologic dysfunction.110 Further-
more, the pathologic hallmark of ALI in humans is DAD.110 The 
correlation of ALI and DAD with death in severe COVID-19 
makes this feature of SARS-CoV-2 infection crucial in modeling 
the disease in mice. Accordingly, the American Thoracic Society 
has devised a scoring system to determine the level of ALI in 
animals based on the presence of neutrophils in alveolar and 
interstitial spaces, the formation of hyaline membranes, alveolar 
septal thickening, and proteinaceous debris in air spaces. In ad-
dition, a semiquantitative ordinal scale of 0, 1, or 2 based on all 
examined fields of lung tissue summarizes the extent of ALI in 
terms of histologic evidence.110 Both approaches document an 
inflammatory response and changes in pulmonary function as 
features of ALI in mice.

DAD is common after infection in both K18 mice and MA10 
mice, consistent with many of the features observed in humans. 
As with ALI, a scoring system created initially to evaluate 
the extent of DAD in mice infected with respiratory syncytial 
virus has been adapted to evaluate lung pathology in MA10-
infected mice.148 This semiquantitative ordinal scale scoring 
system ranging from 1 to 4 assesses the presence of cellular 
degeneration, sloughing, and necrosis, alveolar hemorrhage, 
cellular infiltrates, and hyaline membrane formation. In MA10 
mice, DAD and ALI scores increase starting at 2 dpi and remain 
high throughout acute infection.100 Pulmonary histopathology 
is characterized by epithelial cell sloughing, degeneration, or 
attenuation, segmental epithelial denudation, accumulation of 
leukocytes, fibrin, plasma proteins, and cellular debris in the 
airway lumen, and variable congestion and edema.90 However, 
the most severe damage occurs in the alveolar region, with mild 
hypercellular thickening of alveolar septa due to immune cell 
infiltration, pneumocyte necrosis, capillary congestion, and 
exudation of proteinaceous fluid and fibrin with occasional 
hyaline membranes.100 Mice infected with MA10 have many 
features of severe disease and develop DAD, especially in as-
sociation with hyaline membranes, which are not frequent in 
infected mice.90,110 In BALB/c mice, the severity of DAD scores 
correlates with viral lung titers at the height of acute disease 
(3 to 5 dpi).100

Another scoring system has been developed to quantify the 
pathology seen in K18 mice. This system generates a composite 
score based on the area of lung affected and 8 histologic mark-
ers, including perivascular inflammation, epithelial necrosis of 
bronchi and bronchioles, bronchial and bronchiolar inflamma-
tion, intraluminal debris in bronchi and bronchioles, alveolar 
inflammation, alveolar necrosis, fibrin deposition, and hyperpla-
sia of type II pneumocytes.136 However, the use of this scoring 
system revealed that the pathology seen in K18 mice was low 
in comparison to viral presence in the lungs,136 reflecting the 
need for standardization to better compare the histopathology 
of K18 mice and humans.

After infection, K18 mice develop interstitial infiltration of 
macrophages, neutrophils, and CD3+ T cells.67,197 Alveolar septal 
thickening occurs during infection, with Ly6G+ neutrophils and 
mononuclear cells occupying alveolar and interstitial spaces 
at 7 dpi.178 In addition, increases occur in numbers of Ly6C+ 
monocytes, CD11b+CD11c+ dendritic cells, NK cells, CD4+ T 
cells, CD8+ T cells, and CD44+CD8+ T cells. These inflamma-
tory infiltrates are similar to those seen in COVID-19 patients. 
MA10 infection also results in inflammatory infiltrate in the 
alveolar space. Although present, variable peribronchiolar 
and perivascular lymphocytic inflammation is not considered 
a key pathologic feature of ALI and thus is not scored in acute 

MA10 infection.100 As indicated by the increase in inflammatory 
cytokines, infection with MA10 results in a proinflammatory 
response, but the specific inflammatory cells involved require 
better characterization.

Conclusions
Although NHP, hamsters, and mice replicate many features 

of SARS-CoV-2–induced respiratory disease and pathology seen 
in humans, each animal model has limitations. When designing 
SARS-CoV-2 studies that use animals, an important considera-
tion for maximizing the translational potential of the study is 
to recognize the model’s similarities to and differences from 
humans (Figure 2). Because no single animal model captures 
all features of COVID-19 infection in humans, the best species 
to use will depend on the particular type of study. Practical 
factors, including animal size, housing, cost, and availability 
of applicable reagents, should also be considered. For example, 
although NHP may be better suited for evaluating the immuno-
genicity and efficacy of a potential mucosal vaccine that prevents 
infection in the upper respiratory tract, hamsters might be bet-
ter suited to the evaluation of a potential treatment designed 
to mitigate the development of severe respiratory disease. 
Alternatively, the large arsenal of immunologic reagents and 
relative ease and availability of genetic modification make mice 
a valuable model for detailed mechanistic studies evaluating the 
pathogenesis and immune response of SARS-CoV-2 infection. 
Appropriate use of animal models of SARS-CoV-2–induced 
respiratory disease will promote increased understanding of 
SARS-CoV-2 pathogenesis and the development of additional 
preventatives and therapies.
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