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Structured Abstract 

 

Objective 

 
Identifying sets of rare diseases with shared aspects of etiology and pathophysiology 

may enable drug repurposing and/or platform based therapeutic development. Toward that aim, 

we utilized an integrative knowledge graph-based approach to constructing clusters of rare 

diseases.  

 

Materials and Methods 

 
Data on 3,242 rare diseases were extracted from the National Center for Advancing 

Translational Science (NCATS) Genetic and Rare Diseases Information center (GARD) internal 

data resources. The rare disease data was enriched with additional biomedical data, including 

gene and phenotype ontologies, biological pathway data and small molecule-target activity data, 

to create a knowledge graph (KG). Node embeddings were used to convert nodes into vectors 

upon which k-means clustering was applied. We validated the disease clusters through 

semantic similarity and feature enrichment analysis. 

Results 

 
A node embedding model was trained on the ontology enriched rare disease KG and k-

means clustering was applied to the embedding vectors resulting in 37 disease clusters with a 

mean size of 87 diseases. We validate the disease clusters quantitatively by looking at semantic 

similarity of clustered diseases, using the Orphanet Rare Disease Ontology. In addition, the 
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clusters were analyzed for enrichment of associated genes, revealing that the enriched genes 

within clusters were shown to be highly related. 

Discussion 

 

We demonstrate that node embeddings are an effective method for clustering diseases 

within a heterogenous KG. Semantically similar diseases and relevant enriched genes have 

been uncovered within the clusters. Connections between disease clusters and approved or 

investigational drugs are enumerated for follow-up efforts. 

Conclusion 
 
 Our study lays out a method for clustering rare diseases using the graph node 

embeddings. We develop an easy to maintain pipeline that can be updated when new data on 

rare diseases emerges. The embeddings themselves can be paired with other representation 

learning methods for other data types, such as drugs, to address other predictive modeling 

problems. Detailed subnetwork analysis and in-depth review of individual clusters may lead to 

translatable findings. Future work will focus on incorporation of additional data sources, with a 

particular focus on common disease data. 

 

Background and Significance 
 

Rare diseases affect up to 25-30 million people in the US[1] and more than 300 million 

worldwide[2], making rare diseases common as a collective. The burden of rare disease is 

disproportionately high because patients living with rare diseases tend to incur high healthcare 

costs along the course of long diagnostic odysseys and intensive treatment regimens[3, 4]. 

Furthermore, the population of rare disease patients is distributed across 5,000-10,000 distinct 

diseases[5], yet the vast majority have no approved therapeutics. These factors create a clear 

and present need for research and development of new therapeutic options.  

Methods that enable research and development efforts to make advances toward 

treatments for multiple diseases simultaneously may offer a path forward. Some such methods 
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are already in practice, including therapeutic platforms like gene therapies[6], basket clinical 

trials[7] and drug repurposing[8]. Both basket clinical trials and drug repurposing require 

knowledge of the connections between diseases through their underlying causal factors.  

Following similar efforts in the broader biomedical community[9], data integration and 

harmonization efforts in the rare disease space have emerged to support research and 

development aimed at multiple diseases at once. The Encyclopedia of Rare disease 

Annotations for Precision Medicine (eRAM) was built using a text-mining approach from the 

biomedical literature to connect and annotate diseases, genes, phenotypes into a system 

designed for use by clinicians[10]. The RDMap utilized multiple biomedical ontologies cluster 

diseases within a multidimensional map of rare diseases for researchers and clinicians to 

explore similarities amongst diseases[11]. Both eRAM and RDMap propose methods for 

calculating the similarity of rare diseases using phenotype and gene annotations individually 

and then combining the similarity scores.  

The National Center for Advancing Translational Sciences (NCATS) supports the 

Genetic and Rare Diseases (GARD) Information Center to maintain data on rare diseases with 

the United States. A preliminary attempt was made to harmonize data across the GARD 

diseases using multi-source mappings across diseases and genes and phenotype 

annotations[12]. Here we follow up on that study and use the similarity between diseases, with 

respect to their position within our KG, to perform disease clustering. Three factors differentiate 

our study from prior efforts: 1) the incorporation of explicit biological pathway and small 

molecule activity data, 2) the focus specifically on diseases tracked by GARD, and 3) the use of 

graph node embeddings. 

DeepWalk[13] and Node2Vec[14] are notable graph node embedding algorithms that 

convert graph nodes into vectors by applying word2vec[15] embedding models to random walks 

taken from across the knowledge graph (or any graph structured dataset). OPA2Vec[16] and 

subsequently DL2Vec[17] were developed for the specific application of graph node embedding 
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methods to the biomedical domain, with a particular emphasis on the use of semantic 

ontologies. A recent study utilizes the structure of the gene ontology to create gene and disease 

embeddings using only gene interaction data and gene-disease annotations[18]. In this study, 

we derive graph node embeddings for disease nodes within a KG containing diseases directly 

connected to associated genes and phenotypes, and further enriched with small molecules 

(both drugs and metabolites), molecular pathway data, and biomedical ontologies. Our 

embeddings were generated using DL2Vec, modified to balance the probability of traversal from 

a disease-node to either a gene-node or a phenotype-node. By using a variant of DL2Vec, we 

implicitly capture the semantic information contained within the ontology structures alongside 

the direct connections between diseases and genes/phenotypes. 

The disease-node embeddings are clustered, and the resulting clusters were analyzed 

for both validation and interpretation. We show that indeed graph node embeddings can be 

used to generate coherent, as measured through both quantitative and qualitative analysis, 

clusters of rare diseases within a heterogenous knowledge graph. Further, several of our rare 

disease clusters show promising connections to drugs and investigational compounds. 

Materials and Methods 
 

Data sources 
 

Several data resources were integrated to construct a rare disease focused KG. The 

GARD internal data resources were queried to obtain the overlap between GARD and Orphanet 

disease lists. We focused on GARD diseases to support additional efforts sponsored by NCATS 

and relied on Orphanet as an external source of validity for the disease list. Gene and 

phenotype annotations for each disease were obtained from Orphanet’s ORPHADATA v4.0 

resource[19]. The Gene Ontology[20, 21] (GO release 2021-10-26) and The Human Phenotype 

Ontology[22] (HPO release 2021-10-10) were both obtained from The OBO Foundry[23]. GO 

annotations for genes were obtained from NIH-NCBI 
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(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz). Metabolic, gene regulatory and physical 

interactions between genes, gene products, and small molecules were obtained from The 

Pathway Commons (PTC v12)[24]. Additional connections between genes and small molecules, 

based on published bioassay results, were obtained from Pharos v3.8.0[25, 26] via their API. 

Rare disease network construction 

 
HPO and GO ontologies were extended to include additional logical connections with the 

ELK reasoner[27]. The HPO class of “HP:0000005: Mode of Inheritance” and its subclasses 

were pruned from the processed HPO ontology because the presence of this class created an 

overly connected network and does not reflect a relationship between diseases that is relevant 

to our use cases. The PTC and Pharos data were ingested as edge lists and harmonized 

through the ChEMBL-ChEBI and ChEBI-PubChem mapping files provided by 

UniChem(accessed on 2022-04-25)[28]. In cases where a particular entity mapped to multiple 

HPO or GO classes within a particular subtree of the ontology, e.g., a gene mapped to two GO 

terms that shared a parent-child relationship such as protein binding (GO:0005515) and kinase 

binding (GO:0019901), only the annotation to the lowest subclass, e.g., kinase binding, was 

kept. The pruning process removed redundant GO and HPO term annotations while preserving 

the annotations with the most semantic information content. Finally, all data were loaded into a 

single graph object. 

Graph node embeddings 
 

Random walks emanating from each rare disease node were generated following a 

modified DL2Vec approach. The random walks were compiled into a corpus with each walk 

sequence. The length of each random walk and the number of random walks generated per 

disease were varied as part of our sensitivity analysis. Many diseases have far more HPO 

phenotype annotations than gene associations, yet the gene associations provide a very 

informative connection to the molecular processes involved in the disease. Therefore, to give 
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more weight to the gene annotations, the probability of taking a random walk step was balanced 

between the gene and HPO annotations for diseases with both annotation types. Word2Vec 

was used to ingest the random walks and generate word embedding models for various 

combinations of walk length and walk count. We used the skip-gram Word2Vec architecture and 

varied the vector embedding dimension and the context window size. 

Because we do not have a gold standard labelled dataset, we relied on internal 

clustering metrics to tune random walk and embedding model hyperparameters. We used three 

internal clustering metrics that each captures a different aspect of clustering quality: the 

silhouette score, which compares the intra-cluster distance to the nearest cluster distance for 

each sample; the davies-bouldin index, which compares the intra-cluster distance with the inter-

cluster distances (lower is better); and the calinksi-harabasz index, which measures the within 

versus between cluster variances. Embedding models of different dimensions are not directly 

comparable with these internal clustering metrics. Therefore, we relied on heuristic rule as 

guidance coupled with empirical analysis of the complexity feature space captured in the 

embedding model. We started by assessing the fourth root of the total number of words in our 

corpus. In our case the number of words is the total number of unique nodes and unique edges 

traversed in the random walks, and results in a suggested embedding dimension of 26. Using 

this heuristic, we selected a range of embedding dimensions between 4 and 128 to test. We 

then performed sensitivity analysis with the other three parameters (the number of walks, the 

length of the walks and the embedding context window size) within each embedding dimension.  

Rare disease node clustering 
 

The disease node embedding vectors were extracted from the Word2Vec models and 

concatenated to form a matrix where each row represents a disease, and each column is 

treated as a feature. We then applied K-means clustering using the python package scikit-

learn[29] to cluster diseases.  The number of clusters was selected using a variant of the elbow 

method entitled the kneedle algorithm[30] as implemented in the kneed v0.8.1 python package. 
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Feature enrichment analysis 
 

The node embedding process captures complex information regarding the local context 

surrounding a disease node within the knowledge graph, including phenotypes, genes, small 

molecules, (including drugs and metabolites) and more. This approach enables the clustering 

model to consider a rich feature space for each disease and is therefore more powerful than 

simply modeling direct annotations associated with each disease. However, this embedding 

process makes it more difficult to interpret in detail why a particular set of diseases ended up in 

a cluster together, yet this information is key for understanding the results and determine next 

steps. Therefore, we pursued two different forms of feature enrichment analysis. 

First, we tested for gene enrichment for each cluster, with the aim of determining which 

genes were represented more frequently than expected by chance in each cluster. We counted 

the number of diseases associated with each gene within each disease cluster. To test against 

the null hypothesis that diseases were assigned to clusters independently of their gene 

annotations, the disease to cluster assignments were permuted 500,000 times, keeping the 

gene to disease annotations the same (noting that those are derived from the graph annotations 

and not our embeddings). The distribution of the counts of gene to cluster assignments for each 

gene within each cluster in the permuted data represent the null hypothesis of random grouping 

of genes within the clusters. A p-value was calculated based on the number permutations in 

which the counts of each gene within each cluster was greater than observed. 

Random walk feature importance was estimated by calculating the term frequency-

inverse document frequency (tf-idf)[31] of each feature within windows surrounding occurrence 

of each disease within the random walk corpus. The window size was selected to be consistent 

with the window size used in training the vector embedding model.  The feature occurrences for 

each disease were summed within each cluster to obtain the term frequency. The presence or 

absence of each feature within each cluster was treated as the “document” frequency. An 

empirical cumulative distribution function was constructed from the tf-idf values and various 
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percentile cutoffs were used to then summarize how informative each feature type for each 

cluster.  

We sought to further interpret the known relationships amongst clustered diseases with 

respect to their enriched gene annotations. We therefore used STRINGDB v11.5[32] to 1) 

assess whether the enriched genes within each cluster have more connections had than 

expected by chance and 2) identification of enriched GO terms first for each set of genes. 

Semantic similarity validation  
 

The Orphanet Rare Disease Ontology (ORDO v4.0) [33] was used to calculate pairwise 

semantic similarity amongst diseases based on the Sanchez information criteria[34]. We 

sampled 100 random sets of diseases of size 87 (the average number of diseases per cluster) 

to obtain a sampling distribution of average pairwise semantic similarity.  We then performed a 

one sample Student’s t-test to statistically evaluate the difference in the mean average semantic 

similarity between the disease clusters and the random samples by assuming that the mean 

and variance parameters from the random samples represent the sampling distribution under 

the null hypothesis.  

Results 
 

Exploratory analysis of the rare disease network 
 

The node degree (number of connections for each node) distribution of the knowledge 

graph is shown in Figure S1. The overall degree distribution of the knowledge graph is nearly 

linear on a log-log scale, indicative of a power-law distribution. The degree distribution is largely 

determined by the preponderance of small molecule nodes (N=348,395).  

To evaluate the connectivity between diseases in the graph, we calculated the 

distribution of shortest path lengths between every pair of disease nodes and the results are 

shown in Figure S2. The most common path lengths were four and two corresponding to having 

three and one intermediate node, respectively. Genes and phenotypes are the only direct 
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connections to diseases and both the genes and phenotypes are connected through the GO 

and HPO ontologies respectively. The hierarchical tree structure of the ontologies included in 

the network result in an increase in the frequency of paths of length 4 compared to paths of 

length 3 or 5. For example a common type of path between diseases goes as follows: disease, 

HPO phenotype, HPO class, HPO phenotype, disease; this type of path has an edge length of 

4.  The longest path between any two disease nodes in the graph was 6 and so we expect that 

disease nodes will occur frequently within the random walks. 

Optimization of embedding dimension 
 

Using the optimized parameters, we performed principal component analysis (PCA) on 

the disease embedding vectors from models with different embedding dimensions. By plotting 

the explained variance as a function of the number of principal components, we can visually 

inspect the degree to which dimensionality of the embedding space can be reduced. We built 

models with embedding dimension of 4, 8, 16, 32, 64 and 128. We observed that for models 

with embedding dimension of 4, 8 or 16 there was no drop off in variance explained by 

successive PC’s indicating that these feature spaces could not be significantly reduced. In 

contrast, models with dimension of 32 or higher showed a large decrease in variance explained 

by higher PC’s suggesting that those feature spaces could be reduced (Figure S3). Therefore, 

an embedding dimension of 32 was selected for final analysis. It is useful to note that this 

embedding dimension is roughly consistent with that recommended by the fourth root heuristic.  

 
 

Disease clusters 
 

A total of 3,242 diseases were used to construct a rare disease network that included 

data on genes, phenotypes, small molecules, biological pathways, and biomedical ontologies. 

The rare disease network contained 439,691 nodes and 2,716,895 edges (see the 

Supplemental Material for an exploratory data analysis of the network). Figure 1 illustrates 

workflow used create disease clusters from the rare disease network. 
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Several random walk and embedding model parameters were systematically varied to 

optimize the quality of the disease clusters produced. Parameters varied include the number of 

walks, the length of the walks, the embedding context window size, and the overall embedding 

dimension. Figure S4 shows several internal clustering metrics as a function of the number of 

walks per disease, across the various walk lengths and context window sizes for an embedding 

dimension of 32. The number of walks per disease had the largest effect on all clustering 

metrics. Performance increased with the number of walks with a plateau reached beyond 250 

walks per disease. Based on this sensitivity analysis, we selected the following model 

parameters: 250 walks, walk length of 250 and context size of 20.  

Final disease clustering model and its evaluation 

Our final disease cluster model contained 37 clusters, with an average of 87 and a 

median of 83 diseases per cluster. The distribution of cluster sizes is shown in Figure S5. In 

Figure 2 the disease embedding values are plotted as a heatmap with diseases sorted either 

randomly or by cluster assignment, which shows that diseases with similar patterns across the 

embedding values tend to group together into clusters. To assess the degree of separation 

between the disease clusters we projected the disease clusters into a two-dimensional t-SNE 

map. The t-SNE projection of the disease clusters, colored by their cluster assignments, are 

depicted in Figure 3(a). The t-SNE map shows apparent separation amongst the disease 

clusters.  

To inspect the clusters quantitatively, we calculated a within-cluster semantic similarity 

index and compared that with randomly sampled disease sets. Specifically, we utilized the 

ORDO to calculate the Sanchez intrinsic information criterion within each disease cluster (see 

Methods). Figure 3(b) shows the distribution of the average semantic similarity both within each 

disease cluster and across a set of 100 randomly sampled diseases of size 87 (the average 

number of diseases per cluster). The t-test results suggest that the clustered diseases are 

significantly more semantically similar than a random selection of diseases (p=0.00024). These 
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results indicate that the disease clustering model has captured information contained within the 

knowledge graph that is useful for assessing similarity amongst diseases. 

Cluster feature enrichment 

 
Our first feature enrichment analysis focused strictly on direct genes annotations. By 

permuting the disease-cluster assignments we identified 585 genes enriched in at least one 

cluster at an FDR q-value cutoff of 0.01. We found that 12 genes were enriched within more 

than one cluster. The genes enriched in more than one cluster include genes associated with 

some major classes of diseases, such as: 1) oncogenes: KRAS, PTEN, TP53, KIT and FGFR1; 

2) gene associated with musculoskeletal phenotypes: COL1A1, FKTN, GMPPB, POMT1, 

POMT2; 3) and genes associated with blood disorders: HBB, NPM1. The remaining 573 genes 

were enriched within only one cluster each (totaling 33 clusters with at least one enriched gene). 

Second, we analyzed the random walks themselves to identify context features (e.g., 

genes, HPO terms, etc.) that make up each individual disease cluster. Figure 4 shows the 

number of nodes of each type as a function of the tf-idf percentile threshold for a set of clusters 

selected to be exemplary of different cluster archetypes. The cluster archetypes we identified 

include those almost exclusively dominated by HPO terms (clusters 16 and 19), those where the 

highest end of the td-idf distribution is dominated by genes (clusters 22 and 24), clusters with 

important GO terms and genes (cluster 7) and clusters with no features amongst the higher tf-idf 

percentiles (cluster 30).  

Interpreting the disease clusters 

 
 The sets of enriched gene annotations within each cluster were queried against 

STRINGDB. The enriched gene sets from 27 of the 33 clusters having at least one enriched 

gene had significantly more connections within STRINGDB than expected by chance. We 

manually reviewed the diseases, enriched genes, and enriched GO terms within each cluster 

with the goal of constructing concise descriptions of each cluster. Three clusters that could be 
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concisely described are summarized in Table 1. Cluster 3 contains several neuromuscular and 

skeletal diseases such as Charcot-Marie Tooth disease type 2C and Duchenne Muscular 

Dystrophy. Cluster 7 is primarily composed of diseases that affect the visual system such as 

Cone-Rod Dystrophy and Leber Congenital Amaurosis. Cluster 28 contains several cardiac and 

electrophysiological diseases that are caused by mutations in ion channels (i.e., 

channelopathies). For all three clusters the enriched GO terms clearly align with the function of 

the associated genes and the etiology and pathophysiology of the diseases. 

 

Utility for drug repurposing 
 

Drug repurposing is one important use case of our rare disease clusters. Identifying 

legitimate drug repurposing candidates will require in depth analysis of the clustered diseases 

and their connections to drugs. Here we sought to describe the connections between known 

drugs, gene targets, and the disease clusters.  

Figure 5(a) shows the distribution of the number of gene targets by cluster and broken 

down by Target Druggability Level (TDL). The TDL is a qualitative label assigned to targets 

based on what is known about their chemistry, biology, and whether an approved drug is 

available[25, 26]. Tclin and Tchem rated targets are those with data indicative of druggability. 

Tclin rated targets have approved drugs with known mechanisms of action that target them and 

Tchem rated targets have ligands with activities known to be below target family specific 

thresholds. Tbio and Tdark rated targets are less obviously druggable; Tbio targets have 

published literature characterizing the target, yet no active ligands have been published and 

Tdark are considered understudied targets.   

At the time of writing this paper, the overall distribution of TDL values in Pharos was 

11,867 Tbio, 5,932 Tdark, 1,930 Tchem and 685 Tclin. As in the overall TDL distribution, Figure 

5(a) shows that Tbio is the largest category of gene targets in every cluster. In contrast to the 

overall TDL, relatively few targets with associations to the clustered rare diseases are rated as 
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Tdark. The relative absence of Tdark targets is expected because a gene target will need to 

have literature support to be associated with one of the diseases in our network. Thirty-one out 

of 37 clusters have at least one gene target with a Tclin or Tchem rating, indicating that many of 

the clusters have putative drug repurposing candidates that could be mined in a more detailed 

analysis. 

To explore the space of drug connections to our disease clusters, we filtered the original 

data from Pharos to include only approved drugs. Figure 5(b) shows the number of approved 

drugs with activity against a target in each cluster, based on the Pharos data. Among clusters 

with direct connections to drugs, the number of unique drugs per cluster ranged from 356 drugs 

in cluster 28 to just a single drug in cluster 6. In addition, clusters 2, 16 and 19 had no known 

drug connections. We anticipate using these summaries to help prioritize in depth follow-up 

studies on diseases within individual clusters. 

Discussion 
 

We constructed a knowledge graph based on the overlap between rare diseases tracked 

by GARD and Orphanet. The graph is enriched with additional information on small molecules 

and biological pathways. We used this enriched network to construct graph node embedding 

vectors for each disease. Those embedding vectors were used as a feature matrix in a k-means 

clustering analysis. Hyperparameters of the embedding model and the k-means model were 

selected by a combination of heuristics, sensitivity analyses and explicit tuning. Our method 

identified 37 diseases clusters with an average of 87 diseases each. The quality of the resulting 

disease clustering model was validated by comparing semantic similarity within clusters 

compared to randomly selected disease sets, based on the ORDO, which was not part of our 

disease network. The semantic similarity of the clustered diseases combined with visual 

inspection of the cluster sorted embedding vectors and feature enrichment analysis suggests 

that our method has identified groups of diseases with features in common. Furthermore, 
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manual review of the clustered diseases, enriched genes and enriched GO terms showed that 

many of the clusters are clearly composed of diseases related based on their causal gene and 

pathophysiology. 

The use of semantic similarity within clusters as a form of validation begs the question: 

why was semantic similarity not the primary basis for clustering the diseases in the first place? 

Our aim was to expand beyond semantic ontological organization of diseases by a) directly 

using data related to the diseases and b) using higher order relationships between the diseases 

across data modalities. The former justification was taken up by both eRAM [10] and the 

RDMap [11] projects, which developed similarity scores using both Phenotype-HPO and Gene-

GO linkages to rare diseases. Our approach expands upon those methods by integrating the 

Phenotype-HPO, Gene-GO and additional datasets into a single network. We capture higher 

order relationships amongst diseases by building graph node embeddings. The graph node 

embeddings provided and integrated representation of the network context of each disease 

across the heterogenous data types present in the network. However, our results are only as 

comprehensive as the underlying input data. Various sources of bias, including publication bias 

toward more prevalent diseases, limit the generalizability of our results. As more data is shared 

in the rare disease research space, our ability to extract insights from integrative data resources 

will increase. 

Another key limitation of our study is the absence of common diseases. Most of the 

biomedical data pertains to common diseases. Therefore, expanding our knowledge graph to 

incorporate common disease information would greatly increase the scope and translational 

relevance of the work. However, the expansion of the graph would also create some challenges 

surrounding data source selection and overwhelming of the rare disease signal. Nevertheless, 

one goal for future work will be the incorporation of common disease data into the analysis.  

Our analysis creates an additional layer of structure onto the large pool of rare diseases. 

We hope this structure will help strengthen drug repurposing efforts by enabling focus onto 
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smaller disease sets. Yet it must be recognized that our analysis on its own does not directly 

yield translatable results; this is in part due to the limited interpretability of the graph node 

embeddings. In depth follow up, such as detailed subnetwork analysis or literature review will be 

required to take full advantage of our work – a task which will be taken up in a related 

manuscript.  

Conclusion 
 

Our approach expands upon prior efforts to identify similarity of rare disease by 

integrating multiple data types and considering the higher order structure of the rare disease 

network simultaneously. We show that diseases in the clusters are enriched for similar gene 

annotations and that there are many possible connections to approved and investigational 

drugs. Future work will focus on expanding the knowledge graph with common disease data 

and detailed subnetwork analysis of the most promising clusters. At a higher level, we hope that 

our work shows the benefit of continued to growth of data sharing and integration within the rare 

disease research community. 

Acknowledgements 
 
This research was supported in part by the Intramural Research Program of the National Center 

for Advancing Translational Sciences (NCATS), NIH under project ZIC TR000410-03. I would 

like to thank Dac-Trung Nguyen, Yanji Xu and Andy Patt for their insights during the formation of 

this project. 

 

Code and Data Availability 
 
All code for executing analysis and constructing figures is contained here: 

https://github.com/jsanjak/RD-Clust. Publicly available data used in our workflow are referenced 

in scripts within the GitHub repository. GARD data used are presently not accessible to the 

public and are therefore provided as CSV files within the GitHub repository.  
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Figures 
 

 

Figure 1: Rare disease clustering workflow. Input data resources are integrated into a single rare disease focused 
network. Random walks are performed to create a corpus of surveying the local context around each disease. Node 
embeddings are created and clustered. Post-hoc analyses are conducted to interpret and utilize the disease clusters 

 

 

Figure 2: Disease embedding vectors are plotted in heatmaps (a)randomly sorted and (b)sorted by cluster. Each 
column in the heatmap corresponds to a dimension within the embedding vector space and each row corresponds to 
a disease. In figure b, the clusters are demarcated with horizontal black lines. 

 

a b 
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Figure 3: Visualizing and quantifying similarity within disease clusters. (a) t-SNE projections of the disease 
embedding vectors were created and plotted, points are colored according to their cluster membership. (b) The 
average pairwise Sanchez semantic similarity metric amongst disease within each cluster or within random samples. 

 

 

Figure 4: Counts by annotation feature type as a function of Tf-idf percentile threshold for a selected set of exemplary 
clusters.  

a b 
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Figure 5: Summary of Pharos data by disease cluster. (a) The number of gene targets with a TDL label from Pharos 
within each cluster and (b) the number of drugs connected to each cluster through gene targets. Drugs were obtained 
from the Pharos based on their ‘Tclin’ ligand readiness level assignment. 
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Table 1. Example disease clusters with enriched genes and gene ontology terms 

Cluster Exemplary Diseases Genes Exemplary GO terms 

3 Charcot-Marie-Tooth disease type 2C; Metatropic 
dysplasia; Brachyolmia type 3; Parastremmatic dwarfism; 
Spondylometaphyseal dysplasia; Centronuclear myopathy; 
King Denborough syndrome; Myopathy congenital; Cap 
myopathy; Congenital fiber type disproportion; Freeman-
Sheldon syndrome; Distal arthrogryposis type 1; 
Spinocerebellar ataxia 15/29; Tubular aggregate myopathy; 
Rigid spine syndrome; Dysferlinopathy; Becker muscular 
dystrophy; Duchenne muscular dystrophy 

TRPV4; RYR1; TPM3; NALCN; ITPR1; 
NEB; MYH3; TTN; AK9; CHRNA1; 
CHRNE; CHRNB1; CACNA1S; 
CHRNG; ORAI1; BIN1; TPM2; 
ACTA1; KLHL41; TCAP; CHRND; 
MYPN; STIM1; MYH7; SELENON; 
DYSF; DMD; LMOD3; RAPSN 

Muscle filament sliding; Muscle organ 
development; Myofibril assembly; Synaptic 
transmission, cholinergic; Skeletal muscle 
tissue development; Neuromuscular 
synaptic transmission; Skeletal muscle thin 
filament assembly; Sarcomere 
organization; Regulation of heart 
contraction; Calcium ion transport; 
Regulation of membrane potential; Ligand-
gated cation channel activity 

17 Leber congenital amaurosis; Cone-rod dystrophy; 
Achromatopsia 2/3; Stargardt disease; Usher syndrome 
type 1/2A/3A; Corneal dystrophy; Coats disease; Norrie 
disease; Retinal cone dystrophy 1 

NMNAT1; SAG; RPGR; SPATA7; 
ZNF408; CDHR1; RHO; PDE6B; 
RPE65; CRX; TULP1; ABCA4; BEST1; 
USH2A; PROM1; TGFBI; IMPG2; 
NDP; OPN1MW; GUCA1A; PDE6H; 
GNAT2; CNGA3; PDE6C; CNGB3; 
ATF6; AIPL1; TIMP3; RDH12; 
IMPDH1; GNAQ; GRK1; PRPH2; 
LRAT; CLRN1; LRP5; CACNA1F; 
MYO7A; GUCY2D; TYR; CACNA2D4; 
FZD4; ADCY5; OPN1LW 

Visual perception; Retina homeostasis; 
Phototransduction, visible light; 
Photoreceptor cell maintenance; 
Regulation of rhodopsin mediated signaling 
pathway 

28 Autosomal recessive pseudohypoaldosteronism type 1; 
Liddle syndrome; Brugada syndrome; Thomsen and Becker 
disease; Familial hemiplegic migraine; Familial infantile 
convulsions and paroxysmal choreoathetosis; Benign 
familial infantile epilepsy; Paroxysmal kinesigenic 
choreoathetosis; Early Infantile Epileptic Encephalopathy; 
West syndrome; Familial primary hypomagnesemia; Dravet 
syndrome; Familial atrial fibrillation; Long QT syndrome 1; 
Progressive familial heart block type 1B/1A/2; Andersen-
Tawil syndrome; Hyperkalemic periodic paralysis; 
Potassium aggravated myotonia; Rapid-onset dystonia-
parkinsonism; Congenital insensitivity to pain; Paroxysmal 
extreme pain disorder; Erythromelalgia 

SCNN1A; CLCN1; PRRT2; CACNA1A; 
SCNN1G; SIK1; KCNA1; SCN2A; 
SCN2B; SCN4B; SCN3B; EEF1A2; 
SCN1B; KCNJ2; SCN4A; PLCB1; 
TRPM4; ATP1A3; KCNE2; KCNQ2; 
SCN5A; SCN11A; NKX2-5; SCNN1B; 
ATP1A2; KCNQ3; SCN1A; KCNT1; 
SCN8A; SCN9A; SCN10A; AKAP9; 
ABCC9; DNM1; GRIN1; GRIN2B; 
KCND3; SYNGAP1; KCNJ8; KCNQ1; 
GABRA1; KCNJ10; GRIN2A; 
SLC25A22; KCNE3; CHD2; GABRG2; 
KCNE1; SLC4A11 

Sodium ion transmembrane transport; 
Cardiac muscle contraction; Transmission 
of nerve impulse; Blood circulation; 
Regulation of ventricular cardiac muscle 
cell membrane repolarization; Ventricular 
cardiac muscle cell action potential; 
Sensory perception of pain; Ion channel 
binding; Ligand-gated cation channel 
activity; Potassium channel regulator 
activity; Calmodulin binding; Glutamate-
gated calcium ion channel activity 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528673
http://creativecommons.org/licenses/by/4.0/


Supplemental Figures 
 
 

 

Figure S1 The degree distribution of various node types within the rare disease knowledge graph. Both y and x axes 
show the raw data values on a log-scale. 

 

 

Figure S2 The distribution of shorest path lengths between all disease pairs within the rare disease knowledge graph 
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Figure S3 The variance in embedding values explained by successive principal component of the disease embedding 
matrix for an embedding dimension of 32. 

 

 

Figure S4: Internal clustering metrics as function of node embedding model hyper parameters. The colors of each line 
signify the length of the random walks used to construct the disease corpus. The chart columns vary the embedding 
context window (K_DIM). The chart rows show the three different clustering metric used, which are each plotted over 
the number of random walks generated per disease.  
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Figure S5 A histogram displaying the distribution of the number of diseases in each of the final clusters 
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